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Abstract

Obijective: In routine oncological treatment settings, psychological distress, including
mental disorders, is overlooked in 30% to 50% of patients. High workload and a
constant need to optimise time and costs require a quick and easy method to identify
patients likely to miss out on psychological support.

Methods: Using machine learning, factors associated with no consultation with a
clinical psychologist or psychiatrist were identified between 2011 and 2019 in 7,318
oncological patients in a large cancer treatment centre. Parameters were hierarchi-
cally ordered based on statistical relevance. Nested resampling and cross validation
were performed to avoid overfitting.

Results: Patients were least likely to receive psycho-oncological (i.e., psychiatric/
psychotherapeutic) treatment when they were not formally screened for distress,
had inpatient treatment for less than 28 days, had no psychiatric diagnosis, were
aged 65 or older, had skin cancer or were not being discussed in a tumour board. The
final validated model was optimised to maximise sensitivity at 85.9% and achieved an
area under the curve (AUC) of 0.75, a balanced accuracy of 68.5% and specificity of
51.2%.

Conclusion: Beyond conventional screening tools, results might contribute to identify
patients at risk to be neglected in terms of referral to psycho-oncology within routine

oncological care.
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(Mitchell et al., 2011). Because such symptoms often go unnoticed in pri-

marily somatic treatment settings (Fallowfield et al., 2001; Hallet

Between 30% and 50% of patients with cancer suffer from significant
psychological distress impeding their private, social and work life
(Mehnert et al., 2018). In 30-40% of patients, depression, anxiety
and other mood or adjustment disorders are to be diagnosed

et al., 2020; Passik et al., 1998; Sharpe et al., 2004; Séllner et al., 2001),
consensus-based treatment guidelines and certification requirements
of cancer treatment centres require formal screening for

psychological symptoms using a validated instrument (such as the
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distress thermometer, DT) in order to provide psycho-oncological
(i.e, psychiatric/psychotherapeutic) treatment where necessary
(American College of Surgeons, 2019; AWMF, 2014). Psycho-oncological
interventions have shown to reduce distress significantly (Faller
et al,, 2013; Meijer et al., 2013), increase treatment adherence (Kennard
et al., 2004) and satisfaction (Bui et al., 2005; von Essen et al., 2002),
improve course and prognosis of cancer (Carlson & Bultz, 2003; Geerse
et al., 2019; McCarter et al., 2018; Sanjida et al., 2016), reduce the length
of hospitalizations (Prieto et al., 2002), reduce the financial and emotional
burden of health care providers (McCarter et al., 2018) and maximise the
quality of life in general (Skarstein et al., 2000).

Despite all, 25% to 80% of patients with cancer fail to receive
adequate professional psycho-oncological treatment (Hollingworth
et al, 2013; Mitchell, 2013). Nineteen per cent of patients do not
even know about the availability of psycho-oncological support
(Dilworth et al., 2014). Reasons include deficits in organisational struc-
ture (e.g., treatment team resources) (McCarter et al., 2018) and
patient related factors, such as lower education (Eakin &
Strycker, 2001; Mehnert & Koch, 2005; Nekolaichuk et al., 2011;
Waller et al., 2013), older age (Ellis et al., 2009; Faller et al., 2016;
Merckaert et al., 2010; Waller et al., 2013) and male gender (Curry
et al., 2002; Merckaert et al., 2010; Nekolaichuk et al., 2011).

The current study aimed to identify the most important factors for
clinical oncologists to avoid overlooking patients when considering
psycho-oncological treatment. In addition, barriers to treatment should
be easily identifiable for clinicians by reviewing the patient files before
the next consultation and regardless of any formal screening for dis-
tress. Therefore, the aim of this study is to develop a prediction model
answering the question ‘what patients with cancer are least likely to
consult with a psychiatrist/psychologist?” To this end, a relatively large
number of variables need to be explored in terms of their significance.
Machine learning (ML) is a relatively new and promising statistical tool
to sort variables in terms of relevance. Computer algorithms (such as
logistic regression, support vector machines [SVM], decision trees or k-
nearest neighbour (KNN) depending on the data structure) can be
employed using all available data from the electronic files of patients
(so-called predictor variables) to identify those patient-related variables
which are most significantly correlated with the respective outcome
variable (no psychological/psychiatric consultation). In contrast to con-
temporary statistical approaches, ML can deal with larger data sets (data
mining) and uncover previously hidden (linear and non-linear) relation-
ships between variables without being limited by pre-devised hypothe-
ses. The study was conducted in adherence to recommendations for
Transparent Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD), and the TRIPOD-checklist can be

found in the supporting information (Moons et al., 2015).

2 | METHOD

21 | Source of data and data preparation

The present study was approved by the Ethics Committee of the State
of Zurich (Ref. No. BASEC-NR 2020-01949).

The current study analysed electronic case file data of 7,318
patients, who were initially diagnosed with (and treated for) cancer
between 2011 and 2019 at the Comprehensive Cancer Centre Zurich
(C3Z), which is a subunit of the University Hospital of Zurich,
Switzerland. About 15,000 patients with cancer are treated every
year. Treatment occurs on different specialised wards and outpatient
clinics (e.g., gynaecology, haematology and dermatology); however,
according to institutional guidelines, all cases should be discussed in
an interdisciplinary tumour board consisting of radiologists,
oncologists, pathologists, other medical specialists and a psychiatrist
to optimise treatment. In addition, nurses are instructed to screen for
distress using an ultrashort standardised screening instrument, the
distress thermometer and problem list (Fulcher & Gosselin-
Acomb, 2007; Roth et al., 1998), as recommended in international
guidelines. See Table 1 for study group characteristics. In a first step,
all routinely collected data in the electronic health records via the
clinical management software (®KISIM, Cistec AG) used at the C3Z
and via an institutional cancer register (®OncoStar, IT-Choice) were
reviewed by the authors. Data were reviewed for its clinical and data
value in terms of predicting the event of consulting with a psycholo-
gist/psychiatrist at the C3Z at any point of time during treatment
(outcome variable). The almost 800 predictor variables were thus
reduced to a final set of 47 (see the supporting information) based on
availability of data and clinical relevance (author judgement based on
literature cited here) to avoid overfitting in the final model (see
below). All 47 variables were dichotomized, but this should not impact
predictive power. For brief definitions, dichotomizations and the
number of missing values of these variables, see the supporting
information. Of this set of 47 variables, three variables had to be
eliminated from further analysis due to conservative use of imputa-
tion, which only permitted imputation of variables with less than one

third of missing values. See Figure 1 for data selection.

2.2 | Statistical procedures—ML

A preliminary description of ML is provided in Glinther et al. (2020)
and was partially adopted and extended here. An overview of the
statistical procedure can be seen in Figure 2. All steps were performed
using R version 3.6.3 and the MLR package v2.171 (Bischl
et al., 2016). Confidence intervals of the balanced accuracy were
computed using MATLAB R2019a (MATLAB and Statistics Toolbox
Release 2012b, The MathWorks, Inc., Natick, Massachusetts,
United States) with the add-on ‘computing the posterior balanced
accuracy’ v1.0 (Brodersen et al., 2010).

After initial data preparation, 44 dichotomous predictor variables
and the dichotomous outcome variable (psychological or psychiatric
consultation occurred/no consultation occurred) remained. A total of
6,222 patients (85%) did not consult with a psychiatrist/psychologist
and were defined to be the positive class, whereas 1,096 patients
(15%) did and were defined to be the negative class. Next, the data
set was divided into a training subset (70%, 5,123 patients) and a
validation subset (30%, 2,195 patients). This was done to separate
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TABLE 1 Descriptive statistics of

e
study group Ae

FIGURE 1

Female
Male
Total
Sex
Female
Male
Total
Type of cancer
Neuro
Lung
Prostate

Head & neck

Haematological neoplasm

Dermatology
Bladder
Pancreas
Intestine
Endocrin
Gynaecology
Breast
Testicle/penis

Total

Source of data and data selection

All routine data
collected in
electronic health
records

v
47 variables (see
supplementary
materials)

v

Final sett of
44 variables

Mean SD
61 15.25
65 13.2
63 14.43
N Per cent
3,749 51.2
3,569 48.8
7,318 100
N Per cent
526 7.2
1,005 13.7
572 7.8
398 54
170 23
2,122 29
65 0.9
64 0.9
439 6
98 1.3
620 8.5
1,221 16.7
18 0.2
7,318 100

Clinically irrelevant data (author judgement based
—| on extant literature) & data not collected for > 80%

A4

Data with >
30% missing

values

model building from model validation and reduce the risk of model
overfitting.
2.3 | Initial ML modelling—Nested resampling

For model building, only the training subset was used. To further

reduce overfitting and to avoid final model selection to be

influenced by data processing, nested resampling (Moons et al., 2014;
Studerus et al., 2017) was employed for initial modelling. This
means, in an inner loop, data processing and model training are
performed imbedded in fivefold-cross-validation and then, in an
outer loop, the performance of these models is tested—also
embedded in fivefold-cross-validation. Cross-validation is a
technique to artificially create different subsamples of a data set
(Browne, 2000).
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FIGURE 2 Overview of statistical procedures. Step 1—data preparation: Outcome variable ‘consultation/no consultation’ and 544 predictor
variables were defined. Step 2—datasplitting: Split into 70% training dataset and 30% validation dataset. Step 3a to e—Model building and testing
on training data I: Imputation by randomForest; upsampling of outcome ‘no consultation” x 5.6; variable reduction via random forest; model
building and hyperparmater tuning via ML algorithms—logistic regression, trees, random forest, gradient boosting, KNN (k-nearest neighbour),
support vector machines (SVM) and naive bayes; testing (selection) of best ML algorithm via ROC parameters. Step 4—Model building and testing
on training data Il: Nested resampling with imputation, upsampling, variable reduction and model building with hyperparameter tuning in inner
loop and model testing on outer loop. Step 5—Model building and testing on validation data I: Imputation with stored weights from Step 3a.

Step 6—Model building and testing on validation data II: Best model identified in Step 3e applied on imputed validation dataset and evaluated via

ROC parameters. Step 7: Ranking of variables by indicative power

2.4 | Initial model construction—Data processing
and model building

This step was performed within the inner loop of the nested
resampling of the training subset. Because some ML algorithms need
complete data sets, missing values were imputed via random forest
algorithms in the MLR package, using randomForestSRC ad on
(Ishwaran & Kogalur, 2020). Weights were stored and used in the
validation subset later on. Due to the imbalance in the distribution of
the outcome variable (85% without vs. 15% with consultation of a
psychiatrist/psychologist), the less frequent state of ‘consultation

occurred’” was randomly upsampled at a rate of 5.6, thus balancing the

data subset, as is recommended for optimal model building (Wei &
Dunbrack, 2013). Since the extraction of the most predictive variables
without overfitting was a key objective of the current study, a
random forest algorithm (randomForestSRC package; Ishwaran &
Kogalur, 2020) was used to filter the initial 44 variables. Hyper-
parameter tuning was used to adjust the default functioning of
algorithms in order to identify the most efficient model (see the
supporting information for final hyperparameters). Finally, discrimina-
tive model building was applied with logistic regression, trees, random
forest, gradient boosting, KNN, SVM and naive Bayes, as an easily
applicable generative model (for a more detailed description, see
James et al., 2013).
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2.4.1 | Initial model construction—Model selection
In the outer loop of the nested resampling procedure, the final model
was selected by assessing performance of each model. Model perfor-
mance was evaluated in terms of balanced accuracy (i.e., the average
of true positive and true negative prediction rate, which is suggested
for imbalanced data; Brodersen et al., 2010) and goodness of fit
(measured with the receiver operating characteristic, balanced
curve area under the curve method and ROC balanced AUC)
(Campbell, 1994). Moreover, specificity, sensitivity, positive predictive
value (PPV) and negative predictive value (NPV) were evaluated. As
our training dataset was artificially balanced, the model with the
highest AUC was chosen for final model validation in the validation
subset of the data (Campbell, 1994).

The final set of identified predictor variables was tested for

multicollinearity to avoid dependencies between the variables.

2.5 | Final model evaluation

The validation subset of the original data set was not manipulated,
except for the imputation of missing values via the stored weights
from initial model building (see above). The best performing final
model (with set hyperparameters) was used, and performance
measures were reassessed. The predictor variables of the outcome

variable in this final model were sorted by indicative power through

means of a sensitivity analysis using the gbm package (Cortez &
Embrechts, 2013).

3 | RESULTS

An overview of the performance parameters of the different
calculated models during the nested resampling procedure is shown in
Table 2 (see the supporting information for specific hyperparameters
used and the corresponding confidence intervals). With a balanced
accuracy of 81% and an AUC of 0.77, gradient boosting outperformed
all other ML algorithms.

The absolute and relative distribution of the six most influential
variables identified during nested resampling, which were subse-
quently used for model building, is shown in Table 3. The variables
most predicative of no psychological/psychiatric consultation were no
prior screening for distress (see above), length of longest inpatient
stay less than 28 days, absence of a psychiatric diagnosis according to
ICD-10 (World Health Organization, 2016), age 65 or older, presence
of a skin cancer and no inclusion in a tumour board. Testing for
multicollinearity showed no dependencies of concern between the
variables (for detailed results, see the supporting information).

The quality of the final model was assessed in a validation step
with results provided in Table 4. As expected, the balanced accuracy
of 68.5 and AUC of 0.75 was less than the results of the initial training
model but still meaningful. With a sensitivity of 85.9%, most patients

Sensitivity (%) Specificity (%) PPV (%) NPV (%)
83.8 70.1 97.1 26.3
80.6 79.4 97.9 25.3
80.1 81.2 98.1 25.2
80.4 81.2 98.1 25.5
54.3 98.7 99.8 15.2
80.9 78.1 97.8 25.3
78.7 80.5 98.1 23.2

TABLE 2 Machine learning models and performance in nested cross-validation on training dataset
Statistical procedure Balanced Accuracy (%) AUC
Logistic regression 77 0.76
Tree 80 0.74
Random Forest 80.6 0.74
Gradient boosting 80.8 0.77
KNN 76.5 0.54
SVM 79.5 0.74
Naive Bayes 79.6 0.74

Abbreviations: AUC, area under the curve (level of discrimination); KNN, k-nearest neighbours; NPV, negative predictive value; PPV, positive predictive

value; SVM, support vector machines.

TABLE 3 Absolute and relative distribution of indicative variables on the complete dataset

No psychiatric/psychotherapeutic
treatment (%)

Variable code Variable description

Psychiatric/psychotherapeutic
treatment (%)

DTSREE Distress screening applied 1507/6222 (24.2) 480/1096 (43.8)

HOSDUR Longest inpatient treatment 774/6,222 (12.4) 410/1,096 (37.4)
28 days or more

FDX Mental disorder present 538/6,222 (8.6) 256/1,096 (23.4)

Alt/Jung Patient age 65 or older 3,287/6,222 (52.8) 409/1,096 (37.3)

Haut Skin cancer present 1,975/6,222 (31.7) 147/1,096 (13.4)

Tumorboard Tumour board held 2,616/4,832 (54.1) 622/732 (85)
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TABLE 4 Final gradient boosting model performance measures on
validation dataset

% 95% confidence interval

68.5[61.2,75.9]

Performance measures

Balanced accuracy

AUC 0.75[0.59, 0.78]
Sensitivity 85.9 [85.9, 86]
Specificity 51.2[50.7, 51.7]
PPV 98.9 [98.9, 98.9]
NPV 6.5[6.4,6.7]

Notes: AUC, area under the curve (level of discrimination); NPV, negative
predictive value; PPV, positive predictive value.

who did not consult with a clinical psychologist or psychiatrist were
identified in the final model. With a specificity of 51.2%, more than
half of patients who did consult with a psychologist/psychiatrist were
detected correctly.

A one-sided tornado graph comparing the relative importance of
the identified variables during model validation is presented in
Figure 3. It shows the effect on the output variable by varying each
predictor variable at a time, keeping all the other predictor variables at
their initial values. Consequently, the predictor variables were ranked
from the most influential to the least influential.

4 | DISCUSSION

Patients not formally screened for distress, staying for less than
28 days in inpatient treatment, who do not have a psychiatric diagno-
sis, are aged 65 or older, have skin cancer or were not discussed in a
tumour board meeting were least likely to receive psycho-oncological
treatment.

With a sensitivity of 86%, the final model allows oncologists to
quickly review patient files for six variables in order to identify those
patients least likely to receive psycho-oncological treatment. The
lower specificity of 51% seems less clinically relevant, because it does
not impede on the objective of the study of identifying patients likely
to miss out on a psycho-oncological consultation. Although between
30% and 40% of patients with cancer are dealing with a mood, anxiety
or adjustment disorder according to the international classification of
diseases (Mitchell et al., 2011), the rate of referral to a psycho-
oncological consultation in the C3Z was a low 15% (1,096 of 6,222
patients; see Table 3). Based on this, it can be assumed that a high
number of patients with cancer in need do not receive psycho-
oncological treatment. Results presented here should help to easily
identify patients who are least likely to consult a psychiatrist to
increase the number of referrals. Prior research found that 19% of
patients did not know about psycho-oncological support for patients
with cancer (Dilworth et al., 2014). Oncological nursing teams may
only find the time to screen an average of 40% of inpatients for dis-
tress due to workload (Gétz et al., 2019, 2020). This is why results of
the present study are needed to allow prioritisation for oncological

treatment teams. For example, the list of variables presented here
could allow oncological treatment teams on ward rounds to be alert
for patients frequently missing out on psycho-oncological treatment.
As a major limitation, the final model provided is only useful in health
care systems providing sufficient resources to allow all patients to
receive professional psycho-oncological support. In less privileged
health care systems, a triaging of patients may be necessary with
formal psychological support only available to the most severely
distressed patients, whereas support services run by specialist nurses
or support workers would be available for less distressed patients.

Further, the present study confirms the preponderance of prior
research and international consensus-based guidelines proposing
formal distress screening in patients with cancer to identify those
needing psycho-oncological treatment (American College of
Surgeons, 2019; AWMF, 2014). Possible ‘informal’ distress screening
by oncologists does not comply with these standards of evidence
based medicine. Results also support prior research showing that
oncological patients aged 65 and over are likely to miss out on
psycho-oncological treatment (Ellis et al., 2009; Faller et al., 2016;
Merckaert et al, 2010; Waller et al., 2013). Similarly, prolonged
length of hospitalisation has been linked to barriers to psychiatric
consultation in general hospitals in a recent systematic review
(Oldham et al.,, 2019), regardless of the somatic condition being
treated for.

New findings from the current study indicate that patients with
skin cancer, those who are not discussed at a tumour board and those
without a psychiatric diagnosis are unlikely to receive psycho-
oncological treatment. It is quite conceivable that patients not being
discussed at a tumour board would receive less overall medical
attention, which might include psycho-oncological treatment. This
highlights the importance of tumour boards beyond identification of
the best somatic treatment. In other words, tumour board discussions
may not only be valuable in optimising survival rates or efficacy of
oncological treatment, but also for the identification of psychological
needs. An interpretation of our finding that patients with skin
cancer are unlikely to receive psycho-oncological treatment is not
straightforward. One reason may be that only about 16% of skin
cancers are melanoma (Guy et al., 2015), which is still difficult to treat
and likely to cause distress due to its poor prognosis on survival
(Robert et al., 2019). In contrast, all other skin cancers have an above
average prognosis in survival in comparison to other cancers overall
(Leiter et al., 2014). Future research should examine in greater depth
to what extent the psychological needs of this subgroup are currently
being met. Some may argue that patients without a psychiatric
diagnosis do not need psycho-oncological treatment (Ullrich, 2020),
while the majority of researchers found it to be beneficial to
all patients with cancer even if no mental disorder is to be diagnosed
(American College of Surgeons, 2019; AWMF, 2014; Waller
etal, 2013).

We identified a number of factors, which were not predictive of
no psycho-oncological treatment. Among these were other types of
cancer, sex, nationality, insurance status, occupation, relationship

status, prescription of psychopharmacology, number of comorbidities,
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FIGURE 3 Variable importance.
Abbreviations: Altjung, patient aged 65 or
older; DTSCREE, distress screening
applied; FDX, mental disorder present;
Haut, skin cancer present; HOSDUR,
longest inpatient treatment 28 days or
more; Tumorboard, tumour board held
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kel
<4
®
o
o
2
S
£
=]
=4

Haut

palliative treatment perspectives, surgical interventions and religious
confession. We may conclude that there is no evidence for discrimina-
tion of patients based on economic factors (i.e., insurance status), their
beliefs, nationality, sex or medical circumstances. This is despite that
some medical circumstances can be assumed to be emotionally
challenging for psychotherapists (i.e., palliative care settings and many

comorbidities).

5 | LIMITATIONS

Our study has several limitations, including the generalizability of
results derived from data collected from electronic files at only one
cancer treatment centre. Nonetheless, data were collected in a large
cancer treatment centre in Switzerland, treating all known entities of
cancer. Given the strict internal regulations to ensure evidence-based
treatment for international accreditation as a leading cancer treatment
centre, human error should be minimal when assessing and
documenting data in the electronic health record.

Further, data from all types of cancers were included, which may
lead to factors specific to certain (rare) entities of cancer to be over-
looked, while increasing broad applicability of findings presented to
oncologists working with patients with all sorts of cancers.

Another limitation is that there was no information available on

whether or not patients who were not screened for distress were

T T T T 1
10 15 20 25 30

Relative influence

informally offered psycho-oncological treatment and how they
reacted to that. Instead, the current study aimed to help oncologists
increase efficacy in offering psycho-oncological treatment in
extremely busy workload settings.

As ML was used with this set and type of data for the first time
(to the authors knowledge), there is a residual risk of overfitting
although precautionary measures were taken (see Section 2). There-
fore, further (prospective) research, testing the usefulness of results
presented here in clinical practice (and ideally in a different cancer
treatment centre), is necessary for thorough performance evaluation
of the final model. Such research might also evaluate further variables,
currently not available in routine documentation of the treatment

centre studied here.

6 | CONCLUSION

In conclusion, the results presented here might contribute to screen
patients efficiently for their risk to be neglected in referral to psycho-
oncological treatment within routine oncological care in health care
systems aiming to offer such treatment to a majority of patients with
cancer. The identified factors could serve as ‘yellow flags’ to directly
ask patients during the next consultation. This approach might help to
ensure that no patient misses the opportunity to receive psycho-

oncological treatment. It may be a golden middle path to other health
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care systems in which such treatment is offered to those in absolute
need or to all patients with cancer regardless of their need. Similarly,
it may be a compromise between perspectives viewing psycho-
oncology as the sixth vital sign in cancer treatment (Waller
et al., 2013) and those suspecting a mere business model for psychia-
trists/psychologists (Ullrich, 2020).
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