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Abstract

Objective: In routine oncological treatment settings, psychological distress, including

mental disorders, is overlooked in 30% to 50% of patients. High workload and a

constant need to optimise time and costs require a quick and easy method to identify

patients likely to miss out on psychological support.

Methods: Using machine learning, factors associated with no consultation with a

clinical psychologist or psychiatrist were identified between 2011 and 2019 in 7,318

oncological patients in a large cancer treatment centre. Parameters were hierarchi-

cally ordered based on statistical relevance. Nested resampling and cross validation

were performed to avoid overfitting.

Results: Patients were least likely to receive psycho-oncological (i.e., psychiatric/

psychotherapeutic) treatment when they were not formally screened for distress,

had inpatient treatment for less than 28 days, had no psychiatric diagnosis, were

aged 65 or older, had skin cancer or were not being discussed in a tumour board. The

final validated model was optimised to maximise sensitivity at 85.9% and achieved an

area under the curve (AUC) of 0.75, a balanced accuracy of 68.5% and specificity of

51.2%.

Conclusion: Beyond conventional screening tools, results might contribute to identify

patients at risk to be neglected in terms of referral to psycho-oncology within routine

oncological care.
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1 | INTRODUCTION

Between 30% and 50% of patients with cancer suffer from significant

psychological distress impeding their private, social and work life

(Mehnert et al., 2018). In 30–40% of patients, depression, anxiety

and other mood or adjustment disorders are to be diagnosed

(Mitchell et al., 2011). Because such symptoms often go unnoticed in pri-

marily somatic treatment settings (Fallowfield et al., 2001; Hallet

et al., 2020; Passik et al., 1998; Sharpe et al., 2004; Söllner et al., 2001),

consensus-based treatment guidelines and certification requirements

of cancer treatment centres require formal screening for

psychological symptoms using a validated instrument (such as the
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distress thermometer, DT) in order to provide psycho-oncological

(i.e., psychiatric/psychotherapeutic) treatment where necessary

(American College of Surgeons, 2019; AWMF, 2014). Psycho-oncological

interventions have shown to reduce distress significantly (Faller

et al., 2013; Meijer et al., 2013), increase treatment adherence (Kennard

et al., 2004) and satisfaction (Bui et al., 2005; von Essen et al., 2002),

improve course and prognosis of cancer (Carlson & Bultz, 2003; Geerse

et al., 2019; McCarter et al., 2018; Sanjida et al., 2016), reduce the length

of hospitalizations (Prieto et al., 2002), reduce the financial and emotional

burden of health care providers (McCarter et al., 2018) and maximise the

quality of life in general (Skarstein et al., 2000).

Despite all, 25% to 80% of patients with cancer fail to receive

adequate professional psycho-oncological treatment (Hollingworth

et al., 2013; Mitchell, 2013). Nineteen per cent of patients do not

even know about the availability of psycho-oncological support

(Dilworth et al., 2014). Reasons include deficits in organisational struc-

ture (e.g., treatment team resources) (McCarter et al., 2018) and

patient related factors, such as lower education (Eakin &

Strycker, 2001; Mehnert & Koch, 2005; Nekolaichuk et al., 2011;

Waller et al., 2013), older age (Ellis et al., 2009; Faller et al., 2016;

Merckaert et al., 2010; Waller et al., 2013) and male gender (Curry

et al., 2002; Merckaert et al., 2010; Nekolaichuk et al., 2011).

The current study aimed to identify the most important factors for

clinical oncologists to avoid overlooking patients when considering

psycho-oncological treatment. In addition, barriers to treatment should

be easily identifiable for clinicians by reviewing the patient files before

the next consultation and regardless of any formal screening for dis-

tress. Therefore, the aim of this study is to develop a prediction model

answering the question ‘what patients with cancer are least likely to

consult with a psychiatrist/psychologist?’ To this end, a relatively large

number of variables need to be explored in terms of their significance.

Machine learning (ML) is a relatively new and promising statistical tool

to sort variables in terms of relevance. Computer algorithms (such as

logistic regression, support vector machines [SVM], decision trees or k-

nearest neighbour (KNN) depending on the data structure) can be

employed using all available data from the electronic files of patients

(so-called predictor variables) to identify those patient-related variables

which are most significantly correlated with the respective outcome

variable (no psychological/psychiatric consultation). In contrast to con-

temporary statistical approaches, ML can deal with larger data sets (data

mining) and uncover previously hidden (linear and non-linear) relation-

ships between variables without being limited by pre-devised hypothe-

ses. The study was conducted in adherence to recommendations for

Transparent Reporting of a multivariable prediction model for Individual

Prognosis Or Diagnosis (TRIPOD), and the TRIPOD-checklist can be

found in the supporting information (Moons et al., 2015).

2 | METHOD

2.1 | Source of data and data preparation

The present study was approved by the Ethics Committee of the State

of Zurich (Ref. No. BASEC-NR 2020-01949).

The current study analysed electronic case file data of 7,318

patients, who were initially diagnosed with (and treated for) cancer

between 2011 and 2019 at the Comprehensive Cancer Centre Zurich

(C3Z), which is a subunit of the University Hospital of Zurich,

Switzerland. About 15,000 patients with cancer are treated every

year. Treatment occurs on different specialised wards and outpatient

clinics (e.g., gynaecology, haematology and dermatology); however,

according to institutional guidelines, all cases should be discussed in

an interdisciplinary tumour board consisting of radiologists,

oncologists, pathologists, other medical specialists and a psychiatrist

to optimise treatment. In addition, nurses are instructed to screen for

distress using an ultrashort standardised screening instrument, the

distress thermometer and problem list (Fulcher & Gosselin-

Acomb, 2007; Roth et al., 1998), as recommended in international

guidelines. See Table 1 for study group characteristics. In a first step,

all routinely collected data in the electronic health records via the

clinical management software (®KISIM, Cistec AG) used at the C3Z

and via an institutional cancer register (®OncoStar, IT-Choice) were

reviewed by the authors. Data were reviewed for its clinical and data

value in terms of predicting the event of consulting with a psycholo-

gist/psychiatrist at the C3Z at any point of time during treatment

(outcome variable). The almost 800 predictor variables were thus

reduced to a final set of 47 (see the supporting information) based on

availability of data and clinical relevance (author judgement based on

literature cited here) to avoid overfitting in the final model (see

below). All 47 variables were dichotomized, but this should not impact

predictive power. For brief definitions, dichotomizations and the

number of missing values of these variables, see the supporting

information. Of this set of 47 variables, three variables had to be

eliminated from further analysis due to conservative use of imputa-

tion, which only permitted imputation of variables with less than one

third of missing values. See Figure 1 for data selection.

2.2 | Statistical procedures—ML

A preliminary description of ML is provided in Günther et al. (2020)

and was partially adopted and extended here. An overview of the

statistical procedure can be seen in Figure 2. All steps were performed

using R version 3.6.3 and the MLR package v2.171 (Bischl

et al., 2016). Confidence intervals of the balanced accuracy were

computed using MATLAB R2019a (MATLAB and Statistics Toolbox

Release 2012b, The MathWorks, Inc., Natick, Massachusetts,

United States) with the add-on ‘computing the posterior balanced

accuracy’ v1.0 (Brodersen et al., 2010).

After initial data preparation, 44 dichotomous predictor variables

and the dichotomous outcome variable (psychological or psychiatric

consultation occurred/no consultation occurred) remained. A total of

6,222 patients (85%) did not consult with a psychiatrist/psychologist

and were defined to be the positive class, whereas 1,096 patients

(15%) did and were defined to be the negative class. Next, the data

set was divided into a training subset (70%, 5,123 patients) and a

validation subset (30%, 2,195 patients). This was done to separate
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model building from model validation and reduce the risk of model

overfitting.

2.3 | Initial ML modelling—Nested resampling

For model building, only the training subset was used. To further

reduce overfitting and to avoid final model selection to be

influenced by data processing, nested resampling (Moons et al., 2014;

Studerus et al., 2017) was employed for initial modelling. This

means, in an inner loop, data processing and model training are

performed imbedded in fivefold-cross-validation and then, in an

outer loop, the performance of these models is tested—also

embedded in fivefold-cross-validation. Cross-validation is a

technique to artificially create different subsamples of a data set

(Browne, 2000).

TABLE 1 Descriptive statistics of
study group

Age Mean SD

Female 61 15.25

Male 65 13.2

Total 63 14.43

Sex N Per cent

Female 3,749 51.2

Male 3,569 48.8

Total 7,318 100

Type of cancer N Per cent

Neuro 526 7.2

Lung 1,005 13.7

Prostate 572 7.8

Head & neck 398 5.4

Haematological neoplasm 170 2.3

Dermatology 2,122 29

Bladder 65 0.9

Pancreas 64 0.9

Intestine 439 6

Endocrin 98 1.3

Gynaecology 620 8.5

Breast 1,221 16.7

Testicle/penis 18 0.2

Total 7,318 100

F IGURE 1 Source of data and data selection
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2.4 | Initial model construction—Data processing
and model building

This step was performed within the inner loop of the nested

resampling of the training subset. Because some ML algorithms need

complete data sets, missing values were imputed via random forest

algorithms in the MLR package, using randomForestSRC ad on

(Ishwaran & Kogalur, 2020). Weights were stored and used in the

validation subset later on. Due to the imbalance in the distribution of

the outcome variable (85% without vs. 15% with consultation of a

psychiatrist/psychologist), the less frequent state of ‘consultation
occurred’ was randomly upsampled at a rate of 5.6, thus balancing the

data subset, as is recommended for optimal model building (Wei &

Dunbrack, 2013). Since the extraction of the most predictive variables

without overfitting was a key objective of the current study, a

random forest algorithm (randomForestSRC package; Ishwaran &

Kogalur, 2020) was used to filter the initial 44 variables. Hyper-

parameter tuning was used to adjust the default functioning of

algorithms in order to identify the most efficient model (see the

supporting information for final hyperparameters). Finally, discrimina-

tive model building was applied with logistic regression, trees, random

forest, gradient boosting, KNN, SVM and naïve Bayes, as an easily

applicable generative model (for a more detailed description, see

James et al., 2013).

F IGURE 2 Overview of statistical procedures. Step 1—data preparation: Outcome variable ‘consultation/no consultation’ and 544 predictor
variables were defined. Step 2—datasplitting: Split into 70% training dataset and 30% validation dataset. Step 3a to e—Model building and testing
on training data I: Imputation by randomForest; upsampling of outcome ‘no consultation’ � 5.6; variable reduction via random forest; model
building and hyperparmater tuning via ML algorithms—logistic regression, trees, random forest, gradient boosting, KNN (k-nearest neighbour),
support vector machines (SVM) and naive bayes; testing (selection) of best ML algorithm via ROC parameters. Step 4—Model building and testing
on training data II: Nested resampling with imputation, upsampling, variable reduction and model building with hyperparameter tuning in inner
loop and model testing on outer loop. Step 5—Model building and testing on validation data I: Imputation with stored weights from Step 3a.
Step 6—Model building and testing on validation data II: Best model identified in Step 3e applied on imputed validation dataset and evaluated via
ROC parameters. Step 7: Ranking of variables by indicative power
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2.4.1 | Initial model construction—Model selection

In the outer loop of the nested resampling procedure, the final model

was selected by assessing performance of each model. Model perfor-

mance was evaluated in terms of balanced accuracy (i.e., the average

of true positive and true negative prediction rate, which is suggested

for imbalanced data; Brodersen et al., 2010) and goodness of fit

(measured with the receiver operating characteristic, balanced

curve area under the curve method and ROC balanced AUC)

(Campbell, 1994). Moreover, specificity, sensitivity, positive predictive

value (PPV) and negative predictive value (NPV) were evaluated. As

our training dataset was artificially balanced, the model with the

highest AUC was chosen for final model validation in the validation

subset of the data (Campbell, 1994).

The final set of identified predictor variables was tested for

multicollinearity to avoid dependencies between the variables.

2.5 | Final model evaluation

The validation subset of the original data set was not manipulated,

except for the imputation of missing values via the stored weights

from initial model building (see above). The best performing final

model (with set hyperparameters) was used, and performance

measures were reassessed. The predictor variables of the outcome

variable in this final model were sorted by indicative power through

means of a sensitivity analysis using the gbm package (Cortez &

Embrechts, 2013).

3 | RESULTS

An overview of the performance parameters of the different

calculated models during the nested resampling procedure is shown in

Table 2 (see the supporting information for specific hyperparameters

used and the corresponding confidence intervals). With a balanced

accuracy of 81% and an AUC of 0.77, gradient boosting outperformed

all other ML algorithms.

The absolute and relative distribution of the six most influential

variables identified during nested resampling, which were subse-

quently used for model building, is shown in Table 3. The variables

most predicative of no psychological/psychiatric consultation were no

prior screening for distress (see above), length of longest inpatient

stay less than 28 days, absence of a psychiatric diagnosis according to

ICD-10 (World Health Organization, 2016), age 65 or older, presence

of a skin cancer and no inclusion in a tumour board. Testing for

multicollinearity showed no dependencies of concern between the

variables (for detailed results, see the supporting information).

The quality of the final model was assessed in a validation step

with results provided in Table 4. As expected, the balanced accuracy

of 68.5 and AUC of 0.75 was less than the results of the initial training

model but still meaningful. With a sensitivity of 85.9%, most patients

TABLE 3 Absolute and relative distribution of indicative variables on the complete dataset

Variable code Variable description
No psychiatric/psychotherapeutic
treatment (%)

Psychiatric/psychotherapeutic
treatment (%)

DTSREE Distress screening applied 1507/6222 (24.2) 480/1096 (43.8)

HOSDUR Longest inpatient treatment

28 days or more

774/6,222 (12.4) 410/1,096 (37.4)

FDX Mental disorder present 538/6,222 (8.6) 256/1,096 (23.4)

Alt/Jung Patient age 65 or older 3,287/6,222 (52.8) 409/1,096 (37.3)

Haut Skin cancer present 1,975/6,222 (31.7) 147/1,096 (13.4)

Tumorboard Tumour board held 2,616/4,832 (54.1) 622/732 (85)

TABLE 2 Machine learning models and performance in nested cross-validation on training dataset

Statistical procedure Balanced Accuracy (%) AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Logistic regression 77 0.76 83.8 70.1 97.1 26.3

Tree 80 0.74 80.6 79.4 97.9 25.3

Random Forest 80.6 0.74 80.1 81.2 98.1 25.2

Gradient boosting 80.8 0.77 80.4 81.2 98.1 25.5

KNN 76.5 0.54 54.3 98.7 99.8 15.2

SVM 79.5 0.74 80.9 78.1 97.8 25.3

Naive Bayes 79.6 0.74 78.7 80.5 98.1 23.2

Abbreviations: AUC, area under the curve (level of discrimination); KNN, k-nearest neighbours; NPV, negative predictive value; PPV, positive predictive

value; SVM, support vector machines.
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who did not consult with a clinical psychologist or psychiatrist were

identified in the final model. With a specificity of 51.2%, more than

half of patients who did consult with a psychologist/psychiatrist were

detected correctly.

A one-sided tornado graph comparing the relative importance of

the identified variables during model validation is presented in

Figure 3. It shows the effect on the output variable by varying each

predictor variable at a time, keeping all the other predictor variables at

their initial values. Consequently, the predictor variables were ranked

from the most influential to the least influential.

4 | DISCUSSION

Patients not formally screened for distress, staying for less than

28 days in inpatient treatment, who do not have a psychiatric diagno-

sis, are aged 65 or older, have skin cancer or were not discussed in a

tumour board meeting were least likely to receive psycho-oncological

treatment.

With a sensitivity of 86%, the final model allows oncologists to

quickly review patient files for six variables in order to identify those

patients least likely to receive psycho-oncological treatment. The

lower specificity of 51% seems less clinically relevant, because it does

not impede on the objective of the study of identifying patients likely

to miss out on a psycho-oncological consultation. Although between

30% and 40% of patients with cancer are dealing with a mood, anxiety

or adjustment disorder according to the international classification of

diseases (Mitchell et al., 2011), the rate of referral to a psycho-

oncological consultation in the C3Z was a low 15% (1,096 of 6,222

patients; see Table 3). Based on this, it can be assumed that a high

number of patients with cancer in need do not receive psycho-

oncological treatment. Results presented here should help to easily

identify patients who are least likely to consult a psychiatrist to

increase the number of referrals. Prior research found that 19% of

patients did not know about psycho-oncological support for patients

with cancer (Dilworth et al., 2014). Oncological nursing teams may

only find the time to screen an average of 40% of inpatients for dis-

tress due to workload (Götz et al., 2019, 2020). This is why results of

the present study are needed to allow prioritisation for oncological

treatment teams. For example, the list of variables presented here

could allow oncological treatment teams on ward rounds to be alert

for patients frequently missing out on psycho-oncological treatment.

As a major limitation, the final model provided is only useful in health

care systems providing sufficient resources to allow all patients to

receive professional psycho-oncological support. In less privileged

health care systems, a triaging of patients may be necessary with

formal psychological support only available to the most severely

distressed patients, whereas support services run by specialist nurses

or support workers would be available for less distressed patients.

Further, the present study confirms the preponderance of prior

research and international consensus-based guidelines proposing

formal distress screening in patients with cancer to identify those

needing psycho-oncological treatment (American College of

Surgeons, 2019; AWMF, 2014). Possible ‘informal’ distress screening
by oncologists does not comply with these standards of evidence

based medicine. Results also support prior research showing that

oncological patients aged 65 and over are likely to miss out on

psycho-oncological treatment (Ellis et al., 2009; Faller et al., 2016;

Merckaert et al., 2010; Waller et al., 2013). Similarly, prolonged

length of hospitalisation has been linked to barriers to psychiatric

consultation in general hospitals in a recent systematic review

(Oldham et al., 2019), regardless of the somatic condition being

treated for.

New findings from the current study indicate that patients with

skin cancer, those who are not discussed at a tumour board and those

without a psychiatric diagnosis are unlikely to receive psycho-

oncological treatment. It is quite conceivable that patients not being

discussed at a tumour board would receive less overall medical

attention, which might include psycho-oncological treatment. This

highlights the importance of tumour boards beyond identification of

the best somatic treatment. In other words, tumour board discussions

may not only be valuable in optimising survival rates or efficacy of

oncological treatment, but also for the identification of psychological

needs. An interpretation of our finding that patients with skin

cancer are unlikely to receive psycho-oncological treatment is not

straightforward. One reason may be that only about 16% of skin

cancers are melanoma (Guy et al., 2015), which is still difficult to treat

and likely to cause distress due to its poor prognosis on survival

(Robert et al., 2019). In contrast, all other skin cancers have an above

average prognosis in survival in comparison to other cancers overall

(Leiter et al., 2014). Future research should examine in greater depth

to what extent the psychological needs of this subgroup are currently

being met. Some may argue that patients without a psychiatric

diagnosis do not need psycho-oncological treatment (Ullrich, 2020),

while the majority of researchers found it to be beneficial to

all patients with cancer even if no mental disorder is to be diagnosed

(American College of Surgeons, 2019; AWMF, 2014; Waller

et al., 2013).

We identified a number of factors, which were not predictive of

no psycho-oncological treatment. Among these were other types of

cancer, sex, nationality, insurance status, occupation, relationship

status, prescription of psychopharmacology, number of comorbidities,

TABLE 4 Final gradient boosting model performance measures on
validation dataset

Performance measures % 95% confidence interval

Balanced accuracy 68.5 [61.2, 75.9]

AUC 0.75 [0.59, 0.78]

Sensitivity 85.9 [85.9, 86]

Specificity 51.2 [50.7, 51.7]

PPV 98.9 [98.9, 98.9]

NPV 6.5 [6.4, 6.7]

Notes: AUC, area under the curve (level of discrimination); NPV, negative

predictive value; PPV, positive predictive value.
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palliative treatment perspectives, surgical interventions and religious

confession. We may conclude that there is no evidence for discrimina-

tion of patients based on economic factors (i.e., insurance status), their

beliefs, nationality, sex or medical circumstances. This is despite that

some medical circumstances can be assumed to be emotionally

challenging for psychotherapists (i.e., palliative care settings and many

comorbidities).

5 | LIMITATIONS

Our study has several limitations, including the generalizability of

results derived from data collected from electronic files at only one

cancer treatment centre. Nonetheless, data were collected in a large

cancer treatment centre in Switzerland, treating all known entities of

cancer. Given the strict internal regulations to ensure evidence-based

treatment for international accreditation as a leading cancer treatment

centre, human error should be minimal when assessing and

documenting data in the electronic health record.

Further, data from all types of cancers were included, which may

lead to factors specific to certain (rare) entities of cancer to be over-

looked, while increasing broad applicability of findings presented to

oncologists working with patients with all sorts of cancers.

Another limitation is that there was no information available on

whether or not patients who were not screened for distress were

informally offered psycho-oncological treatment and how they

reacted to that. Instead, the current study aimed to help oncologists

increase efficacy in offering psycho-oncological treatment in

extremely busy workload settings.

As ML was used with this set and type of data for the first time

(to the authors knowledge), there is a residual risk of overfitting

although precautionary measures were taken (see Section 2). There-

fore, further (prospective) research, testing the usefulness of results

presented here in clinical practice (and ideally in a different cancer

treatment centre), is necessary for thorough performance evaluation

of the final model. Such research might also evaluate further variables,

currently not available in routine documentation of the treatment

centre studied here.

6 | CONCLUSION

In conclusion, the results presented here might contribute to screen

patients efficiently for their risk to be neglected in referral to psycho-

oncological treatment within routine oncological care in health care

systems aiming to offer such treatment to a majority of patients with

cancer. The identified factors could serve as ‘yellow flags’ to directly

ask patients during the next consultation. This approach might help to

ensure that no patient misses the opportunity to receive psycho-

oncological treatment. It may be a golden middle path to other health

F IGURE 3 Variable importance.
Abbreviations: Altjung, patient aged 65 or
older; DTSCREE, distress screening
applied; FDX, mental disorder present;
Haut, skin cancer present; HOSDUR,
longest inpatient treatment 28 days or
more; Tumorboard, tumour board held
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care systems in which such treatment is offered to those in absolute

need or to all patients with cancer regardless of their need. Similarly,

it may be a compromise between perspectives viewing psycho-

oncology as the sixth vital sign in cancer treatment (Waller

et al., 2013) and those suspecting a mere business model for psychia-

trists/psychologists (Ullrich, 2020).
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