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Abstract: The recent pandemic of COVID-19 has already infected millions of individuals and has
resulted in the death of hundreds of thousands worldwide. Based on clinical features, pathology,
and the pathogenesis of respiratory disorders induced by this and other highly homogenous
coronaviruses, the evidence suggests that excessive inflammation, oxidation, and an exaggerated
immune response contribute to COVID-19 pathology; these are caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). This leads to a cytokine storm and subsequent progression
triggering acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and often death.
We and others have reported melatonin to be an anti-inflammatory and anti-oxidative molecule with
a high safety profile. It is effective in critical care patients by reducing their vascular permeability and
anxiety, inducing sedation, and improving their quality of sleep. As melatonin shows no harmful
adverse effects in humans, it is imperative to introduce this indoleamine into clinical trials where
it might be beneficial for better clinical outcomes as an adjuvant treatment of COVID-19-infected
patients. Herein, we strongly encourage health care professionals to test the potential of melatonin
for targeting the COVID-19 pandemic. This is urgent, since there is no reliable treatment for this
devastating disease.
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1. Introduction

As of today (22 July 2020) there have been more than 616,317 deaths worldwide from coronavirus
(COVID-19), a newly emerged respiratory disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Regarding the most affected countries to date, the USA has reported
142,066 deaths, Brazil 81,487, the United Kingdom 45,422, Mexico 40,400, Italy 35,073, and France
30,165 [1]. These large numbers warrant urgent research to accelerate clinical trials with therapies that
may reduce the alarmingly high death rate. The combined use of anti-viral and anti-inflammatory
drugs may be more efficient than using either modality alone. One of the overlooked and promising
candidates is melatonin, which may substantially enhance the actions of adjuvant treatments for
COVID-19 by reducing symptoms such as pneumonia, acute lung injury (ALI), and acute respiratory
distress syndrome (ARDS). At present, the low efficacy of anti-viral drugs on COVID-19 is not surprising.
Due to increased drug resistance and continuously occurring mutations of the virus, we still lack ideal
medicines to target this disease and new vaccines have to be repeatedly adapted to the continuously
changing viral subtypes. In fact, the drugs in the market can only mitigate the mild to moderate
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symptoms if used in the early stage of viral infection, and have reduced effects in patients with severe
symptoms or those who are predisposed to complications. Thus, the clinical significance is limited,
as well as because viral infectious diseases are self-limiting and the mild to moderately severe patients
develop self-recovery without treatment. In viral infectious diseases, the key is to ameliorate the severe
symptoms, including the massive tissue and organ injury and, finally, to control the mortality. It has
been speculated that the most severe symptoms are beyond viral cytotoxicity per se and result from the
overreaction of the innate immune response that causes destructive inflammation, as observed in the
severe disease progression of coronavirus infections [2]. This may be one of the reasons why antiviral
drugs have failed to be effective in severely infected patients. To compensate for the shortcomings of
the anti-viral drugs, a more generalized and less virus-specific therapy which instead targets severe
symptoms of the viral infection should be considered. Melatonin is a suitable candidate. Melatonin
possesses an excellent anti-oxidative and anti-inflammatory capacity and it balances the overshooting
innate immune response while promoting adaptive immunity [3–6]. Currently, an increasing number
of publications has suggested or strongly recommended the use of melatonin to combat COVID-19.

2. Pathogenesis of COVID-19

To date, the effect of SARS-CoV-2 on humans have been clearly age-related. Thus, the excessive
mortality rate occurs in the elderly with very few deaths from COVID-19 being recorded for individuals
under the age of 20. Currently reported COVID-19-affected patients present varying symptoms
including fever, dry cough, myalgia, fatigue, or diarrhea. In other cases, the acute progression of
the disease results in ALI/ARDS, respiratory failure, heart failure, sepsis, and sudden cardiac arrest
within a few days [7–9]. The pathogenic examination of lungs from mild COVID-19 patients revealed
edema, proteinaceous exudate with globules, patchy inflammatory cellular infiltration, and moderate
formation of hyaline membranes [10]. In a postmortem assessment of a COVID-19 patient with severe
ARDS, specimens of the infected lungs demonstrated bilateral diffuse alveolar damage with edema,
pneumocyte desquamation, and hyaline membrane formation [11]. Although these reports were
performed for only a small number of cases, they do resemble the pathological features identified in
SARS- or MERS-induced respiratory disorders [12].

As recently reviewed [13], SARS-CoV-2 shares 79.0% nucleotide identity with SARS-CoV
and 51.8% identity with MERS-CoV, indicating their high genetic homology. In SARS-CoV and
MERS-CoV, infected animal models revealed an inflammatory response which causes a “cytokine
storm”, subsequently triggering vascular leakage and abnormal innate and adaptive immune responses,
including lymphopenia and an increase in neutrophils, thereby inducing ALI/ARDS or even death [14].
In the early stages of coronavirus infections, dendritic and epithelial cells are activated and cause
a reported “deluge” of pro-inflammatory cytokines, i.e., elevated levels of interleukin-1β (IL-1β),
IL-6, interferon-γ (IFN-γ), interferon-inducible protein 10 (IP-10) or IL-4, IL-10, and IL-17 [5,9].
It was documented that repressed immune functions in COVID-19 patients are accompanied by
lymphopenia and neutropenia, as well as a decreased number of CD8+ T cells [7–9]. Furthermore,
recent reports suggest that some COVID-19 patients, although negative for the viral nucleic acid
assay, still sometimes present with a high level of inflammation. Altogether, the most recent findings
indicate that inflammation is a major issue for COVID-19 patients in whom the immune system is
severely attenuated due to the high cytokine production that contributes to the COVID-19 pathogenesis.
It should be added that the amplification of the inflammatory response would promote programmed
cell death (apoptosis) or necrosis of the affected cells, which would further trigger inflammation,
followed by the increasing permeability of blood vessels and the aberrant accumulation of inflammatory
cells, including monocytes, macrophages, and neutrophils. The resultant vicious circle intensifies the
situation as the regulation of immune response is lost and the “cytokine storm” is further activated,
leading to serious consequences. Similarly, this putative “cytokine burst” pathology associated with
coronaviruses is also supported by experimental SARS-CoV models, one of which showed that the
severity of ALI was accompanied by an elevated expression of inflammation-related genes rather
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than increased viral titers. In another case, the ablation of IFN-α/β receptors or the depletion of
inflammatory monocytes/macrophages caused a marked rise in the survival rate of coronavirus hosts
without a change in viral load [15,16]. Both situations suggest a potential amplifying mechanism
involved in CoV-induced ALI/ARDS regardless of the viral load. If a similar pathology also exists
in COVID-19, the attenuation of the “cytokine storm” by targeting several key steps in the process
could bring about improved outcomes. Herein, melatonin is not taken as a typical viricidal agent
but it indirectly exerts anti-viral actions based on its well-reported anti-oxidative, anti-inflammatory,
and immune system-enhancing properties [17–22] and, therefore, it may be useful to examine its
potential effects in suppressing COVID-19 infections (see Figure 1).
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Figure 1. Pathogenesis of SARS-CoV-2 and adjuvant actions of melatonin. We postulate that melatonin
significantly suppresses the immune response, the enhanced inflammation, and the excessive oxidative
stress, triggering a “cytokine storm”. The “cytokine storm” induces acute lung injury (ALI)/acute
respiratory distress syndrome (ARDS) accompanied by severe complications.

3. Melatonin and Its Anti-Inflammatory and Anti-Oxidative Properties

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional molecule with the structure of
methoxyindole. It is present in almost all biological systems, in both plants and in animals. With regard
to its bioactivity, it regulates circadian and seasonal biorhythms in vertebrates. Synthesis of melatonin
is continuous; however, the peak of its production and release from the pineal gland takes place only
at night. In adults, approximately 30 µg of melatonin are estimated to be synthesized per day, and the
maximal concentration in the blood is reached in the mid-dark period. Melatonin, released from the
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pineal gland, is discharged into the cerebrospinal fluid and into the blood and is rapidly degraded in
the liver. Melatonin has been successfully used to treat sleep disorders, atherosclerosis, respiratory
diseases, and viral infections [17]. Melatonin is well known to possess potent anti-inflammatory
capacities and acts via various pathways in terms of inflammatory diseases, including Sirtuin 1 (SIRT1),
for the attenuation of lung injury and inflammation [23]. Similarly, melatonin suppresses nuclear
factor kappa B (NF-κB) activation in ARDS, and down-regulates NF-κB activation in T cells and lung
tissue [24–26]. NF-κB is a major transcription factor involved in the production of cytokines. Moreover,
melatonin induces the nuclear translocation of NF-E2-related factor 2 (Nrf2), mediating activation
of anti-oxidative phase II enzymes [19] crucial in protecting the lungs from injury. There is no clear
evidence for the role of Nrf2 itself in CoV-induced ALI but the close interactions of SIRT1, NF-κB,
and Nrf2 indicate their involvement in CoV-induced ALI/ARDS.

Many reports have confirmed the anti-inflammatory action of melatonin. Inflammation is known
to be associated with an elevated production of cytokines and chemokines, while melatonin induces a
significant reduction in pro-inflammatory cytokines [4,27]. Some of these actions are certainly mediated
by melatonin membrane receptors, such as MT1 and MT2. Considering the receptor affinities, only low
doses of this substance would be required; however, highly elevated doses reaching several hundred
milligrams per day promote melatonin’s receptor-independent antioxidant properties. Melatonin
effectively scavenges a wide range of reactive oxygen/nitrogen species (ROS/RNS), including hydroxyl
radicals and the commonly overlooked carbonate radical [21,28–30]. Among several possibilities
of formation, its mitochondrial generation may be the most important one. Under conditions of
reduced gas exchange, the organism tries to enhance the arterial blood supply by producing the
relaxant nitric oxide (NO) at higher rates. At the same time, the hypoxic condition can impair the
mitochondrial electron flux and cause electron dissipation, which results in superoxide formation.
In the presence of high NO concentrations, superoxide combines with NO to form peroxynitrite
(OONO−). Interestingly, melatonin not only scavenges this oxidant, but also reduces its formation,
by improving the mitochondrial electron flux and, thereby, decreasing superoxide generation. Generally,
the protection of mitochondria by melatonin includes the prevention of the electron transport chain
that causes enhanced free radical formation, control over the duration of permeability transition pore
opening, and the maintenance of mitochondrial equilibrium redox balance to support mitochondrial
integrity, which all have primary relevance to the return to a healthy state [31–36], in particular with
regard to respiratory diseases, including the severe forms of COVID-19.

These anti-inflammatory and antioxidant properties of melatonin are also of substantial interest
in pulmonary functioning under intensive care conditions. The artificial ventilation of patients bears
the problem of causing undue mechanical stress to the lungs. Namely, ventilator-induced lung injury
has been shown to initiate oxidative stress and inflammation. For instance, in a murine model,
melatonin increased the level of the anti-inflammatory IL-10, along with improved oxygenation
and reduced histological damage to the lungs [37]. Furthermore, a recent study using ramelteon,
the melatoninergic agonist, in lung-injured rats revealed strong reductions in oxidative markers,
reduced edema, neutrophil infiltration, the induction of apoptosis, decreased NF-κB activation and
iNOS expression, and lower levels of TNFα, IL-1β, and IL-6 [38]. It should also be pointed out that
the practical problem in patients with severe COVID-19 concerns the reduction of pulmonary gas
exchange due to surfactant impairments by lipid peroxidation caused by infiltrating neutrophils.
In vitro experiments have shown that melatonin can associate with surfactant lipids [39] and also
reduce their peroxidation [40].

The anti-inflammatory actions of melatonin are also, in part, associated with mitochondrial
functions, as recently outlined in the context of COVID-19 [41]. The protective mechanisms
by which melatonin acts, especially under conditions of high-grade inflammation and in aging,
have been reviewed [4,5]. Melatonin, in addition to its anti-inflammatory capacities, functions as an
“anti-oxidative shield”, activating anti-oxidative enzymes such as catalase, superoxide dismutase,
glutathione peroxidase, and phase-2 antioxidant enzymes while, on the other hand, down-regulating



Nutrients 2020, 12, 2561 5 of 12

pro-oxidative enzymes such as nitric oxide synthase [19,42]. Viral infections and their metabolism are
major sources of oxidizing agents and the anti-oxidative actions of melatonin have been documented
in ALI caused by sepsis or ischemia reperfusion [43,44]. Furthermore, in advanced ALI/ARDS patients
who display severe inflammation, hypoxemia, and ventilation problems, Sarma and Ward [45] noticed
elevated concentrations of oxygen leading to massive oxidant generation. Regarding the beneficial
roles of melatonin in COVID-19 treatment, this indoleamine was successfully applied in infants
with respiratory disease [46,47] and in advanced COVID-19 pneumonia patients [8], confirming its
anti-oxidative and anti-inflammatory actions in the lung. An overview of the most important functions
of melatonin is provided in Figure 2.
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Figure 2. The most important functions of melatonin, some of which apply to the treatment of viral
diseases including COVID-19.

4. Melatonin and Immunomodulation

From the moment the virus is inhaled and infects the epithelial cells of the respiratory tract,
dendritic cells phagocytose the virus and present antigens to T cells. The resultant effector T
cells function by killing the infected epithelial cells, and cytotoxic CD8+ T cells produce and
release pro-inflammatory cytokines, which induce cell apoptosis [48]. Both the pathogen (CoV)
and cell apoptosis trigger and amplify the immune response. Here, melatonin exerts many of its
physiological actions by acting through membrane-bound MT1 and MT2 receptors, which belong to
the superfamily of G-protein-coupled receptors containing the typical seven transmembrane domains
and account for several of its immunological actions [49]. For instance, a resultant decrease in cyclic
adenosine monophosphate (cAMP) concentration is observed upon the action of melatonin or the
melatonin-mediated inhibition of cellular and humoral immune responses in mice [50]. This shows
that, in animals and humans, melatonin affects both the cellular and humoral arms of the immune
response [51,52]. The clinical characteristics of COVID-19 present serious disturbances in neutrophils,
lymphocytes, and CD8+ T cells in peripheral blood [7,53] and melatonin exerts regulatory actions on
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the immune system and directly enhances the immune response by improving the proliferation and
maturation of natural killer cells, T and B lymphocytes, granulocytes, and monocytes in both bone
marrow and other tissues [54]. The inflammasome NLRP3 is correlated with lung diseases caused
by infection, including influenza A virus and bacteria [55,56]. Since it is part of the innate immune
response during lung infection, COVID-19 triggers NLRP3 activation to amplify the inflammation.
Knowing the anti-inflammatory capacity of melatonin, we urge the rational use of this substance
for ALI/ARDS-mediated symptoms. Indeed, the melatonin-controlled regulation of NLRP3 was
shown in radiation-induced lung injury or respiratory disturbances, where melatonin distinctly
reduced the infiltration of macrophages and neutrophils into the lung by inhibition of the NLRP3
inflammasome [26,57–59].

5. Melatonin and Its Adjuvant Effects

As usual, drug interactions must be considered since they may limit the use of the drugs in
practice. In consideration of the common beneficial action of melatonin and attenuated metabolic
processes caused by viral infections, there are reasonable imperatives to propose that this indoleamine
may limit symptoms associated with viral infections, including COVID-19. Currently, it is known
that severe inflammation induces multiple perturbations, such as enhanced endothelial cell apoptosis
or elevation of the production of vascular endothelial growth factor (VEGF), which contributes to
edema and the massive release of immune cells, while melatonin is an effective suppressor of VEGF in
vascular endothelial cells [60]. Moreover, melatonin was found to be an ameliorating agent against
sepsis-induced cardiomyopathy [61,62]; this effect may be also beneficial for some COVID-19 patients
in whom an increased risk of sepsis and cardiac arrest accompany severe ALI/ARDS development.
In addition to its effects in the lungs, melatonin is also beneficial for patients with myocardial
infarction, cardiomyopathy, hypertensive heart diseases, and pulmonary hypertension [63]. Moreover,
melatonin exerts neurological protection by reducing the cerebral inflammatory response, cerebral
edema, and blood–brain barrier permeability [64]. Furthermore, melatonin improves sleep quality in
ICU patients [65] in whom deep sedation is associated with increased long-term mortality, and the
application of melatonin reduces sedation use and the frequency of pain, agitation, and anxiety [66,67].
Thus, the advantages for the use of melatonin in COVID-19 patients not only focus on the attenuation
of the viral-induced respiratory disorders, but also on the overall health improvement and prevention
of patients’ potential complications and their well-being.

Currently, accumulated evidence indicates that increased blood coagulation has a negative
relationship with the symptoms of COVID-19 and anticoagulants are recommended to reduce the
severity of COVID-19 symptoms in patients [68]. Melatonin exhibits anticoagulating activity and has
been suggested to treat Ebola virus infection [69]. From this perspective, it should not be a problem
to use melatonin with other anticoagulants in COVID-19 treatment. One of the main advantageous
properties of melatonin is its short T1/2 (52.8 ± 18.1 min) [70] If physicians identify a bleeding tendency
in patients and if this bleeding tendency is related to melatonin, the withdrawal of melatonin will
achieve rapid (short T1/2) results without negative consequences. Therefore, the concomitant use
of anticoagulants and melatonin is safe and it will not cause prolonged bleeding problems after
its withdrawal.

Some drugs have already been suggested for the prevention and treatment of COVID-19, including
chloroquine or hydroxychloroquine. However, some recent studies show that hydroxychloroquine is
ineffective. Therefore, caution is suggested regarding its use. It is noteworthy that it was reported that
the anti-malaria effectiveness of chloroquine was greatly increased by a melatonin antagonist, luzindole,
and/or bright light at night, which reduced melatonin production. Simultaneously, even the research
on the anti-malaria effect of melatonin antagonists reported that high doses of melatonin are beneficial
for malaria treatment because they inhibit programmed cell death and oxidative stress [71]. Thus,
applying melatonin as an adjuvant to chloroquine and hydroxychloroquine treatments of COVID-19
may reduce the necessary doses, and thus the toxicity, of these agents [72]. In addition to the drugs
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mentioned above, methylprednisolone is used to relieve edema, which is justified in the case of SARS,
where, as previously indicated, edema contributes significantly to lung dysfunction, leading to lung
failure. The activity of melatonin as a protective drug compared to methylprednisolone was studied
in mice with spinal cord injuries [73]. It was shown that the protective properties of melatonin were
greater than those of the steroid. The combination of these drugs has led to even greater efficacy for
relieving edema [74], so melatonin can be used in combination with prednisone to relieve edema with
greater efficacy in patients suffering from pneumonia with SARS-CoV-2. Finally, ribavirin, remdesivir,
and other nucleotide analogs targeting RNA-dependent RNA polymerase are a popular strategy.
Indeed, neither humans nor animals have the polymerase enzyme, thus, in principle, substances of this
group can be highly selective. Combining nucleotide analogs with melatonin may provide additional
benefits. For example, melatonin increased ribavirin potency as an anti-influenza agent, probably
due to the immunomodulatory functions of melatonin. In vitro studies have shown that ribavirin
in combination with melatonin shows improved properties regarding the replication inhibition of
respiratory syncytial virus [75].

6. Melatonin and Its Safety

Melatonin, in its original form, is a “human-friendly agent”. Currently available products contain
synthetic melatonin, which is structurally identical to that produced in the body. Melatonin is an
endogenously synthesized molecule in the pineal gland and is present in almost all biological systems,
including animals, plants, and microbes [33,76–79]. In addition to the documented anti-inflammatory
benefits of melatonin, it has a very high safety profile even when used in high doses; there is no
evidence that melatonin exaggerates inflammatory responses. In a randomized trial, oral intake
of 25 mg/day melatonin for 6 months promoted a significant reduction in serum concentrations of
IL-6 and IL-1β [80]. Similarly, in the acute phase of inflammation, including brain reperfusion [81],
and coronary artery reperfusion [82], melatonin intake of 6 mg/day and 5 mg/day, respectively, for less
than 5 days reduced levels of pro-inflammatory cytokines. Even doses of 1 g/day given for a month
had no adverse effects in humans [83]. Additionally, Weishaupt et al. [84] treated severely affected ALS
patients using 300 mg melatonin daily for 2 years, without any adverse effects. Furthermore, in acute
cases after surgery, melatonin doses up to 50 mg/kg in patients showed no serious side effects [85].
The destructive inflammation and massive pathological alterations occurring in severe COVID-19
patients require adequate measures that are not satisfied by the so-called physiological levels of
melatonin. For instance, the dose selected by Huang et al. [75] to treat the H1N1 virus-associated
deadly influenza was inadequate. Melatonin, at a dose of 10 mg/kg/day (20 mg/kg/48 h), had a
demonstrable but only slight effect, whereas a dose of 100 mg/kg/day (200 mg/kg/48 h) substantially
reduced the mortality. If we convert this murine dose to the human dose according to standard dose
translation, based on dividing the surface area by a factor 12.3 (120), the calculated equivalent human
dose is 8.1 mg/kg/day (100/12.3 = 8.1). This dose is very similar to the dose used in two neonatal septic
trials (8.1 and 8.2 mg/kg/day), as described previously [86,87]. Importantly, this dose would not cause
obvious adverse effects, based on the outcomes of these clinical trials. Thus, the estimated dose to treat
deadly viral infectious diseases, including COVID-19, is around 8 mg/kg/day. For a 75 kg individual,
a daily dose of 600 mg may be warranted. All data indicate that large doses of melatonin, whether
given chronically or for acute treatment do not cause intolerable or uncontrollable side effects and
that the safety margin of melatonin for humans is as high as 3750 mg/day for a 75 kg individual [85].
Despite the high safety profile of melatonin, as summarized above, its actions in COVID-19 patients
should be prudently screened for efficacy and safety.

7. Conclusions

Melatonin shows no harmful adverse effects in humans. Given its proven beneficial actions
in multiple organs, it is imperative to introduce this indoleamine into clinical trials as an adjuvant
treatment for COVID-19-infected patients. Its documented anti-inflammatory and anti-oxidative
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properties, actions shared by its precursor N-acetylserotonin and down-stream metabolites [88],
have been repeatedly confirmed in respiratory disorders in both animals and humans. Considering the
wealth of scientific evidence related to its high efficacy coupled with its proven safety, we encourage
healthcare professionals to seriously test the potential role of melatonin against COVID-19 infection.
This is urgent, since there is no reliable treatment for this devastating disease.
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