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Abstract

Background: Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD), is a chemical warfare agent. Both
mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES), are alkylating agents
that react with and diminish cellular thiols and are highly toxic. Previously, we reported that
lipopolysaccharide (LPS) significantly enhances the cytotoxicity of CEES in murine RAW 264.7
macrophages and that CEES transiently inhibits nitric oxide (NO) production via suppression of inducible
NO synthase (iNOS) protein expression. NO generation is an important factor in wound healing. In this
paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that
treatment with N-acetyl-L-cysteine (NAC) would block LPS induced oxidative stress and protect against
loss of NO production. NAC stimulates glutathione (GSH) synthesis and also acts directly as a free radical
scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds
to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary
infections characteristic of HD/CEES wounds.

Results: We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500
1M CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS
stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS
and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein
carbonyl levels). NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS
from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and
diminish CEES toxicity in LPS-treated macrophages.

Conclusion: The present study shows that oxidative stress is an important mechanism contributing to
CEES toxicity in LPS stimulated macrophages and supports the notion that antioxidants could play a
therapeutic role in preventing mustard gas toxicity. Although NAC reduced oxidative stress in LPS
stimulated macrophages treated with CEES, it did not reverse CEES-induced loss of NO production. NAC
and polymyxin B were found to help prevent CEES toxicity in LPS-treated macrophages.
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Background

Mustard gas (HD) is a chemical weapon that can easily
and inexpensively be produced and used against military
or civilian populations with both acute and devastating
long-term effects [1-3]. It produces rapid damage to eyes,
skin and pulmonary tissues as well as subsequent damage
to many internal organ systems [1,4]. Despite its long his-
tory of use, starting in World War I, the molecular mecha-
nisms for HD toxicity are not fully understood and there
is continuing research on the design of optimal counter-
measures. Mustard gas acts as an alkylating agent cova-
lently modifying DNA, proteins and other
macromolecules. There is increasing evidence that HD or
CEES toxicity is due, in part, to an enhanced production
of inflammatory cytokines [5-9], increased oxidative stress
[10] and the generation of damaging reactive oxygen spe-
cies (ROS) [8,9,11]. HD and CEES have been shown to
shift the intracellular redox milieu toward a more oxi-
dized state by reacting with and depleting the intracellular
antioxidant GSH with a subsequent loss of protection
against ROS and an activation of inflammatory responses
[12-14].

In a previous publication, we showed that the cytotoxicity
of CEES towards murine RAW 264.7 macrophages was
markedly enhanced by the presence of low levels of LPS
(25 ng/ml), or pro-inflammatory cytokines, i.e., 50 ng/ml
IL-1B or 50 ng/ml TNF-a [15]. LPS is part of the cell wall
of gram negative bacteria: it is ubiquitous and is found in
serum, tap water and dust. Both civilian and military per-
sonnel would always have some degree of exposure to
environmental LPS. HD induced skin lesions often have
secondary infections which could markedly increase LPS
levels. In macrophages, stimulation by LPS, as well as by
pro-inflammatory cytokines, leads to the activation and
nuclear translocation of transcription factor NF-xB
(nuclear factor-kappa B). One of the major consequences
of such activation in macrophages is an induction of iNOS
expression with subsequent elevation of intracellular NO
[16,17]. In addition to NF-xB activation, the binding of
transcription factor STAT-1 (signal transducer and activa-
tor of transcription-1) to the inducible nitric oxide syn-
thase (iNOS) promoter is required for optimal induction
of the iNOS gene by LPS [17].

In a recent publication, we found that CEES transiently
inhibits nitric oxide (NO) production by suppressing
iNOS protein expression in LPS stimulated macrophages
[18]. NO production is an important factor in promoting
wound healing [19,20] and iNOS deficiency impairs
wound healing in animal models [21]. RAW 264.7 macro-
phages have undetectable levels of iNOS or NO produc-
tion in the absence of LPS and in the presence of LPS they
show a marked induction of iNOS and NO production
[18].

http://www.biomedcentral.com/1471-2121/9/33

In the present study, we tested the hypothesis that the syn-
ergistic cytotoxic effect of CEES with LPS is due to
increased oxidative stress with a subsequent depletion of
intracellular GSH levels and an increase in protein carbo-
nyls. In some cell types, GSH has also been found to reg-
ulate NO generation with decreased GSH levels associated
with decreased NO production [22-24]. Vos et al. [25]
found that GSH depletion in hepatocytes prevented iNOS
induction by cytokines but this effect could be reversed by
the addition of NAC. We, therefore, hypothesized that the
addition of NAC to stimulated macrophages would
reverse the loss of NO production caused by CEES. We
also reasoned that polymyxin B, by binding to LPS, would
diminish CEES toxicity in LPS treated macrophages.

Results

The influence of NAC on cell viability and NO production

in CEESI/LPS treated macrophages

Figure 1a shows the effect of NAC treatment on RAW
264.7 macrophages treated with LPS and/or 500 uM CEES
for 24 h. In this experiment, NAC was added simultane-
ously with LPS and CEES. In the absence of NAC, LPS, at
either 50 ng/ml or 100 ng/ml level, markedly decreased
cell viability in CEES treated cells compared to cells
treated with LPS or CEES alone. This is similar to our pre-
vious observations in which cell viability was measured by
both the MTT assay and the propidium iodide exclusion
assay; the assays were well correlated with each other [15].
The addition of 10 mM NAC increased the viability of
macrophages treated with both CEES and LPS (50 ng/ml
or 100 ng/ml) to the same level observed for control cells
(treated with vehicle alone). It is likely that the differences
in the viability of cells treated with NAC and different lev-
els of LPS represent experimental variability since these
differences are marginal.

Figure 1b shows NO release, measured as the nitrite levels
in the cell culture medium, for the identical cells/treat-
ments used in Figure 1a. As expected, LPS treatment alone
resulted in a marked increase of NO generation, and LPS-
stimulated macrophages treated with CEES showed a
marked reduction in NO production. Surprisingly, NAC
treatment did not prevent the decrease in NO production
caused by CEES. In cells treated with LPS alone, NAC
treatment actually resulted in a decreased production of
NO (up to 40% reduction).

In order to further evaluate NAC as a potential protective
agent for CEES toxicity in stimulated macrophages, we did
two additional experiments in which NAC was added to
macrophages 5 h prior to CEES application or 5 h after
CEES application. These additional experiments provide a
measure of the potential time frame during which NAC
could be therapeutically useful. Similar to the previous
experiment, LPS and CEES were added simultaneously (as
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Figure |
NAC effect on viability and NO production in CEES/LPS

treated RAW 264.7 cells (simultaneous NAC/CEES/

LPS application). Panel A: Macrophages incubated with 50 or 100 ng/ml of LPS or/and 500 uM CEES were simultaneously

treated with or without 10 mM NAC (as indicated) for 24 hours.

Cell viability was measured using the MTT assay (see Materi-

als and Methods) and expressed as OD at 575 nm. Panel B: Macrophages were incubated as described above and NO produc-
tion measured as the concentration of nitrite in the culture media as described in Materials and Methods. Mean values not

sharing a common letter are significantly different (p < 0.05).

indicated). As shown in Figure 2a, NAC had a substantial
protective effect on cell viability when added 5 h before
CEES/LPS; however NAC did not protect against loss of
NO production in CEES/LPS-treated cells (Figure 2b).
When added 5 h after CEES treatment (Figure 3a), NAC
was much less effective in protecting the macrophages but
still resulted in at least a doubling of the cell viability com-

pared to the cells not treated with NAC. As shown in Fig-
ure 3b, NAC added 5 h after CEES/LPS, also failed to
restore NO production.

We believe that the difference in viability of cells stimu-
lated with LPS in the absence or in the presence of NAC
(Figure 2A) could represent experimental variation since
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Figure 2

NAC effect on viability and NO production in CEES/LPS incubated RAW 264.7 cells (NAC pre-treatment).

Panel A: Macrophages were pre-treated with or without 10 mM NAC for 5 hours and then incubated with 50 or 100 ng/ml of
LPS or/and 500 pM CEES (as indicated) for 24 hours. Cell viability was measured using the MTT assay (see Materials and Meth-
ods) and expressed as OD at 575 nm. Panel B: Macrophages were incubated as described above and NO production measured
as concentration of nitrite in the culture media as described in Materials and Methods. Mean values not sharing a common let-

ter are significantly different (p < 0.05).

relatively small differences are being compared. In the
contrast, the protective effect of NAC on CEES+LPS treated
macrophages is robust and over seven fold. This point is
further reinforced by the data shown in Figure 3A, where
viability of cells stimulated with LPS in the absence or in
the presence of NAC was not significantly different.

The influence of NAC on oxidative stress and NO
production, intracellular GSH and thiols in CEES/LPS
treated macrophages by fluorescence microscopy

The influence of NAC on macrophages treated with CEES/
LPS was also examined by fluorescent microscopy using
three fluorescent probes: a) carboxy-dichlorofluorescin
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Figure 3

NAC effect on viability and NO production in CEES/LPS treated RAW 264.7 cells (NAC post-treatment). Panel
A: Macrophages were incubated with 50 or 100 ng/ml of LPS or/and 500 uM CEES (as indicated) for 24 hours and 10 mM NAC
was added to the cell culture medium 5 hours after the CEES/LPS application. Cell viability was measured using the MTT assay
(see Materials and Methods) and expressed as OD at 575 nm. Panel B: Macrophages were incubated as described above and

NO production measured as concentration of nitrite in the culture media as described in Materials and Methods. Mean values

not sharing a common letter are significantly different (p < 0.05).

diacetate (carDCFH-DA), a sensor for combined ROS and
reactive nitrogen oxide species (RNOS) generation [26-
28]; b) 7-amino-4-chloromethylcoumarin (CMAC), an
indicator of intracellular GSH [29], and; c) 5-chlorometh-
ylfluorescein diacetate (CMF-DA), a probe for total non-
protein cellular thiol levels that lacks specificity for GSH
[29,30].

Figure 4a shows the results using the lipid soluble carD-
CFH-DA probe. This probe enters cells and is trapped after
being converted to a nonfluorescent polar derivative by
cellular esterases. CarDCFH can then be oxidized by either
ROS [26,28] or reactive nitrogen oxide species (RNOS)
[26,27] to the fluorescent product carboxydichlorofluo-
rescein (car-DCF) and thereby provide a qualitative index
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Fluorescent microscopy probes for oxidative stress, GSH and total thiols in RAW 264.7 cells. Panel A: Combined
generation of ROS and RNOS were monitored using 20 uM carDCFH-DA,; Panel B: Intracellular GSH levels were examined
using 20 uM CMAC; Panel C: Levels of non-protein cellular thiols were monitored using 20 uM CMF-DA under a fluorescent
microscope. Macrophages were treated with CEES (500 uM) and/or LPS (50 ng/mL) and incubated in the absence of NAC (top
row in each panel) or in the presence of 10 mM NAC for 12 h.

Figure 4
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of oxidation stress. As expected, treatment with LPS alone
(50 ng/ml for 12 h) induced a marked generation of ROS
plus RNOS in macrophages. We and others have shown
that car-DCF fluorescence in activated macrophages is
almost entirely from NO generation rather than ROS gen-
eration [18,27]. Figure 4a also shows that a 12 h treatment
with CEES alone (500 pM) or simultaneous treatment
with 500 uM CEES and 50 ng/ml LPS (CEES+LPS) induces
a higher level of car-DCF fluorescence than observed in
control cells treated with vehicle alone. We previously
reported that CEES markedly reduces NO generation in
LPS stimulated cells by reducing the expression of induci-
ble iNOS [18]. The car-DCF fluorescence observed in
CEES treated cells or CEES+LPS cells is likely, therefore, to
be due to an enhanced generation of ROS alone with a
minimal contribution from RNOS.

Simultaneous treatment with 10 mM NAC reduced the
car-DCF fluorescence observed in LPS stimulated cells, as
well as in CEES or CEES+LPS treated RAW 264.7 macro-
phages (Figure 4a, compare top row to bottom row).
These data qualitatively suggest that CEES and CEES+LPS
treatments induce oxidative stress in RAW 264.7 macro-
phages that can be diminished by NAC treatment.

As a next step we examined intracellular levels of GSH
using the CMAC probe (Figure 4b, top row) and levels of
total intracellular thiols using the CMF-DA probe (Figure
4c, top row). Both the CMAC and CMF probes revealed
similar qualitative patterns: CEES or CEES+LPS treatment
for 12 h caused cellular GSH and thiol depletion but treat-
ment with LPS alone did not. These data reinforce the
notion that treatment with either CEES alone or treatment
with CEES+LPS induces sufficient oxidative stress to

http://www.biomedcentral.com/1471-2121/9/33

reduce intracellular GSH and thiol levels. LPS alone, how-
ever, did not induce GSH or thiol depletion. NAC applica-
tion was found to inhibit the loss of GSH and thiol levels
caused by CEES or CEES+LPS treatment (see Figures 4b
and 4c, bottom rows).

The microscopic data (Figure 4) show merged visible/flu-
orescent images, thus allowing cell counting and the mon-
itoring of cell morphology changes. The counts of live
(morphologically unchanged) cells under conditions
described above (Figure 4) confirmed the major observa-
tions from the MTT-derived data (Figure 1a): (1) NAC
treatment enhance (3-fold) the viability of CEES+LPS
treated macrophages; (2) CEES+LPS is more toxic than
CEES alone. The cells count (as percentage of untreated
control cells + SEM) were 57% + 7, 76% = 10, 18% + 4,
84% + 8, 75% + 9, 67% = 6, 54% + 10, respectively for
macrophages treated with CEES (500 uM), LPS (50 ng/
ml), CEES+LPS, NAC (10 mM), NAC+CEES, NAC+LPS
and NAC+CEES+LPS.

Quantitative effects of CEES on GSH status and protein

carbonyl levels in LPS-stimulated RAW 264.7 macrophages
Since the fluorescence microscopy data presented above
are primarily qualitative, we wanted to confirm our results
by a more quantitative approach. We, therefore, deter-
mined the effect of 500 uM CEES on the GSH/GSSG status
of RAW 264.7 macrophage treated or untreated with 50
ng/ml LPS for 12 h. Total GSH (GSH+GSSG) and GSSG
concentrations were measured in cell lysates using a quan-
titative GSH assay kit and the values normalized to total
protein content of the lysate (see Materials and Methods).
Figure 5 shows that both total GSH and GSSG levels in
macrophages treated with either vehicle alone or LPS were
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58 b
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E S
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Figure 5

Glutathione status in RAW 264.7 cells incubated with CEES/LPS. Macrophages were incubated with 50 ng/ml LPS or/
and 500 uM CEES for 12 h. Total GSH (GSH+GSSG) and GSSG levels were measured using a GSH assay kit (see Materials and
Methods section) in cell lysates and normalized to total protein. Numbers show the percentage of GSSG in total GSH. Mean
values not sharing a common letter are significantly different (p < 0.05).
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not significantly different, i.e., similar to our fluorescent
microscopy data. However, cells treated with CEES alone
showed a depletion in total GSH as well as an increase in
GSSG levels; cells treated with both CEES and LPS were
further depleted in total GSH and the percentage of GSSG
in these cells was the highest (40%). These results show
that LPS alone does not induce a significant oxidative
stress, CEES alone induces a moderate oxidative stress but
the combination of both CEES and LPS induces the high-
est observed level of oxidative stress.

In addition, we measured the protein carbonyl levels in
control cells, cells treated with CEES (500 uM) alone or
cells simultaneously treated with both LPS (50 ng/ml)
and CEES (500 puM) for 12 h. Protein carbonyls are stable
protein oxidation products. The combination of CEES
and LPS produced about 1.5 fold increase in protein carb-
onyl levels, however cells treated with CEES alone were
not significantly different from control cells treated with
vehicle alone (data not shown). Cells treated with LPS
alone were not assayed in this experiment since both our
qualitative (Figure 4b and 4c) and quantitative data (Fig-
ure 5) showed no evidence of oxidative stress with this
treatment.

The inability of NAC to reverse NO loss in CEES/LPS
treated cells is not GSH dependent

The data in Figure 1b show that NAC has almost no ability
to restore NO production in LPS-stimulated macrophages
treated with CEES. An inability of NAC to prevent the
depletion of GSH in LPS-stimulated cells treated with
CEES could possibly explain these results. In order to
explore this possibility, we examined the ability of 5 mM
NAC to prevent GSH depletion in LPS (50 ng/ml) stimu-
lated and CEES treated (500 uM for 4 h) RAW 264.7 cells.
Figure 6 shows that CEES treatment alone decreased intra-
cellular GSH by only about 10% compared to LPS stimu-
lated cells in the absence NAC. As expected, the decrease
in GSH levels was quite large in cells treated with both
CEES+LPS (in the absence of NAC) but treatment with 5
mM NAC was effective in preventing this loss. The data
shown in Figure 6 were obtained by HPLC analyses of the
cell lysates but similar results were obtained by using a
fluorometric assay for GSH [31] (data not shown).
Despite the fact that NAC can increase the GSH level by
three fold in CEES+LPS treated cells it does almost noth-
ing to increase NO production (Figure 1a). These data sug-
gest that the loss of NO production in CEES treated
stimulated macrophages is not GSH dependent as has
been observed in some other cell lines [22-25].

http://www.biomedcentral.com/1471-2121/9/33
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Figure 6

NAC restores intracellular GSH in RAW 264.7 cells
incubated with CEES/LPS. Macrophages incubated with
50 ng/ml LPS or/and 500 uM CEES were simultaneously
treated with or without 5 mM NAC (as indicated). Cell
lysates were measured for reduced GSH after 4 hour incuba-
tion using the HPLC technique described in Materials and
Methods. The GSH levels were normalized to an internal
homocysteine standard. Mean values not sharing a common
letter are significantly different (p < 0.05).

Polymyxin B diminishes CEES toxicity in LPS-treated
macrophages and partially blocks LPS induced NO
production

Polymyxin B is an antibiotic drug, which selectively binds
and neutralizes LPS. Since LPS enhances CEES toxicity, we
tested the ability of polymyxin B to reduce CEES toxicity
(500 uM) and decrease NO generation in LPS (50 ng/ml)
stimulated macrophages. Figure 7a shows that polymyxin
B (10 pg/ml) had no cytotoxic effect on RAW 264.7 mac-
rophages but partially reduced the cytotoxicity of
CEES+LPS treated cells (18 h). Nevertheless, polymyxin B
produced at least a six fold increase in cell viability com-
pared to cell treated with both LPS and CEES for 18 h. As
shown in Figure 7b, polymyxin B effectively blocked the
production of NO (measured as nitrite levels) in LPS (50
ng/ml for 18 h) treated macrophages as would be
expected if it bound and blocked the action of LPS.

Discussion

The cytotoxic effect of HD, and its analogue CEES, is
believed to involve an increased generation of damaging
free radicals and ROS [8,11-13,32]. The data presented
here show that LPS in combination with CEES induces
intracellular GSH and thiol depletion as well as increased
levels of protein carbonyls. In experiments with various
human cell lines we have found that GSH depletion is rel-
atively rapid as it occurs within first hour of incubation
(data not shown). Thus, it is likely that this depletion is
due, in large part, by a direct reaction of CEES with GSH.
The measurement of protein carbonyls is one of the best
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Figure 7

Polmyxin B partially protects LPS stimulated RAW 264.7 cells from CEES toxicity and blocks NO production.
Panel A: Macrophages incubated with 50 ng/ml LPS or/and 500 M CEES were simultaneously treated with or without 10 pg/mL
polymyxin B (as indicated) for 18 hours. Cell viability was measured using the MTT assay (see Materials and Methods) and

expressed as OD at 575 nm. Panel B: Macrophages were incubated as described above. NO production was measured as nitrite
concentration in the culture media as described in Materials and Methods. Mean values not sharing a common letter are signif-

icantly different (p < 0.05).

indices for oxidative stress due to the stability of protein
carbonyls and sensitivity of the measurement [33]. Cellu-
lar thiols are important markers of the redox state of the
cell. In particular, GSH is one of the major components of
the intracellular redox system and a key intracellular anti-
oxidant that functions as a substrate for glutathione per-
oxidase which detoxifies both hydrogen peroxide and
lipid hydroperoxides [34,35]. Depletion of intracellular

stores of GSH plays an important role in the development
of oxidative stress [12,13,36]. Recent work also suggests
that the anti-apoptotic protein Bcl-2 directly interacts with
GSH to regulate an important mitochondrial GSH pool
that influences mitochondrial oxidative stress and subse-
quent apoptosis [37]. It is highly possible that both sul-
phur and nitrogen mustards possess a similar ability to
deplete cellular thiols and induce protein oxidation.
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Taken together, our data strongly suggest that CEES
induces oxidative stress in stimulated macrophages.
Moreover, the pattern of oxidative stress parallels the pat-
tern observed for CEES cytotoxicity, i.e., cytotoxicity and
oxidative stress are amplified in cells treated with both
CEES and LPS. The addition of 5-10 mM NAC, a well
characterized water-soluble antioxidant, was found to be
very effective in minimizing CEES toxicity in stimulated
macrophages and in preventing GSH depletion. Our data
suggests that NAC can be added five hours before or even
five hours after CEES and still exert a cytoprotective effect.
Das et al. [9] recently found that NAC in drinking water
was effective in reducing CEES-induced lung toxicity to
Guinea pigs. Fan et al. [38] have shown that liposomal
encapsulated NAC delivered intratracheally was more
effective than free NAC against acute respiratory distress
syndrome in a rat model. It is interesting, therefore, that
McClintock et al. [39] have shown that reducing agents
(NAC or GSH), as well as some anti-oxidant enzymes,
delivered via liposomes, can substantially diminish CEES-
induced injury in rat lungs. We are currently formulating
an optimal antioxidant liposome preparation for treating
either lung or skin induced CEES/HD injury.

We previously reported that CEES induces a transient loss
of iNOS protein expression in LPS stimulated RAW 264.7
macrophages but does not inhibit the enzymatic activity
of iNOS. Based of the work of others [22-25], we hypoth-
esized that NAC treatment would not only be protective
against CEES toxicity but would also restore NO produc-
tion in LPS stimulated macrophages treated with CEES.
Our results indicate, however, that this was not the case.
Our data did, however, show that NAC effectively
increases cell viability, increases GSH levels and reduces
oxidative stress in LPS stimulated macrophages treated
with CEES.

CEES could inhibit iNOS protein synthesis by a number
of possible molecular mechanisms which we are currently
exploring [18]. It is generally accepted that both the tran-
scription factor NF-kB and STAT-1 play central roles in the
LPS induction of iNOS [17,40]. It is possible that CEES/
HD could inhibit the NF-kB and/or the STAT-1 pathways
in RAW 264.7 macrophages and consequently block
iNOS gene expression. For instance, CEES could alkylate
the NF-xB consensus nucleotide binding sequences
thereby preventing the binding of activated NF-«xB to the
iNOS promoter and block the subsequent production of
iNOS mRNA and protein expression. Previous studies in
vitro have shown that DNA alkylation by CEES [41,42] or
by nitrogen mustard [43] can inhibit the DNA binding of
transcription factor AP2 or NF-kB.

Alternatively, the DNA binding ability of the NF-xB and/
or STAT-1 transcription factors could be reduced by direct
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covalent modification by CEES or as an indirect result of
GSH depletion, i.e., redox regulation. Nishi et al. [44]
have found, for example, that the cysteine-62 (Cys-62)
residue of the p50 NF-kB protein subunit is oxidized in
the cytoplasm but reduced in the nucleus, and that the
reduced form is essential for NF-kxB DNA binding. It is
possible that CEES could rapidly react with Cys-62 of the
p50 NF-kB subunit and prevent its DNA binding. How-
ever, since NAC was found to restore GSH levels without
restoring iNOS activity (see Figures 1 and 7), it is unlikely
that a GSH redox modulation of the p50 Cys-62 is the
molecular mechanism for CEES induced loss of iNOS pro-
tein in LPS-stimulated macrophages. This cannot, how-
ever, be completely ruled out based on our current data.

Moreover, there is evidence suggesting that alkylating
agents do not inhibit but rather promote NF-xB activa-
tion. It is known that CEES or HD treated cells release ele-
vated levels of TNF-o and also show NF-kB activation
both in vitro and in vivo as measured by electrophoretic
mobility shift assays (EMSAs)[7,45,46]. Minsavage and
Dillman recently demonstrated that NF-kB is activated by
HD treatment in human cell lines via nonclassical p53-
dependent pathway [47]. Collectively, these data suggest
that the inhibition of iNOS expression by CEES or HD
could be due to downregulation of the STAT-1 and/or
classical NF-xB pathway. We are currently exploring these
various molecular mechanisms.

In the work presented here, we also tested the ability of
polymyxin B to block the effect of LPS. Polymyxin B binds
to the lipid A domain of LPS and neutralizes its activity.
Our data show that polymyxin B effectively inhibits CEES
toxicity in LPS stimulated cells. In vivo, LPS could directly
enhance CEES/HD toxicity in cells with functional CD14
receptors or by triggering the release of pro-inflammatory
cytokines, such as TNF-a and IL-1f3, by immune cells. We
have previously demonstrated that inflammatory
cytokines also enhance CEES cytotoxicity [15].

Conclusion

Our in vitro work presents novel evidence supporting the
view that oxidative stress is an important component of
CEES/HD toxicity and that antioxidants have therapeutic
potential. We anticipated that NAC would prevent GSH
depletion and restore the loss of iNOS activity in CEES
treated macrophages stimulated with LPS. Although NAC
was effective in preventing both CEES toxicity and GSH
depletion, it failed to restore iNOS expression. Our results
to date indicate that CEES causes a transient decrease in
iNOS protein syntheses rather than a direct inhibition of
iNOS activity due to covalent modification(s) by CEES.
We are currently investigating the molecular mecha-
nism(s) for the down regulation of iNOS expression by
CEES.

Page 10 of 14

(page number not for citation purposes)



BMC Cell Biology 2008, 9:33

Inhibition of iINOS and NO production could be an
important element in the slow wound healing observed
subsequent to CEES/HD injury. Considerable evidence
suggests that iNOS is an important component of wound
healing [19,20,48]. Although NAC maybe effective at
reducing CEES/HD toxicity it is not effective at elevating
NO production due to iNOS inhibition by CEES/HD. A
more detailed understanding of the molecular mecha-
nism(s) responsible for iNOS inhibition by CEES/HD
could, therefore, be useful in the design of more effective
countermeasures.

The fact that LPS was found to enhance CEES toxicity
highlights the potential importance of preventing second-
ary infection in the treatment of HD toxicity.

LPS is a component of gram negative bacteria and a ubig-
uitous environmental contaminant. Its presence at very
low levels (ng/ml) amplifies the toxicity of CEES. Poly-
myxin B, a topically applied antibiotic that binds LPS, was
shown to block the iNOS inducing ability of LPS and to
reduce CEES toxicity in LPS stimulated cells. Polymyxin B
could, therefore, be useful as a supportive treatment in
order to prevent secondary infections and to reduce HD
toxicity, since it both neutralizes LPS and prevents the
growth of gram-negative bacteria in healing wounds.

The path to an optimal countermeasure to CEES/HD
exposure may lie in a poly-drug formulation that mini-
mizes oxidative stress, prevents inflammation and sec-
ondary infections, and, also, protects iNOS activity.
Antioxidant liposomes are currently being investigated as
they have unique ability for targeted delivery of both
water-soluble and lipid soluble antioxidants [49] or other
drugs, for instance, polymyxin B (personal communica-
tions, Dr. Zach Suntres) as well as anti-inflammatory
agents.

Methods

Materials

RPMI-1640 medium without phenol red and fetal bovine
serum with a low endotoxin level were purchased from
Life Technologies (Gaithersburg, MD). Escherichia coli
lipopolysaccharide serotype 0111:B4, 3-(4,5-dimethylthi-
azolyl-2)-2,5-diphenyltetrazolium bromide (MTT), CEES,
NAC, Greiss reagent, GSH, BHT, EDTA, and all organic
solvents used were obtained from Sigma Chemical Com-
pany (St. Louis, MO). Fluorescent dyes carDCFH-DA,
CMAC, and CMF-DA were purchased from Molecular
Probes (Invitrogen Corp., Carlsbad, CA).

Cell culture and treatments

RAW264.7 murine macrophage-like cells (American Type
Culture Collection, Rockville, MD) were cultured at 37°C
in a humidified incubator with 5% CO, in RPMI-1640
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medium with 10% fetal bovine serum, 100 U/ml penicil-
lin and 100 mg/ml streptomycin (GiBcoBRL Grand
Island, NY). Adherent cells were subcultured in 96 well
Costar tissue culture plates and treated with CEES and/or
LPS in the presence or absence of various concentrations
of NAC as indicated in the Figure legends. CEES was used
only as a fresh 50 mM stock solution in anhydrous etha-
nol. LPS was prepared as a 0.5 pg/ml stock solution in
PBS, filter-sterilized and stored at -20°C for up to 6
months. NAC was prepared as a 0.5 M stock solution in
PBS (pH adjusted to 7.4), filter-sterilized and stored at
4°C for up to two weeks.

MTT assay

MTT assay was performed by a slight modification of the
method described by Wasserman et al. [50,51]. Briefly, at
the end of each experiment, cultured cells in 96 well plates
(with 200 pl of medium per well) were incubated with
MTT (20 pl of 5 pg/ml per well) at 37°C for 4 h. The for-
mazan product was solubilized by addition of 100 pl of
dimethyl sulfoxide (DMSO) and the OD measured at 575
nm with a Spectramax Plus 384 microplate reader (Molec-
ular Devices Corp, Sunnyvale, CA)

NO generation in RAW264.7 macrophages

The production of NO, reflecting cellular NO synthase
activity, was estimated from the accumulation of nitrite
(NO,), a stable breakdown product of NO, in the
medium. NO, was assayed by the method of Green et al.
[52]. Briefly, an aliquot of cell culture medium was mixed
with an equal volume of Greiss reagent which reacts with
NO, to form an azo-product. Absorbance of the reaction
product was determined at 532 nm using a Spectramax
Plus 384 microplate reader (Molecular Devices Corp, Sun-
nyvale, CA). Sodium nitrite was used as a standard to cal-
culate NO," concentrations.

Quantitative GSH analyses

RAW264.7 macrophages incubated in 96-well plate (~10°
adherent cells/well) and treated with LPS/CEES/NAC as
indicated in the Figure legends was assayed for total GSH
(GSH plus GSSG) using the GSH assay kit (World Preci-
sion Instruments, Sarasota, FL) according to the com-
pany's protocol. This assay uses the Tietze's enzymatic
recycling method [53]. In order to measure just GSSG, 2-
vinylpyridine was first used to derivatize GSH alone [54].
Total GSH and GSSG levels were normalized to the total
protein (as determined by the standard BCA assay). Alter-
natively, GSH analyses of the cell lysates were analyzed by
isocratic HPLC with electrochemical detector composed
of Coulochem II model 5200A and a Coulochem 5011
analytical cell (ESA Inc, Chelmsford, MA) as described by
[55]. Since the cell lysates contained no measurable levels
of homocysteine, this aminothiol was used as an internal
standard.
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Protein carbonyl measurement

Protein carbonyl levels were measured by an enzyme
immunoassay kit from Cell Biolabs (San Diego, CA)
according to the manufacture's instructions. In this assay,
the protein samples are derivatized by making use of the
reaction between 2,4-dinitrophenylhydrazine (DNPH)
and protein carbonyls to form a DNP hydrazone which is
assayed using an anti-DNP antibody and a HRP conju-
gated secondary antibody. A standard curve from the oxi-
dized BSA standards was run with each microplate. This
kit assay is essentially a modification [56] of the method
described by Buss et al. [57].

Fluorescent microscopic analyses

The cell density was adjusted to 2 x 105/ml, and a 100 pl
aliquot of the cell suspension in media was placed in each
well of an 8-well Lab-Tek chamber glass slide (Nunc,
Rochester, NY). Vehicle alone, CEES alone (500 pM),
CEES+LPS (50 ng/ml) in the presence or absence of NAC
(10 mM) were simultaneously added to chamber slides
and incubated for 12 h at 37°C in 5% CO,. At the end of
the treatment a stock solution of desired fluorescent probe
in DMSO was added and the slides incubated for an addi-
tional 30 min at 37°C. The cells were washed with fresh
PBS twice, observed and digitally photographed using a
MOTIC inverted phase contrast fluorescence microscope
equipped with a Nikon Coolpix E4300 4-megapixel cam-
era (Martin Microscope, Easley, SC). A 20 uM carDCFH-
DA and a standard FITC filter were used to monitor com-
bined ROS and RNOS generation; a 20 puM CMAC and a
standard DAPI filter were used to monitor intracellular
GSH; a 20 uM CMF-DA and a standard FITC filter were
used to monitor cellular thiol levels. All the optical filters
were obtained from Chroma Technology Corp (Rocking-
ham, VT).

Statistical analyses

Data were analyzed ANOVA followed with the Scheffe test
for significance with p < 0.05 using SPSS 14.0 for Win-
dows (Chicago, IL). Results were expressed as the mean +
SD. In all the Figures, mean values not sharing a common
letter are significantly different (p < 0.05). Mean values
sharing a common letter are not significantly different.
The mean values and standard deviations of at least three
independent experiments are provided in all the Figures.
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interleukin-1 beta; LPS, lipopolysaccharide; MTT, 3-(4,5-
dimethylthiazool-2yl)-2,5-diphenyltetrazolium bro-

http://www.biomedcentral.com/1471-2121/9/33

mide; NAC, N-acetyl-L-cysteine; NO, nitric oxide; iNOS,
inducible nitric oxide synthase; NF-xB, nuclear factor
kappa B; RNOS, reactive nitrogen oxide species; ROS,
reactive oxygen species; STAT-1, signal transducer and
activator of transcription-1; TNF-a, tumor necrosis factor-
alpha

Authors' contributions

VP and WLS analyzed the data and drafted the manu-
script. WLS supervised the overall conduct of the research,
which was performed in his laboratory. VP, MQ and HY
carried out the experimental work in this study and per-
formed the statistical analyses. MS (along with WLS) con-
ceived of the study, participated in the study design, and
provided continuous evaluation of the experimental data.
All authors read and approved the final manuscript.

Acknowledgements

This research was supported by three United States Army Medical
Research Command (USAMRMC) Grants: "The Influence of Antioxidant
Liposomes on Macrophages Treated with Mustard Gas Analogues”, Grant
No. 98164001; "Topical Application of Liposomal Antioxidants for Protec-
tion against CEES Induced Skin Damage", Contract No. W8I XWH-05-2-
0034 and; "A Proteomic Approach for Studying the Therapeutic Use of
Antioxidant Liposomes", Contract No. W8I XWH-06-2-044.

References

l. Paromov V, Suntres Z, Smith M, Stone WL: Sulfur mustard toxic-
ity following dermal exposure: role of oxidative stress, and
antioxidant therapy. | Burns Wounds 2007, 7:e7.

2. Balali-Mood M, Hefazi M: The pharmacology, toxicology, and
medical treatment of sulphur mustard poisoning. Fundam Clin
Pharmacol 2005, 19(3):297-315.

3. Smith K], Casillas R, Graham J, Skelton HG, Stemler F, Hackley BE Jr.:
Histopathologic features seen with different animal models
following cutaneous sulfur mustard exposure. Journal of derma-
tological science 1997, 14(2):126-135.

4.  Dacre JC, Goldman M: Toxicology and pharmacology of the
chemical warfare agent sulfur mustard. Pharmacological reviews
1996, 48(2):289-326.

5. Arroyo CM, Burman DL, Kahler DW, Nelson MR, Corun CM, Guz-
man JJ, Smith MA, Purcell ED, Hackley BE Jr., Soni SD, Broomfield CA:
TNF-alpha expression patterns as potential molecular
biomarker for human skin cells exposed to vesicant chemical
warfare agents: sulfur mustard (HD) and Lewisite (L). Cell
biology and toxicology 2004, 20(6):345-359.

6. Arroyo CM, Schafer RJ, Kurt EM, Broomfield CA, Carmichael AJ:
Response of normal human keratinocytes to sulfur mustard
(HD): cytokine release using a non-enzymatic detachment
procedure. In Human & experimental toxicology Volume 18. Issue |
ENGLAND ; 1999:1-11.

7.  Arroyo CM, Schafer RJ, Kurt EM, Broomfield CA, Carmichael AJ:
Response of normal human keratinocytes to sulfur mustard:
cytokine release. In | Appl Toxicol Volume 20 Suppl I. England ;
2000:563-72.

8.  Arroyo CM, Von Tersch RL, Broomfield CA: Activation of alpha-
human tumour necrosis factor (TNF-alpha) by human
monocytes (THP-1) exposed to 2-chloroethyl ethyl sulphide
(H-MG). In Hum Exp Toxicol Volume 4. Issue 7 ENGLAND ;
1995:547-553.

9.  Das SK, Mukherjee S, Smith MG, Chatterjee D: Prophylactic pro-
tection by N-acetylcysteine against the pulmonary injury
induced by 2-chloroethyl ethyl sulfide, a mustard analogue.
Journal of biochemical and molecular toxicology 2003, 17(3):177-184.

10. Mukhopadhyay S, Rajaratnam V, Mukherjee S, Smith M, Das SK: Mod-
ulation of the expression of superoxide dismutase gene in

Page 12 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18091984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18091984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18091984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15910653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15910653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9039976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9039976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9039976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8804107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8804107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10025362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10025362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10025362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11428645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11428645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11428645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7576814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7576814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7576814

BMC Cell Biology 2008, 9:33

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

lung injury by 2-chloroethyl ethyl sulfide, a mustard analog.
Journal of biochemical and molecular toxicology 2006, 20(3):142-149.
Elsayed NM, Omaye ST, Klain GJ, Korte DW Jr.: Free radical-
mediated lung response to the monofunctional sulfur mus-
tard butyl 2-chloroethyl sulfide after subcutaneous injection.
Toxicology 1992, 72(2):153-165.

Elsayed NM, Omaye ST: Biochemical changes in mouse lung
after subcutaneous injection of the sulfur mustard 2-chloroe-
thyl 4-chlorobutyl sulfide. Toxicology 2004, 199(2-3):195-206.
Han S, Espinoza LA, Liao H, Boulares AH, Smulson ME: Protection
by antioxidants against toxicity and apoptosis induced by the
sulphur mustard analog 2-chloroethylethyl sulphide (CEES)
in Jurkat T cells and normal human lymphocytes. British journal
of pharmacology 2004, 141(5):795-802.

Naghii MR: Sulfur mustard intoxication, oxidative stress, and
antioxidants. Mil Med 2002, 167(7):573-575.

Stone WL, Qui M, Smith M: Lipopolysaccharide enhances the
cytotoxicity of 2-chloroethyl ethyl sulfide. BMC cell biology
2003, 4(1):1.

Ganster RW, Taylor BS, Shao L, Geller DA: Complex regulation
of human inducible nitric oxide synthase gene transcription
by Stat | and NF-kappa B. Proceedings of the National Academy of
Sciences of the United States of America 2001, 98(15):8638-8643.
Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ: An inter-
feron-gamma-activated site (GAS) is necessary for full
expression of the mouse iNOS gene in response to inter-
feron-gamma and lipopolysaccharide. The Journal of biological
chemistry 1997, 272(2):1226-1230.

Qui M, Paromov VM, Yang H, Smith M, Stone WL: Inhibition of
inducible Nitric Oxide Synthase by a mustard gas analog in
murine macrophages. BMC cell biology 2006, 7:39.

Schwentker A, Billiar TR: Nitric oxide and wound repair. The Sur-
gical clinics of North America 2003, 83(3):521-530.

Witte MB, Kiyama T, Barbul A: Nitric oxide enhances experi-
mental wound healing in diabetes. The British journal of surgery
2002, 89(12):1594-1601.

Yamasaki K, Edington HD, McClosky C, Tzeng E, Lizonova A, Kovesdi
I, Steed DL, Billiar TR: Reversal of impaired wound repair in
iNOS-deficient mice by topical adenoviral-mediated iINOS
gene transfer. The Journal of clinical investigation 1998,
101(5):967-971.

Duval DL, Sieg D}, Billings RE: Regulation of hepatic nitric oxide
synthase by reactive oxygen intermediates and glutathione.
Archives of biochemistry and biophysics 1995, 316(2):699-706.
Harbrecht BG, Di Silvio M, Chough V, Kim YM, Simmons RL, Billiar
TR: Glutathione regulates nitric oxide synthase in cultured
hepatocytes. Ann Surg 1997, 225(1):76-87.

Tirmenstein MA, Nicholls-Grzemski FA, Schmittgen TD, Zakrajsek
BA, Fariss MW: Glutathione-dependent regulation of nitric
oxide production in isolated rat hepatocyte suspensions.
Antioxidants & redox signaling 2000, 2(4):767-777.

Vos TA, Van Goor H, Tuyt L, De Jager-Krikken A, Leuvenink R,
Kuipers F, Jansen PL, Moshage H: Expression of inducible nitric
oxide synthase in endotoxemic rat hepatocytes is dependent
on the cellular glutathione status. Hepatology 1999,
29(2):421-426.

Myhre O, Andersen JM, Aarnes H, Fonnum F: Evaluation of the
probes 2',7'-dichlorofluorescin diacetate, luminol, and luci-
genin as indicators of reactive species formation. Biochemical
pharmacology 2003, 65(10):1575-1582.

Imrich A, Kobzik L: Fluorescence-based measurement of nitric
oxide synthase activity in activated rat macrophages using
dichlorofluorescin. Nitric Oxide 1997, 1(4):359-369.

LeBel CP, Ischiropoulos H, Bondy SC: Evaluation of the probe
2',7'-dichlorofluorescin as an indicator of reactive oxygen
species formation and oxidative stress. Chemical research in tox-
icology 1992, 5(2):227-231.

Sebastia ], Cristofol R, Martin M, Rodriguez-Farre E, Sanfeliu C: Eval-
uation of fluorescent dyes for measuring intracellular glu-
tathione content in primary cultures of human neurons and
neuroblastoma SH-SY5Y. Cytometry A 2003, 51(1):16-25.

Poot M, Kavanagh TJ, Kang HC, Haugland RP, Rabinovitch PS: Flow
cytometric analysis of cell cycle-dependent changes in cell
thiol level by combining a new laser dye with Hoechst 33342.
Cytometry 1991, 12(2):184-187.

32.

33.

34.
35.
36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

51,

52.

http://www.biomedcentral.com/1471-2121/9/33

Kamencic H, Lyon A, Paterson PG, Juurlink BH: Monochlorobi-
mane fluorometric method to measure tissue glutathione.
Analytical biochemistry 2000, 286(1):35-37.

Elsayed NM, Omaye ST, Klain GJ, Inase JL, Dahlberg ET, Wheeler CR,
Korte DW Jr.: Response of mouse brain to a single subcutane-
ous injection of the monofunctional sulfur mustard, butyl 2-
chloroethyl sulfide (BCS)*. Toxicology 1989, 58(1):11-20.
Berlett BS, Stadtman ER: Protein oxidation in aging, disease, and
oxidative stress. The Journal of biological chemistry 1997,
272(33):20313-20316.

Stone WL, Smith M: Therapeutic uses of antioxidant lipo-
somes. Mol Biotechnol 2004, 27(3):217-230.

Droge W: Free radicals in the physiological control of cell
function. Physiological reviews 2002, 82(1):47-95.

Kadar T, Turetz J, Fishbine E, Sahar R, Chapman S, Amir A: Charac-
terization of acute and delayed ocular lesions induced by sul-
fur mustard in rabbits. Current eye research 2001, 22(1):42-53.
Zimmermann AK, Loucks FA, Schroeder EK, Bouchard R}, Tyler KL,
Linseman DA: Glutathione binding to the Bcl-2 homology-3
domain groove: a molecular basis for Bcl-2 antioxidant func-
tion at mitochondria. The Journal of biological chemistry 2007,
282(40):29296-29304.

Fan ], Shek PN, Suntres ZE, Li YH, Oreopoulos GD, Rotstein OD:
Liposomal antioxidants provide prolonged protection
against acute respiratory distress syndrome. Surgery 2000,
128(2):332-338.

McClintock SD, Hoesel LM, Das SK, Till GO, Neff T, Kunkel RG,
Smith MG, Ward PA: Attenuation of half sulfur mustard gas-
induced acute lung injury in rats. | Appl Toxicol 2006,
26(2):126-131.

Kleinert H, Pautz A, Linker K, Schwarz PM: Regulation of the
expression of inducible nitric oxide synthase. Eur | Pharmacol
2004, 500(1-3):255-266.

Chen XM, Gray PJ, Cullinane C, Phillips DR: Differential sensitivity
of transcription factors to mustard-damaged DNA. Chemico-
biological interactions 1999, 1 18(1):51-67.

Gray P): Sulphur mustards inhibit binding of transcription fac-
tor AP2 in vitro. Nucleic Acids Res 1995, 23(21):4378-4382.
Fabbri S, Prontera C, Broggini M, D'Incalci M: Differential inhibi-
tion of the DNA binding of transcription factors NF kappa B
and OTF-1 by nitrogen mustard and quinacrine mustard:
transcriptional implications. Carcinogenesis 1993,
14(9):1963-1967.

Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M,
Aizawa S, Tanaka H, Kataoka K, Watanabe H, Handa H: Spatial
redox regulation of a critical cysteine residue of NF-kappa B
in  vivo. The  Journal of biological ~ chemistry 2002,
277(46):44548-44556.

Atkins KB, Lodhi ], Hurley LL, Hinshaw DB: N-acetylcysteine and
endothelial cell injury by sulfur mustard. | Appl Toxicol 2000, 20
Suppl 1:5125-8.

Chatterjee D, Mukherjee S, Smith MG, Das SK: Signal transduction
events in lung injury induced by 2-chloroethyl ethyl sulfide, a
mustard analog. Journal of biochemical and molecular toxicology 2003,
17(2):114-121.

Minsavage GD, Dillman JF: BIFUNCTIONAL ALKYLATING
AGENT-INDUCED p53 AND NONCLASSICAL NUCLEAR
FACTOR-KAPPA B (NF-{kappa}B) RESPONSES AND
CELL DEATH ARE ALTERED BY CAFFEIC ACID PHENE-
THYL ESTER (CAPE): A potential role for antioxidant/elec-
trophilic response element (ARE/EpRE) signaling. | Pharmacol
Exp Ther 2007, 321(1):202-212.

Soneja A, Drews M, Malinski T: Role of nitric oxide, nitroxidative
and oxidative stress in wound healing. Pharmacol Rep 2005, 57
Suppl:108-119.

Stone WL, Mukherjee S, Smith M, Das SK: Therapeutic uses of
antioxidant liposomes. Methods Mol Biol 2002, 199:145-161.
Wasserman TH, Twentyman P: Use of a colorimetric microtiter
(MTT) assay in determining the radiosensitivity of cells from
murine solid tumors. Int | Radiat Oncol Biol Phys 1988,
15(3):699-702.

Twentyman PR, Luscombe M: A study of some variables in a
tetrazolium dye (MTT) based assay for cell growth and
chemosensitivity. Br | Cancer 1987, 56(3):279-285.

Green LC, Wagner DA, Glogowski |, Skipper PL, Wishnok JS, Tan-
nenbaum SR: Analysis of nitrate, nitrite, and [I5N]nitrate in

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1566277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1566277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14769780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12125850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12125850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12513699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12513699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11438703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11438703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11438703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8995425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8995425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8995425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17137498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17137498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17137498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12822723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12445072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9486966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9486966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9486966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8998123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8998123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11213481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11213481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12754093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12754093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12754093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9441907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9441907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9441907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1322737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1322737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1322737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12500301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12500301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12500301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1710962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1710962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2815091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2815091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2815091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9252331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9252331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17690097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17690097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17690097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10923013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10923013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10923013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16252256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16252256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15464038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15464038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10227578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10227578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7501459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7501459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8403225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8403225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8403225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11428622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11428622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17204746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17204746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17204746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16415491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12094566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3417490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3417490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3417490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3663476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3663476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3663476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7181105

BMC Cell Biology 2008, 9:33 http://www.biomedcentral.com/1471-2121/9/33

biological fluids. In Analytical biochemistry Volume [26. Issue |
UNITED STATES ; 1982:131-138.

53. Tietze F: Enzymic method for quantitative determination of
nanogram amounts of total and oxidized glutathione: appli-
cations to mammalian blood and other tissues. Analytical bio-
chemistry 1969, 27(3):502-522.

54. Griffith OW: Determination of glutathione and glutathione
disulfide using glutathione reductase and 2-vinylpyridine.
Analytical biochemistry 1980, 106(1):207-212.

55. Houze P, Gamra S, Madelaine |, Bousquet B, Gourmel B: Simultane-
ous determination of total plasma glutathione, homo-
cysteine, cysteinylglycine, and methionine by high-
performance liquid chromatography with electrochemical
detection. Journal of clinical laboratory analysis 2001, 15(3):144-153.

56. Alamdari DH, Kostidou E, Paletas K, Sarigianni M, Konstas AG, Kara-
piperidou A, Koliakos G: High sensitivity enzyme-linked immu-
nosorbent assay (ELISA) method for measuring protein
carbonyl in samples with low amounts of protein. Free radical
biology & medicine 2005, 39(10):1362-1367.

57. Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC: Protein
carbonyl measurement by a sensitive ELISA method. Free
radical biology & medicine 1997, 23(3):361-366.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7181105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4388022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4388022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4388022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7416462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7416462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11344530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11344530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11344530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16257645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9214571
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	The influence of NAC on cell viability and NO production in CEES/LPS treated macrophages
	The influence of NAC on oxidative stress and NO production, intracellular GSH and thiols in CEES/LPS treated macrophages by fluorescence microscopy
	Quantitative effects of CEES on GSH status and protein carbonyl levels in LPS-stimulated RAW 264.7 macrophages
	The inability of NAC to reverse NO loss in CEES/LPS treated cells is not GSH dependent
	Polymyxin B diminishes CEES toxicity in LPS-treated macrophages and partially blocks LPS induced NO production

	Discussion
	Conclusion
	Methods
	Materials
	Cell culture and treatments
	MTT assay
	NO generation in RAW264.7 macrophages
	Quantitative GSH analyses
	Protein carbonyl measurement
	Fluorescent microscopic analyses
	Statistical analyses

	Abbreviations
	Authors' contributions
	Acknowledgements
	References

