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Abstract Prefrontal dopamine levels are relatively

increased in adolescence compared to adulthood. Genetic

variation of COMT (COMT Val158Met) results in lower

enzymatic activity and higher dopamine availability in Met

carriers. Given the dramatic changes of synaptic dopamine

during adolescence, it has been suggested that effects of

COMT Val158Met genotypes might have oppositional

effects in adolescents and adults. The present study aims to

identify such oppositional COMT Val158Met effects in

adolescents and adults in prefrontal brain networks at rest.

Resting state functional connectivity data were collected

from cross-sectional and multicenter study sites involving

106 healthy young adults (mean age 24 ± 2.6 years),

gender matched to 106 randomly chosen 14-year-olds. We

selected the anterior medial prefrontal cortex (amPFC) as

seed due to its important role as nexus of the executive

control and default mode network. We observed a signifi-

cant age-dependent reversal of COMT Val158Met effects

on resting state functional connectivity between amPFC

and ventrolateral as well as dorsolateral prefrontal cortex,

and parahippocampal gyrus. Val homozygous adults

exhibited increased and adolescents decreased connectivity

compared to Met homozygotes for all reported regions.

Network analyses underscored the importance of the

parahippocampal gyrus as mediator of observed effects.

Results of this study demonstrate that adolescent and adult

resting state networks are dose-dependently and diametri-

cally affected by COMT genotypes following a
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hypothetical model of dopamine function that follows an

inverted U-shaped curve. This study might provide cues for

the understanding of disease onset or dopaminergic treat-

ment mechanisms in major neuropsychiatric disorders such

as schizophrenia and attention deficit hyperactivity

disorder.

Keywords Catechol-O-methyltransferase � Dopamine �
Adolescents � Cognition � Functional neuroimaging �
Magnetic resonance imaging

Introduction

Human dopaminergic signaling is critically modulated by a

variety of alterations occurring during adolescence such as

increases of basal dopamine (DA) levels and changes of

DA turnover resulting in a peak of prefrontal dopaminergic

neurotransmission in early adolescence that declines

thereafter (Andersen et al. 1997; Rosenberg and Lewis

1994, 1995; Teicher et al. 1993; Wahlstrom et al. 2010).

Moreover, prefrontal dopaminergic innervation comes to a

climax during adolescence and it continuously decreases

during adulthood (Rosenberg and Lewis 1995; Tarazi et al.

1999).

DA-mediated behavioral effects have been proposed to

follow an inverted U-shaped dose–response curve by some

authors (Arnsten 1997; Cools and D’Esposito 2011), with

both deficient and excessive amounts of DA activity pre-

dicting poor cognitive task performance. Due to lacking

prefrontal cortical DA transporters (Sesack et al. 1998), DA

availability in the PFC is critically dependent on its

degrading enzyme catechol-O-methyltransferase (COMT)

(Yavich et al. 2007). Its function is known to be affected by

a functional single nucleotide polymorphism (SNP) in

COMT (G-to-A base-pair substitution) leading to a methi-

onine (Met) valine (Val) substitution at codons 108/158

(COMT Val158Met). Carriers of the Met allele have been

found to display a fourfold decrease in enzymatic activity

compared to Val allele carriers going along with an

increase of prefrontal DA activity (Lachman et al. 1996;

Lotta et al. 1995). Under physiological conditions indi-

viduals homozygous for the Met allele are thought to be

placed near the apex of the inverted U-shaped curve,

whereas Val allele carriers reside more at the lower end of

the curve due to the Val allele’s increased DA metabolism

rate. The specific position of COMT genotypes on the

hypothetical inverted U-shaped curve has been demon-

strated to change, when synaptic dopamine is pharmaco-

logically increased leading to a shift to the right along the

curve (Apud et al. 2007; Goldman-Rakic et al. 2000;

Mattay et al. 2003).

Similar changes are likely to arise also during

adolescence due to physiologically increased dopamine

levels compared to adulthood. Hence, the ‘‘optimal

genotype’’ for prefrontal functioning might differ between

adolescents and adults which could be explained by a

transposition along the hypothetical inverted U-shaped

curve (Apud et al. 2007; Wahlstrom et al. 2010), a notion

supported by several pharmacological, imaging, or

behavioral reports (Apud et al. 2007; Gothelf et al. 2005,

2013; Mattay et al. 2003).
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Neurospin, Commissariat à l’Energie Atomique, CEA-Saclay

Center, Paris, France

J. Gallinat � A. Heinz
Department of Psychiatry and Psychotherapy,

Campus Charité Mitte, Berlin, Germany

H. Garavan

Department of Psychiatry and Psychology,

University of Vermont, Burlington, USA

B. Ittermann

Physikalisch-Technische Bundesanstalt,

Berlin, Germany

M. Lathrop

McGill University and Génome Québec Innovation Centre,
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A vast body of the literature has highlighted the

importance of COMT Val158Met with respect to PFC

activation and engagement of prefrontal networks during

cognitively demanding tasks in adults (Mier et al. 2010;

Tunbridge et al. 2013). Only recently, scientists shifted

their focus towards the specific role of DA and COMT

genotypes on default mode network (DMN) and executive

control network (ECN) function during rest (Beckmann

et al. 2005; Cole et al. 2013; Dang et al. 2012; Delvaux

et al. 2013; Lee et al. 2011; Liu et al. 2010; Minzenberg

et al. 2011; Tian et al. 2013; Tunbridge et al. 2013).

While imaging studies have shown COMT Val158Met

effects on prefrontal brain networks during rest in adults,

knowledge on its impact during brain development is still

sparse. This is remarkable, given that the ‘‘functional

connectome’’ provides an attractive quantitative phenotype

for developmental changes of the brain’s intrinsic archi-

tecture (Biswal et al. 2010) and an interesting biomarker

for translational psychiatric research (Smucny et al. 2014).

Hence, we conducted a functional magnetic resonance

imaging (fMRI) study investigating COMT Val158Met

effects on prefrontal coupling at rest in a large sample of

healthy adolescents and adults. The anterior medial PFC

(amPFC) has been chosen as seed for our functional con-

nectivity analyses, because it represents the most promi-

nent intersection of the DMN and ECN within the PFC

(Beckmann et al. 2005; Smith et al. 2009). Based on

above-mentioned previous reports highlighting striking

differences in DA signaling between adolescents and

adults, we hypothesized that COMT Val158Met leads to

oppositional prefrontal functional coupling in both devel-

opmental groups.

Materials and methods

Subjects

Cross-sectional data were collected from a single-center

study site involving 106 healthy young adults (M/F = 49/

57, Val/Val n = 24, Val/Met n = 59, Met/Met n = 23),

gender- and genotype-matched to 106 randomly chosen

14-year-olds (M/F = 49/57, Val/Val n = 24, Val/Met

n = 59, Met/Met n = 23) from multiple-center study

sites. Distribution of genotypes did not significantly

deviate from the Hardy–Weinberg equilibrium (p = 0.33).

The study was performed in accordance with the Decla-

ration of Helsinki. Local ethics committees approved all

study procedures. Subjects at all sites underwent a clinical

interview for DSM-IV Axis I disorders [Structured Clin-

ical Interview for DSM Disorders (SCID), Development

and Well-Being Assessment (DAWBA)] and a thorough

physical examination. Only adult or adolescent subjects

without any psychiatric lifetime diagnosis, clinically sig-

nificant abnormalities and current or previous substance

abuse except nicotine dependence were enrolled in the

study.

Adolescent sample

Resting state neuroimaging data and COMT genotype data

were retrieved from the European-Commission funded

‘‘IMAGEN study’’ sample, which encompassed exclu-

sively 14-year-old adolescents (Schumann et al. 2010).

There was no direct financial benefit from participation in

this study. Yet, participants received financial compensa-

tion for their expenditure of time, and travel expenses.

Written informed assent and consent were obtained,

respectively, from all adolescents and their parents after

complete description of the study. A precise description of

recruitment and assessment procedures, and exclusion and

inclusion criteria was published previously (Schumann

et al. 2010).

Adult sample

The adult sample (age range 18–33 years; mean age

24 ± 2.6 years) was retrieved from the ‘‘Viennese Imaging

Genetics Project’’ funded by the Austrian Science Fund

(FWF), the Austrian National Bank (OENB), and the

Institute for the Study of Affective Neuroscience (ISAN).

All adult participants were recruited by online advertise-

ments, announcements on bulletin boards and word of

mouth at the Medical University of Vienna, Austria. Par-

ticipants were financially compensated for their expendi-

ture of time.

Genotyping

Adolescent sample

A precise description of genotyping procedures has been

published previously (Schumann et al. 2010).

Adult sample

Genotyping was performed at the Department of Labora-

tory Medicine, Medical University of Vienna, Austria.

DNA was isolated from EDTA blood samples using the

Magna Pure LC DNA Isolation Kit (Roche). COMT

Val158Met genotyping was performed by means of a tetra-

primer amplification refractory mutation system-polymer-

ase chain reaction (ARMS-PCR), according to a previously

published protocol (Ruiz-Sanz et al. 2007).
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Magnetic resonance imaging

All participants were instructed to close their eyes, stay

awake and keep as immobile as possible during resting

state image acquisition.

Adolescent sample

Structural and functional magnetic resonance imaging data

used in this multicenter study were obtained using 3T

Siemens MRI scanners at three study sites. For each

sequence, a set of parameters compatible with all scanners,

particularly those directly affecting image contrast or sig-

nal-to-noise, was devised and held constant across sites to

minimize differences between scanners (Schumann et al.

2010). Further details on functional and structural data

acquisition are described elsewhere (Schumann et al.

2010).

Adult sample

Imaging data were collected at a single study site using a 3T

Siemens TIM Trio scanner equipped with a Siemens

12-channel head coil. Head movements were restricted

using foam pillows and recorded during functional image

acquisition. Structural images were obtained using the 3D

MPRAGE sequence (repetition time (TR)/echo delay time

(TE) = 2,300/4.21 ms, flip angle = 9�, inversion

time = 900 ms, voxel size = 1 9 1 9 1.1 mm). Func-

tional data were acquired via a phase-corrected blipped

gradient echo (GE), single shot EPI sequence (TR/TE =

42/2,000 ms, 96 9 96 matrix, 210 mm square FOV, 20

axial slices, slice thickness = 4 mm, slice gap = 1 mm)

using an interleaved slice acquisition scheme.

Preprocessing

Preprocessing steps were identically performed for all

subjects with AFNI (http://afni.nimh.nih.gov/afni/) by

applying standard procedures that have been executed

within a R software framework (http://cran-r-project.or/)

for automation purposes (Boubela et al. 2012). Prepro-

cessing included reconstruction, slice-timing correction,

rigid-body motion correction, and alignment to the indi-

vidual anatomical brain using a 12-point affine transfor-

mation. The first five volumes were removed to ensure

that magnetization equilibrium was reached. For statisti-

cal reasons, the last seven volumes of adolescents’ data

were also removed to achieve identical trial length (175

TRs) in both samples. ANATICOR artifact regression

analysis was applied to resting state time series to control

for nuisance signals and localized transient hardware

artifacts (see http://afni.nimh.nih.gov/sscc/hjj/anaticor/)

(Jo et al. 2010). Motion parameters have been generated

by the alignment procedure, whereas additional nuisance

variables have been estimated from eroded white matter

(WM) and cerebrospinal fluid (CSF) masks provided by

FreeSurfer anatomical segmentation (processed using

FreeSurfer software version 5.1.0 (http://surfer.nmr.mgh.

harvard.edu/) on a Linux system (Red Hat Enterprise

Linux 5, x86_64 architecture) as described elsewhere

(Rabl et al. 2014). For temporal filtering a broad fre-

quency band (0.008–0.15 Hz) was used, which has

recently been found to yield the highest reliability in

resting state fMRI analysis (Braun et al. 2012). Moreover,

studies demonstrated that higher frequencies contain

meaningful information when proper noise regression is

used (Boubela et al. 2013). Eventually, data underwent a

spatial Gaussian blur (full width at half maximum

(FWHM) = 6 mm) followed by warping to Talairach–

Tournoux stereotactic space and final calculation of

functional connectivity maps.

Data quality control

All structural and functional datasets were reconstructed

and visually inspected for major artifacts before and after

significant preprocessing steps. Results of FreeSurfer seg-

mentation were screened for errors including visual

inspection of the resulting WM and CSF masks to ensure

proper nuisance regression with ANATICOR. With respect

to motion, we observed a maximum of motion below

1.9 mm translation. Given the absence of widely accepted

thresholds, we chose this trade-off between technical con-

siderations and the risk to introduce a sample selection bias,

especially with respect to the more active adolescent sub-

sample. We additionally calculated the root mean square of

3D mean translations (displacement ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

) as

recommended (Jo et al. 2010; Van Dijk et al. 2012). We

found no significant main and interaction effect of dis-

placement for the linear model of COMT Val158Met

homozygotes 9 developmental stage (age) with respect to

the covariate gender, applied in analogy to our imaging

analyses (gender male vs. female: b = 0.029, t(89) = 0.66,

p = 0.51; COMT Val158Met Val/Val vs. Met/Met:

b = 0.024, t(89) = 0.39, p = 0.70; developmental stage

adult vs. adolescent: b = -0.0056, t(89) = -0.09,

p = 0.93; COMT Val158Met Val/Val vs. Met/Met 9

developmental stage adult vs. adolescent: b =

-0.051, t(89) = -0.60, p = 0.55). It is noteworthy that the

ANATICOR algorithm implemented in our preprocessing
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pipeline targets frequently observed scanner and especially

motion artifacts (Jo et al. 2010; Van Dijk et al. 2012).

Statistical analysis

Functional connectivity

After above-mentioned preprocessing steps functional

datasets were utilized to calculate functional connectivity

maps. Time series were extracted from a 4 mm spherical

seed placed at the amPFC and averaged. Since previous

studies have reported that COMT Val158Met affects the

functional coupling of the ECN and DMN, we decided to

choose the amPFC as a priori seed due to its prominent role

as prefrontal intersection (‘‘dorsal nexus’’) of the task-

positive ECN and DMN, which is typically deactivated

during cognitive tasks (Beckmann et al. 2005; Buckner

et al. 2008; Sheline et al. 2010; Smith et al. 2009). Seed
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Shift of dopamine levels
from adolescent to adult.

VV

VV MM

MM

Fig. 1 a Graph displays working memory performance in depen-

dence of the positioning of COMT Val158Met genotypes along the

hypothetical inverted U-shaped curve for adults and adolescents based

on previous reports. b Graph displays resting state functional

connectivity for COMT Val158Met genotypes (black bars mean

and 95 % CI) in adolescents and adults between amPFC and peak

regions (left vlPFC, left PHG, left dlPFC, right PHG), controlled for

main effects. Please note the similarity between assumptions on

behavioral level (a) and resting state functional connectivity data (b).
c Interaction effect of COMT Val158Met 9 developmental stage

(age) controlled for gender. Positive effects indicate a stronger

coupling with the seed region for adult Val homozygotes and a

weaker coupling for adolescent Val homozygotes compared to Met

homozygotes. Results of the seed in the anterior medial prefrontal

cortex (amPFC) are shown on the lateral view. Results shown on the

medial view are the vertex-wise smallest interaction effect of four

lateral seeds to illustrate the extend of the ‘‘dorsal nexus’’ within the

DMN. d Centered peak coordinates of significant clusters in the left

vlPFC, the left PHG, the left dlPFC and the right PHG (p\ 0.05

corrected). Results were mapped on an averaged anatomical template

with a threshold of p\ 0.001 in line with the family-wise multiple

comparison correction (volumetric view, z-values). amPFC anterior

medial prefrontal cortex, vlPFC ventrolateral prefrontal cortex,

dlPFC dorsolateral prefrontal cortex, PHG parahippocampal gyrus,

DMN default mode network
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coordinates were derived from the literature (Fair et al.

2008) and converted from Montreal Neurological Institute

(MNI) (x = 1, y = 54, z = 21) to Talairach–Tournoux

space (TLRC) (x = 0, y = 51, z = 18) using non-linear

registration (Lacadie et al. 2008).

Second-level statistics were calculated from single sub-

ject Fisher z-transformed connectivity maps and tested for a

putative interaction between two factors with two levels

(homozygous genotype: Val/Val, Met/Met; developmental

stage: adolescent, adult) and gender as covariate of no

interest within a general linear model (GLM) using AFNI

(3dttest??). Initially, we calculated the full model to detect

any influence of potential confounders such as study site or

motion, which were later removed in favor of a more parsi-

monious model (Figure S3). Statistical results were not

affected when either a linear or a quadratic displacement

covariate (Satterthwaite et al. 2012;VanDijk et al. 2012)was

introduced. In addition to our main model (Figs. 1, 2), cho-

sen due to its minimal a priori assumptions, we further pro-

vide results of alternative dosing and quadratic models with

heterozygotes included in the supplement of this manuscript

(Figure S3). First, the dosing model (Figure S3 B) tests an

equidistant linear relationship of functional connectivity and

the number of Val alleles in interaction with the factor

developmental stage (genotype:Val/Val, Val/Met,Met/Met;

developmental stage: adolescent, adult). Second, the

quadratic model (Figure S3 C) shapes a perfect U-shaped

relationship with all six subgroups of COMT and develop-

mental stage ordered from theoretically lowest (Val/Val

adult) to highest dopamine levels (Met/Met adolescent) as

displayed in Fig. 1a. Even though our results remain robust

across these models we focus our report on the parsimonious

model with two factors (homozygous genotype, develop-

mental stage) and two levels to avoid inappropriately strict

assumptions of equally distant effects in between genotype

subgroups. Cluster-wise correction formultiple comparisons

was applied using Monte Carlo simulations (3dClustSim,

10,000 iterations, smoothness estimation with 3dFWHMx,

dimensions: 74 9 87 9 69 grid, 2.19 9 2.19 9 2.19 mm3,

a minimum cluster size of 42 voxels yielded a corrected

p value of 0.05) at a rather conservative initial voxel-wise

threshold of p\ 0.001. All corrected cluster p values\ 0.05

were considered significant.

Post hoc analyses

To determine whether significant genotype-developmental

stage interaction effects are driven by a limited set of regions,

we applied two functional connectivity measures, marginal

and partial correlations (Marrelec et al. 2006). At first, we

extracted averaged and normalized time series from 4 mm

spheres centered at the interaction effect peak for all
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Fig. 2 a Network representation visualizes marginal (simple Pear-

son) correlations between peak regions of significant clusters from

resting state functional connectivity analyses assessing differences

between COMT Val158Met effects in adolescents and adults. As

straightforward network translation of the seed-based functional

connectivity results, these effects are not necessarily driven by direct

connections between each pair of regions. b Network representation

visualizes partial correlations subserving as estimator for the ‘‘true

network’’. The remaining effect for most connections indicates that

oppositional COMT Val158Met network findings in adolescents and

adults are robust and not driven by a subset of regions. It is

noteworthy, however, that the connection to the left PHG is

pronounced when focusing on direct connections in this post hoc

analysis (threshold p\ 0.05, *p\ 0.05 FDR corrected, line thickness

and numbers indicate z-values of the interaction effect). This suggests

a relative prominent role of the PHG in the context of this study
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significant clusters (left ventrolateral prefrontal cortex

(vlPFC) -36, 46, 8, left dorsolateral prefrontal cortex

(dlPFC) -30, 11, 28, left parahippocampal gyrus (PHG)

-47,-35,-18, right PHG 49,-39,-14). Additionally, we

added the contralateral counterparts (right vlPFC 36, 46, 8,

right dlPFC 30, 11, 28) and the a priori chosen seed region

(amPFC 0, 51, 18) resulting in a graph with seven nodes.

Marginal correlation analysis refers to a simple Pearson

correlation between averaged and normalized seed-based

time series. This full correlation approach is the most intui-

tive and awidely used associationmeasure for direct and also

indirect network connection analyses (Smith et al. 2011).

Moreover, it is a straightforward translation of the present

functional connectivity analyses into a network representa-

tion and subserves as reference for the subsequent ‘‘true

network analysis’’. We further used partial correlations to

estimate the ‘‘true network’’ of direct connections between

chosen regions of interest (ROIs). Thereby, we correlated

each pair of normalized time series while additionally

regressing out each other ROI’s time series (Marrelec et al.

2006). This method provides no directionality information,

but is considered a valid data-driven surrogate for effective

connectivity approaches due to its ability to remove indirect

connections and strengthen direct connections (Smith et al.

2010). Both methods are model-free network integration

estimators as they do not require a priori assumptions in

contrast to effective connectivity approaches like dynamic

causal modeling (DCM) (Kasess et al. 2010). First-level

marginal and partial Fisher z-transformed correlation

matrices were calculated using AFNI (@ROI_Corr_Mat).

Second-level statistics (significance level: p\ 0.05) were

calculated in analogy to the mentioned procedures for the

present a priori approach. In addition, a conjunctional ana-

lysis has been performed comprising seeds in the vlPFC,

dlPFC and the bilateral PHG which aims to provide a sta-

tistically conservative post hoc overview of genotype 9

developmental stage effects, with each surface-vertex rep-

resenting the smallest interaction effect for these four seeds.

It is noteworthy that results of multiple comparison correc-

tion (*p\ 0.05 FDR, false discovery rate) for the network

analysis (Fig. 2) and the significance values of the con-

junction analysis (Fig. 1c) are less informative due to the

post hoc nature and circularity issues inherent in these cal-

culations (Kriegeskorte et al. 2009).

Creation of figures and tables

Statistical volumetric results were displayed with AFNI on

an average anatomical brain of all subjects included in this

study. Surface cardinal views were generated by mapping

average volumetric statistics on default pial surfaces pro-

vided by SUMA software (http://afni.nimh.nih.gov/afni/

suma/). Complementary statistics and plots were prepared

with R 3.1.1. Plots of extracted functional connectivity

peak values (2 mm spherical average) represent residual

values after controlling for gender, developmental stage,

and genotype. To illustrate study site homogeneity, all site-

specific peak values are displayed in Figure S4. Notably,

the inclusion of study site as covariate did not alter the

magnitude of the effect described below (Figure S3, S4).

We used the R package igraph for graph network and

ggplot2 for scatterplot visualizations, and Adobe Illustrator

CS5 (vers. 15.0.0) for artwork.

Results

Adolescents vs. adults

The analysis of the main developmental stage (age) effect

replicates previous reports and is, therefore, reported only

briefly (Fair et al. 2008; Kelly et al. 2009). We found

significant increases of functional connectivity in adoles-

cents compared to adults (p\ 0.05 corrected, voxel-wise

threshold p\ 0.001), primarily in DMN regions (Raichle

et al. 2001; Scharinger et al. 2014) including the medial

PFC, posterior cingulate cortex, anterior temporal lobe,

anterior insula, inferior frontal gyrus, hippocampus, thala-

mus and other subcortical nuclei (Figure S1).

Functional connectivity: COMT 9 developmental stage

In accordance with our primary hypothesis of a develop-

mental stage dependent reversal of COMT Val158Met

genotype effects (Fig. 1a), we observed significant inter-

action effects between developmental stage (adolescent vs.

adult) and COMT genotype on resting state functional

connectivity between amPFC and left vlPFC, left dlPFC,

and bilateral PHG after correcting for multiple compari-

sons (Fig. 1c, d; Table 1). With respect to the directionality

of observed effects, we found the Val allele to be associ-

ated with increases of functional coupling in a dose-

dependent manner in adults and vice versa in adolescents

for all brain regions showing significant interaction effects

(Fig. 1b; Table 1). It is noteworthy that a graphical repre-

sentation of extracted functional connectivity values fol-

lows exactly the hypothetical inverted U-shaped curve

model (Fig. 1b).

Furthermore, we analyzed post hoc the investigated

adolescent and adult sample separately to calculate geno-

type effects within each developmental stage and study site

independently. In line with our results of the combined

adolescent and adult sample (Fig. 1), we found opposite

directions of COMT Val158Met effects in adolescents and

adults indicating that our combined analysis was not biased

by a specific study site. It is noteworthy that genotype-
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related differences in functional connectivity have been

more pronounced in adolescents compared to adults within

all regions showing significant interaction effects (Figure

S2 D, F) as well as most other brain regions in a global

manner in this separate analysis (Figure S2 C, E). Other

supplemental calculations addressing alternative statistical

models such as the employment of more rigid a priori

assumptions (Figure S3) or effects of a potential bias of

study site (Figure S3, Figure S4) can be found in detail in

the supplement of the manuscript. All results indicate the

validity of conclusions being drawn in the combined ana-

lysis described above.

Network analysis: COMT 9 developmental stage

To further investigate the network of brain regions showing

significant interaction effects (vlPFC, dlPFC, PHG) as well

as the chosen seed region (amPFC), we applied marginal

and partial correlation analyses to the combined sample of

adolescents and adults (Marrelec et al. 2006). Marginal

correlation analyses revealed significant interaction effects

between genotype and developmental stage with respect to

functional connectivity between left vlPFC and dlPFC as

well as between left dlPFC and bilateral PHG, in addition

to the network representation of results reported above

(amPFC-vlPFC, amPFC-dlPFC, amPFC-PHG) (Fig. 2a).

Partial correlation analyses representing estimates of the

‘‘true network’’ and direct connections showed that all

seed-based functional connectivity results reported above

were still present and statistically robust (amPFC-vlPFC,

amPFC-dlPFC, amPFC-PHG) (Fig. 2b). Additionally,

partial correlation analyses emphasized the centrality of the

left PHG compared to marginal correlations due to the

increased number of significant connections with this

region (Fig. 2).

Discussion

The present study investigating resting state connectivity

in healthy adolescents and adults has identified opposi-

tional genotype effects of COMT Val158Met within a

neural network encompassing amPFC, vlPFC, dlPFC, and

PHG. Moreover, a simple network analysis highlighted

the specific importance of the PHG as mediator of these

diametrical genotype effects in adolescents and adults.

With respect to directionality, adult Val homozygotes of

COMT Val158Met showed an increased coupling

between the amPFC and vlPFC, dlPFC, and PHG com-

pared to adult Met homozygotes, whereas allele dose-

dependent opposing effects were detected for adolescents

(Fig. 1b).

The choice of the amPFC as seed region for performed

functional connectivity analyses was due to its role as

prominent nexus between the DMN and ECN (Beckmann

et al. 2005; Smith et al. 2009), two systems, which are

without doubt under dopaminergic control (Goldman-

Rakic et al. 2000; Meyer-Lindenberg et al. 2005). The

mentioned regions of interactions (Fig. 1; Table 1) are

known to be involved in cognitive control, declarative

memory retrieval and encoding (Andrews-Hanna et al.

2014; Smolker et al. 2014).

Overall, our finding of oppositional COMT Val158Met

effects in adolescents and adults is in line with previous

reports demonstrating a relative DA increase in adoles-

cence compared to adulthood (Andersen et al. 1997;

Rosenberg and Lewis 1994, 1995; Teicher et al. 1993). The

graphical representation (Fig. 1b) and supplemental sta-

tistics (Figure S3) of COMT Val158Met effects in ado-

lescents and adults observed within this study are in

accordance with the previously proposed hypothetical

dose–response model of DA that follows an inverted

U-shaped curve (Floresco and Phillips 2001; Goldman-

Rakic et al. 2000; Robbins 2000; Verma and Moghaddam

1996; Williams and Goldman-Rakic 1995; Zahrt et al.

1997) (Fig. 1a). Within this framework, our results would

indicate a genotype shift to the left along the inverted

U-shaped curve for adolescents relative to the position of

adults (Fig. 1a) in analogy to a pharmacologically induced

dopamine increase in adults (Apud et al. 2007; Mattay et al.

2003).

A limited number of human and animal studies have

investigated the influence of COMT genotype during

development (Barnett et al. 2007; Dumontheil et al. 2011;

Gothelf et al. 2005, 2013; Lambe et al. 2000; Tunbridge

et al. 2007). While the available literature is still incon-

clusive (Barnett et al. 2007), our findings are in line with a

genetically-informed schizophrenia model derived from an

orphan disease (Gothelf et al. 2005, 2013). In velo-cardio-

facial syndrome (VCFS), a rare disorder with an increased

risk of schizophrenia resulting from a microdeletion in

22q11.2, patients are known to lack one copy of COMT. In

this patient group available evidence suggests that genotype

effects of COMT Val158Met on cognitive performance are

critically dependent on the maturational stage of the brain

(Gothelf et al. 2005). Specifically, it has been suggested that

the presence of the Met allele in adolescent VCFS patients

combined with age-related DA increases could result in

super-optimal DA levels compared to more optimal DA

levels found in Val allele carriers in line with our results.

This study is further in agreement with results of a study

assessing COMT enzyme activity and protein expression

along normal PFC maturation that found similar age-

dependent changes in the DA system as reported in this

manuscript (Tunbridge et al. 2007).

110 Brain Struct Funct (2016) 221:103–114

123



With respect to the impact of COMT on the adult

‘‘functional connectome’’ our results can be related to

preliminary evidence in adults (Lee et al. 2011; Liu et al.

2010; Sambataro et al. 2009; Tian et al. 2013; Tunbridge

et al. 2013). The majority of these studies report a stronger

coupling for adult Val carriers in regions engaged during

cognitive tasks, which is in line with our result (Lee et al.

2011; Sambataro et al. 2009; Tunbridge et al. 2013). Such

an increased functional connectivity may be related to

reports of Val-allele-dependent increased cognitive task

activation in lateral prefrontal regions that have been

interpreted as ‘‘inefficient’’ PFC function likely reflecting

suboptimal DA signaling (Egan et al. 2001; Sambataro

et al. 2009) and mimicking findings in schizophrenia

patients (Callicott et al. 2000; Manoach et al. 1999).

Finally, indirect support stems from an electroencepha-

lography study highlighting a Val allele dose-dependent

increase in prefrontal functional connectivity (Lee et al.

2011), which is also known to lead to a suppression failure

of the DMN (Pomarol-Clotet et al. 2010).

Our network analyses underscore the putative importance

of the PHG as central node for observed development-

dependent COMT Val158Met effects (Fig. 2). Notably,

several studies report on the developmental impact on

parahippocampal regions (Grateron et al. 2003; Meyer and

Louilot 2014). Interestingly, it has been suggested that a

subtle and transient functional blockade during early

developmental periods is sufficient to induce schizophrenia-

like behavioral and dopaminergic abnormalities in adult-

hood (Meyer and Louilot 2014; Peterschmitt et al. 2007).

While COMT Val158Met is affecting hippocampal-PFC

coupling and declarative memory processing (Bertolino

et al. 2006; Krach et al. 2010), it is noteworthy that the PHG

constitutes the primary hub of the DMN in the medial tem-

poral lobe (Ward et al. 2013) and represents an important

input region for the hippocampus (Andrews-Hanna et al.

2014; Squire et al. 2004), which underlines the plausibility of

our network analyses and may be related to previous reports

of COMT Val158Met effects on hippocampal volume

(Honea et al. 2009; Rabl et al. 2014).

While this study provides novel in vivo insights into the

effects of brain maturation on DA-related gene effects, it is

not without limitations. First of all, the reported changes

should not be overstated, particularly as existing data on

age-related effects of COMT are as yet preliminary (Bar-

nett et al. 2007). Furthermore, COMT is well known to be

sexually dimorphic due to its steroid-binding site (Tun-

bridge et al. 2007), which could introduce a gender-related

bias (Laatikainen et al. 2013). However, the strict gender-

matching algorithm and regression approach applied within

this study has likely removed any gender-specific effect of

COMT. Even though we carefully matched both develop-

mental groups and controlled for main effects, we cannot

exclude any potential study site bias. Nonetheless, the

observed oppositional genotype effect was qualitatively

present in separate analyses of both developmental groups

(Figure S2) which supports the validity of our result. Also,

with respect to motion parameters, all subjects included

have been within an acceptable range as detailed in the

methods section. Importantly, no significant effects of

motion have been detected for all calculated main and

interaction effects. Finally, it needs to be noted that our

adult sample was rather young in age, which might limit

our conclusions to young adults (Tunbridge et al. 2007).

The present study provides in vivo evidence for

opposing COMT Val158Met effects on resting state con-

nectivity in adolescents and adults. This finding empha-

sizes the notion that psychiatric risk genes encoding for

enzymes such as COMT, can result in opposite neural

outcomes dependent on the age-specific internal avail-

ability of their substrate. This underscores the need for

future studies that investigate gene effects on a brain sys-

tems level along different stages of brain maturation, which

might result in a more thorough understanding of mecha-

nisms determining disease onset, clinical symptomatology,

and drug response in major psychiatric disorders such as

schizophrenia or attention deficit hyperactivity disorder

(ADHD).
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