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To evaluate the contributions of cellular memory mechanisms to hematopoietic
stem/progenitor cell (HSPC) senescence. HSPCs (Lin−CD117+, hereafter referred to as
HSPC) were separated from young (6-week-old) and aged (18-month-old) mice using Mag-
netic Activated Cell Sorting (MACS). Cell cycle distribution of HSPCs was determined us-
ing flow cytometry. The mixed colony forming unit (CFU-Mix) assay was used to study the
HSPCs’ ability to proliferate. The mRNA expression levels of cellular memory-implicated
PCG family (enhancer of zeste homolog 2 (Ezh2), B lymphoma mo-MLV insertion region
1 (Bmi-1), embryonic ectoderm development (Eed), melanoma nuclear protein 18 (Mel18),
Mph1/polyhomeotic-like protein 1 (Rae-28)) and Trithorax group (TrxG) family (mixed lin-
eage leukemia (Mll), thioredoxin (Trx)) were determined by quantitative real-time PCR. We
obtained highly purified populations of mouse HSPCs (Lin−CD117+) (92.2 +− 4.5% CD117+).
The percentage of HSPCs was significantly higher in older mice compared with younger con-
trol mice and the percentage of SA-β-galactosidase positive cells was significantly higher
in HSPCs isolated from older mice (P<0.05). The percentage of HSPCs in G0/G1 was sig-
nificantly higher in older mice compared with younger control mice (52.0 compared with
47.1%), indicating increased cell cycle arrest in senescent HSPCs. The amount of CFU-Mix
was significantly decreased in aged group (13.8 compared with 40.0), indicating a dimin-
ished ability to proliferate in senescent HSPCs. Ezh1, Bmi-1, Eed, Rae-28 gene mRNA
expression was significantly lower in HSPCs from older mice compared to younger con-
trols, while Mel18 mRNA expression was significantly higher in HSPCs from older mice
(P<0.05). The expression of genes associated with cellular memory is altered in senescent
(Lin− CD117+) HSPCs, which may affect the potential plasticity of aged hematopoietic stem
cells (HSCs) and thereby contribute to senescence-associated disease processes.

Introduction
Senescence of hematopoietic stem/progenitor cells (HSPCs) is linked to aging, geriatric diseases, bone
marrow hematopoietic depression, and leukemia [1]. Increased understanding of HSPC senescence mech-
anisms is important in defining aging and treating aging-associated diseases. To date, little attention has
been focussed on cellular memory as a mechanism underlying hematopoietic stem cells (HSCs) senes-
cence. Cellular memory is a process by which extracellular stimuli triggers permanent differentiation of
stem cells into specific tissue types, associated with a regulated gene mRNA expression profile [2,3]. Cel-
lular memory involves interactions between the members of the transcriptional repressor PcG (Polycomb
group) and the transcriptional activator Trithorax group (TrxG) families. Interactions are maintained in a
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dynamic equilibrium [4] whereby PcG gene antagonizes TrxG gene-mediated transcriptional activation at the ge-
nomic level [5].

We used HSPCs isolated from 18-month-old mice as a model for cell senescence. We correlated cell senescence
indicators with expression of PCG family important genes (B lymphoma mo-MLV insertion region 1, Bmi-1; en-
hancer of zeste homolog 2, Ezh2; embryonic ectoderm development, Eed; melanoma nuclear protein 18, Mel18;
polyhomeotic-like protein 1, Rae-28) and TrxG family important genes (mixed lineage leukemia, Mll; thioredoxin,
Trx) to evaluate cellular memory as a possible mechanism of HSC senescence. We found that cellular memory plays
a role in HSPC senescence, which opens the window to identify potential therapies for aging-associated diseases.

Materials and methods
Animals
Equal numbers of male and female C57BL/6J specific pathogen free (SPF) mice were obtained from Shanghai
Sippr-BK Experimental Animal Center (certificate number SCXK (Shanghai) 2013-0016). Young mice were 6 weeks
of age and 18–22 g in weight, and old mice were 18 months of age and 25–30 g in weight.

Reagents
Red blood cell lysis buffer, SA-β-Gal staining, and cell cycle kits were purchased from Beyotime Biotechnology Co.,
Ltd. Anti-c-kit (CD117) MicroBead, anti-stem cell antigen 1 (Sca-1) MicroBead, and Lineage Cell Depletion kits were
purchased from Miltenyi Co., Ltd. MethoCultTM GF M3434 medium was purchased from Stem Cell Technologies Co.
RNA Extraction and Purification, Reverse Transcription, and Fluorescence Quantitative PCR kits were purchased
from Takara, Japan.

Isolation and purification of HSPCs
Mice were killed by cervical dislocation. Bone marrow was removed from the femur and rinsed on to nylon mesh
(30 μm pore size) under sterile conditions. The filtrate was centrifuged, the pellet was suspended in red blood cell
lysis buffer, and then incubated at room temperature for 5 min. The lysate was centrifuged at 1400g for 5 min, the
supernatant was discarded and the cell pellet was washed once. Bone marrow mononuclear cells (MNCs) were sus-
pended in PBS containing 0.5 M EDTA and 0.5% BSA. HSPCs were obtained using anti-c-kit (CD117) microbeads
and lineage cell depletion kits. The lineage cell depletion kit is a magnetic labeling system for the depletion of mature
hematopoietic cells, such as T cells, B cells, monocytes/macrophages, granulocytes, and erythrocytes, and their com-
mitted precursors from bone marrow. All animal experiments were performed in compliance with the guidelines of
the Animal Care and Use Committee of Shanghai University of Traditional Chinese Medicine.

Flow cytometry
To test HSPC purification, 106 MNCs (unpurified) and 106 Lin−c-kit+ selected MNCs were collected and centrifuged
at 400g for 5 min. The cells were washed once by PBS. Ten microliters of CD117-PE and Sca-1-FITC were added
to the cells. The cells were incubated at 4◦C for 15 min in the dark, washed once, resuspended in FACS buffer, and
analyzed by flow cytometry using a Becton Dickinson AccuriTM C6.

SA-β-gal (senescence-associated β-galactosidase) staining
HSPCs (106) were fixed in 4% paraformaldehyde at room temperature for 15 min. The cells were washed with PBS
and incubated at 37◦C without CO2 for 16 h in β-galactosidase staining solution. The number of β-galactosidase
positive cells per 400 total cells was counted under a microscope.

Cell cycle testing
HSPCs (106) were washed with cold PBS and fixed in cold 4% paraformaldehyde for 1 h at room temperature. Cells
were centrifuged at 1000 g for 5 min, washed with PBS, and fixed overnight in 70% ethanol at 4◦C. Cells were then
centrifuged at 1000 g for 5 min, washed with PBS, and incubated in propidium iodide staining solution (Beyotime)
at 37◦C for 30 min in the dark. Flow cytometry was performed using an excitation wavelength of 488 nm. The cell
cycle distribution was analyzed using FACS Express software.

Mixed colony-forming unit of HSPC culture
Cells were diluted with IMDM + 2% FBS and MethoCultTM GF M3434 medium to a final concentration of 1 × 105

per 35-mm dish. Diluted cells (0.3 ml) were thoroughly mixed with 3 ml of pre-aliquoted MethoCultTM in duplicate,
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and dispensed into 35-mm dishes with a total of 1.1 ml in each. The cells were incubated at 37◦C, in 5% CO2 for 10
days. The percentage of mixed colony forming unit (CFU-Mix) per 5 × 103 cells represented the pluripotency of the
HSPCs.

Quantitative RT-PCR
Total RNA extraction and reverse transcription were performed according to the manufacturer’s instructions for each
kit used (9108/9109; RR047A; RR420A, Takara). The A260/280 ratio of RNA extracted from HSPCs was 1.8–1.9,
indicating RNA of high purity. The primers used were:

β-actin (internal control): 5′-AACGCAGCTCAGTAACAGTCC-3′ (forward)
β-actin (internal control): 5′-GTACCACCATGTACCCAGGC-3′ (reverse)
Ezh2: 5′-AGCAGTAAGAGCAGCAGCAA-3′(forward)
Ezh2: 5′-TTCCTTCCATGCAACACCCA-3′ (reverse)
Bmi-1: 5′-GGACTGGGCAAACAGGAAGA-3′ (forward)
Bmi-1: 5′-GACTCTGGGAGTGACAAGGC-3′ (reverse)
Eed: 5′-GCTCAGCCTGATCGAATGCT-3′ (forward)
Eed: 5′-TTGGCGATGGGATCGACTTC-3′ (reverse)
Mel18: 5′-TCCCCATCTCCATTCTCCGT-3′ (forward)
Mel18: 5′-ATACCCCCTGACAGAGGTCC-3′ (reverse)
Rae-28: 5′-GCACAGATCTTGAGAGCAGG-3′ (forward)
Rae-28: 5′-GCAAGGCTGCCAAGAGATTG-3′ (reverse)
Trx: 5′-TAAAGCAGTGGCTTAGGGGAC-3′ (forward)
Trx: 5′-GAGAGTCTATACCCAACTGCCA-3′ (reverse)
Mll: 5′-ACGCTTGTCTGTCTGGATGG-3′ (forward)
Mll: 5′-CCCATGAGATTCCGGCACTT-3′ (reverse).

YBR green dye was used for real-time PCR. The 2−�C
t method was used to calculate mRNA expression levels.

�Ct = Ct target gene – Ct internal control gene (where Ct is the cycle number when the fluorescence signal reaches the set
threshold). The amplification parameters were: 95◦C for 30 s (95◦C for 5 s, 60◦C for 34 s) for 40 cycles.

Statistical analysis
The data were expressed as the mean +− S.D. Single-factor ANOVA was performed using SPSS 18.0. The LSD or
Tamhane test was used to compare difference between the two groups. P<0.05 was considered statistically significant.

Results
Purification of mouse HSPCs
HSPC purity was assessed using flow cytometry. The percentage of CD117+ MNCs before selecting was 33.2 +−
1.4% (n=4). After Magnetic Activated Cell Sorting (MACS), Lin− selecting the purity of CD117 + cells was 55.0
+− 2.4% (n=4). After MACS CD117+ selecting, CD117+ cell purity was 81.3 +− 4.1% (n=4). MACS Lin−CD117+

selecting yielded CD117+ cell purity of 92.2 +− 4.5% (n=10) (Figure 1). This indicates that HSPCs selected by the
Lin−c-Kit/CD117+ are highly purified and suitable for subsequent experiments. Furthermore, the proportion of
CD117+Sca-1+ cells was significantly higher in MNCs from older mice compared with younger control mice (Figure
2A,B), which indicates an age-related increase in HSPCs.

SA-β-gal positive HSPCs were significantly increased in aged mice
SA-β-gal is a cell senescence marker yielding a blue stain in the cytoplasm of aging cells. We observed a higher
percentage of SA-β-galactosidase positive HSPCs in older mice compared with younger controls (Figure 2E,F and
Table 1).

Senescent HSPCs were arrested in G0/G1
The G0/G1 rate in senescent HSPCs (52.2%) was higher than younger mice (46.9%), while the percentage of S-phase
cells in senescent HSPCs (21.6%) was decreased relative to younger mice (25.9%) (Figure 2C,D). These results suggest
a greater degree of cell cycle arrest in senescent HSPCs from older mice relative to younger control.
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Figure 1. HSPCs that were effectively purified by using MACS and HSPCs purification were assessed using flow cytometry

(A) For lineage depletion, cells are magnetically labeled with a cocktail of biotinylated antibodies against a panel of so-called ‘lineage’

antigens (CD5, CD45R (B220), CD11b, anti-Gr-1 (Ly-6G/C), 7-4, and Ter-119 antibodies) and anti-biotin microbeads. This labeling

procedure leaves lineage negative cells untouched, thus allowing further separation of lineage– cells according to expression of

markers such as CD117. And for positive selection, anti-CD117/c-kit microbead kit was used. (B) Flow-cytometric analysis of

CD117+ populations in mice MNCs in different phases of purification. Graphs show the population of CD117+ in MNCs (C) before

cell purification, (D) after lineage depletion, (E) after CD117-positive selection, and (F) after Lin−c-kit+purification.

Table 1 Percentage of SA-β-Gal positive HSPCs. (% x +− s, n=10)

Group n SA-β-Gal positive cells (%)

Young 10 7.78 +− 1.04

Old 10 63.08 +− 2.98*

*P<0.05, compared with the control group.

The percentage of CFU-Mix per 5 × 103cells was significantly decreased
in aged HSPC
There was a significant decrease in the percentage of CFU-Mix formed by 5 × 103 HSPCs from old mice compared
with the young control (Figure 2G,H and Table 2). CFU-Mix represented the multidifferentiation potential of the
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Figure 2. HSPCs in older mice show cell senescence, had G0/G1 arrest and decreased stem cell repopulating activity

(A) CD117+Sca-1+cells in MNCs were identified by flow cytometer. (B) Graph shows the percentage of CD117+ Sca-1+ MNCs

isolated from young and old mice; n=4. (C) Flow-cytometric analysis of cell cycle in the mice HSPCs show that senescent HSPCs

were arrested in G0/G1. (D) Graph shows the population of G0/G1 cell cycle distribution of HSPCs in young and old mice; n=4. (E)

Photomicrographs show SA-β-Gal staining in HSPCs isolated from young and old mice (×200). (F) Graph shows the percentage of

SA-β-Gal positive HSPCs were significantly increased in aged mice, n=10. (G,H) HSPCs from young and old mice were incubated

in MethoCultTM M3434 (5 × 103 per 35-mm dish) medium at 37◦C, in 5% CO2 for 10 days. The sizes and numbers of CFU-Mix

of HSPCs were significantly decreased in aged mice, n=4.The results are expressed as mean +− S.D. and the P values (*P<0.05)

determined by Student’s t test.

Table 2 Percentage of CFU-Mix of HSPCs (% x +− s, n=4)

Group n Percentage of CFU-Mix (per 500 cells)

Young 4 9.72 +− 10.41%

Old 4 4.10 +− 5.1%*

*P<0.05, compared with the control group
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Figure 3. The mRNA expression profiles of PcG genes change with HSPCs aging

Real-time quantitative PCR was used to detect the relative transcription levels of PcG family members and Trx family members;

n=4.The transcription levels of Ezh1 (A), Bmi-1 (B), Eed (C), and Rae-28 (D) were significantly lower in older HSPCs compared

with younger HSPCs. Mel18 (E) mRNA levels, by contrast, were higher in older HSPCs. The HSPCs expression levels of Mll (F)

and Trx (G) genes were not significantly different in older compared with younger HSPCs; 2−�C
t method was used to calculate

mRNA expression levels. The results are expressed as mean +− S.D. and the P values (*P<0.05, **P<0.01, ***P<0.001) determined

by Student’s t test.

Table 3 PcG family members gene expression of HSPCs/β-actin (x +− s, n=4)

Group Ezh1 Bmi-1 Eed Mel18 Rae-28 Mll Trx

Young 332.62 +− 15.98 35.70 +− 1.92 116.78 +− 5.49 3.73 +− 0.18 20.64 +− 0.09 41.87 +− 2.04 75.46 +− 3.29

Old 162.89 +− 6.38*** 17.24 +− 0.82*** 74.94 +− 3.36*** 7.40 +− 0.31* 1.99 +− 0.13** 34.01 +− 1.14 56.79 +− 3.58

*P<0.05, compared with the control group.

HSPCs, and the CFU formation ability is one of the major indexes for evaluating HSPC aging and functions. When
HSPCs age, the capacity to form CFU-Mix colonies reduces with diminished self-renewal and multidifferentiation
potential. From our results, we also can easily find a negative correlation existing between the positive rate of SA-gal
and the CFU-Mix.

The mRNA expression profiles of PcG, but not TrxG genes change with
HSC aging
The transcription levels of Ezh1, Eed, Bmi-1, and Rae-28 were significantly lower in aged HSPCs compared with
young HSPCs. Mel18 mRNA levels, by contrast, was higher in aged HSPCs. The transcription levels of Mll and Trx
genes were not significantly different in aged compared with young HSPCs (Figure 3 and Table 3).
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Discussion
Currently, the mechanism of HSC senescence is poorly understood owing in part to the low numbers of karyotypes
in the bone marrow. Here positive and negative MACS systems can be used to isolate and purify mouse Lin−c-Kit+

cells, namely HSPC, at >85% purity [6,7]. HSPCs isolated from 18-month-old mice were used as a model for cell
senescence. In this model, the percentage of SA-β-gal positive cells and the ratio of G0/G1 cells were both significantly
increased relative to HSPCs purified from younger control mice, indicating stem cell senescence. The previous studies
showed that HSCs in older mice had decreased potential for per cell repopulating activity and self-renewal [8]. In our
research, we also found that the significant reduction in the number of CFU mixtures formed by old group HSCs,
indicated stem cell senescence. We also found that significantly more HSCs were associated with aging mice consistent
with previous observations that numbers of HSCs increase with age [7,9].

Studies on HSC senescence have largely focussed on telomeres, DNA damage, and oxidative injury with little atten-
tion to cellular memory [10]. Cellular memory involves a dynamic equilibrium between PcG and Trx family proteins.
PcG proteins repress transcription of target genes through chromatin modification, and act as novel epigenetic factors
in stem cell fate determination. PcG consists mainly of two protein complexes: polycomb repressive complex 1 (PRC1)
and polycomb repressive complex 2 (PRC2) [11-13]. PRC1 comprises Rae-28, Bmi-1, Mel18, and other proteins that
maintain the stability of a repressive chromatin state [14]. PRC2 comprises Eed, Ezh2, and other proteins [15] that
can methylate histones at HlK26 and H3K27 and thereby repress target gene transcription [16]. Ezh2 is a key member
of the PcG family. It can promote the survival of HSCs [17,18]. Ezh2 forms a complex with Eed that silences target
genes. We found that the expression of Ezh2 and Eed genes was significantly reduced in senescent HSPCs relative
to yong HSPCs thus, suggesting that Ezh2 and Eed might delay HSPC senescence. PRC1 complex member Bmi-1
regulates cell proliferation, senescence, and immortalization through multiple distinct pathways. Mutations of the
Bmi-1 gene results in decreased numbers of bone marrow-derived hematopoietic progenitor cells and reduced cell
proliferation [19]. In this study, Bmi-1 expression in senescent HSPCs was significantly lower than in young HSPCs,
again suggesting a role for Bmi-1 in delaying HSPC senescence. Mel18 negatively regulates the self-renewal capacity
of HSPCs, and Mel18 gene silencing leads to increased numbers of HSPCs in G0 phase of the cell cycle. We also found
that Mel18 transcript level was significantly higher in senescent HSPCs compared with younger HSPCs. The previous
studies show that Rae-28 had a crucial role in sustaining the activity of HSCs to maintain hematopoiesis [20]. Our
study showed that Rae-28 expression in senescent HSPCs was significantly lower than in younger HSPCs. In contrast
with PcG proteins, Trx-mediated histone modification promotes target genes transcription through chromatin mod-
ification. In TrxG protein family, the key members are SET domain-containing proteins, including Trx, Ashl, and Mll
[21]. Previous studies show that Mll modulates myeloid cell differentiation by regulating HOXA10 gene expression
in acute myeloid leukemia cells [22]. Whereas Trx promotes cell survival, cell proliferation, and responses to oxidative
stress [23]. However, we found no differences in Mll and Trx mRNA levels of senescent and young HSPCs, suggesting
that Trx group member dynamics do not contribute to cellular memory dysregulation in HSPC senescence in mouse.

Under physiological conditions, the PcG and TrxG family proteins can maintain cellular memory and prevent
alteration of HSCs identity by promoting or repressing the expression of target genes, respectively. Our findings sug-
gest that PcG family gene mRNA expression changes as HSPCs age, whereas TrxG gene mRNA expression does not.
Therefore we conclude that altered HSPC cellular memory, leading to cell senescence and age-related diseases, re-
sults from an abrogation of PcG-TrxG regulatory equilibrium in HSPCs of aging mice. These observations extend
our understanding of the molecular mechanisms underlying HSC senescence and aging-associated diseases.
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