organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Chloro-2-(4-methoxyphenyl)-1,3benzothiazole

Sammer Yousuf,* Shazia Shah, Nida Ambreen, Khalid M. Khan and Shakil Ahmad

H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 12 January 2013; accepted 19 January 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.006 Å; R factor = 0.076; wR factor = 0.208; data-to-parameter ratio = 14.0.

In the title compound, $C_{14}H_{10}CINOS$, the dihedral angle between the benzothiazole ring system and the methoxysubstituted benzene ring is 8.76 (16)°. In the crystal, molecules are stacked in columns along the *c* axis and no significant intermolecular interactions are observed.

Related literature

For the biological activity of benzothiazole compounds, see: Chohan *et al.* (2003); Khan *et al.* (2011); Hutchinson *et al.* (2002); Burger & Sawhney (1968); Palmer *et al.* (1971). For related structures, see: Yousuf *et al.* (2012*a*,*b*).

Experimental

Crystal data

C ₁₄ H ₁₀ ClNOS	b = 14.5512 (8) Å
$M_r = 275.74$	c = 5.8686 (3) Å
Orthorhombic, Pbcn	V = 2478.8 (2) Å
a = 29.0274 (16) Å	Z = 8

```
Mo K\alpha radiation
\mu = 0.46 \text{ mm}^{-1}
```

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.848, T_{\rm max} = 0.955$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$ 164 pair

 $wR(F^2) = 0.208$ H-atom

 S = 1.15 $\Delta \rho_{max}$

 2299 reflections
 $\Delta \rho_{min}$

13397 measured reflections 2299 independent reflections 1965 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.052$

 $0.37 \times 0.22 \times 0.10 \text{ mm}$

T = 273 K

164 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.63 \text{ e } \mathring{A}^{-3} \\ &\Delta \rho_{min} = -0.37 \text{ e } \mathring{A}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1996) and *PLATON* (Spek, 2009).

The authors are thankful to the OPCW, Netherland, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for their financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5237).

References

- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burger, A. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270-273.
- Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.
- Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Wetsell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.
- Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheerul-Haq, Mesaik, M. A. & Choudhary, M. I., (2011). *Bioorg. Med. Chem.* 19, 4286–4294.
- Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
- Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012a). Acta Cryst. E68, 02877.
- Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012b). Acta Cryst. E68, 03057.

supplementary materials

Acta Cryst. (2013). E69, o360 [doi:10.1107/S1600536813001955]

5-Chloro-2-(4-methoxyphenyl)-1,3-benzothiazole

Sammer Yousuf, Shazia Shah, Nida Ambreen, Khalid M. Khan and Shakil Ahmad

Comment

Benzothiazole is a well known class of organic compounds with a diverse range of biological activities (Khan *et al.*, 2011; Chohan *et al.*, 2003, Hutchinson *et al.*, 2002; Burger & Sawhney, 1968; Palmer *et al.*, 1971). The title compound is a methoxy phenyl derivative of benzothiazole synthesized as a part of our ongoing project to synthesize bioactive hetereocyclic compounds.

The crystal structure of title compound (Fig. 1), $C_{16}H_{14}CINOS$, is similar to that our previously published 5chloro-2-(3,4,5-trimethoxyphenyl)-1,3-benzothiazole (Yousuf *et al.*, 2012*b*) with the difference that the 3,4,5-trimethoxyphenyl ring is replaced by the 4-methoxyphenyl phenyl ring. The dihedral angle between planner benzothiazole (S1/N1/C1–C7) and methoxy phenyl rings (C8–C13) is 8.76 (16)°. The bond lengths and angle are similar as in previously published benzothiazole compounds (Yousuf *et al.*, 2012*a*,*b*). In the crystal structure the molecules having plane of mirror are arranged in a two-diminesional manner along *a* and *c* axes (Fig. 2).

Experimental

A mixture of 2-amino-4-cholorobenzenethiol (0.159 g, 1 mmol), 4-methoxybenzaldehyde (0.136 g, 1 mmol), sodium metabisulfite (0.2 g) and *N*,*N*-dimethylformamide (10 ml) was refluxed for 2 hrs in a round-bottomed flask. The completion of reaction was monitored by TLC and cool to room temperature followed by addition of cold water to obtain white precipitates. Crystallization from ethanol afforded pure crystal of 5-chloro-2-(4-methoxyphenyl) benzothiazole (yield 0.223 g, 81.1%) found suitable for X-ray diffraction studies.

Refinement

H atoms of phenyl and methyl groups were positioned geometrically with C—H = 0.93 and 0.96 Å, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C_{phenyl})$ and $1.5U_{eq}(C_{methyl})$. A rotating group model was applied to the methyl group.

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PARST* (Nardelli, 1996) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level.

Figure 2

A crystal packing diagram of the title compound, viewed along the c axis.

5-Chloro-2-(4-methoxyphenyl)-1,3-benzothiazole

Crystal data

C₁₄H₁₀ClNOS $M_r = 275.74$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 29.0274 (16) Å b = 14.5512 (8) Å c = 5.8686 (3) Å V = 2478.8 (2) Å³ Z = 8 F(000) = 1136 $D_x = 1.478 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3307 reflections $\theta = 2.5-26.3^{\circ}$ $\mu = 0.46 \text{ mm}^{-1}$ T = 273 KBlock, colorles $0.37 \times 0.22 \times 0.10 \text{ mm}$ Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.848, T_{max} = 0.955$ Refinement	13397 measured reflections 2299 independent reflections 1965 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -34 \rightarrow 34$ $k = -17 \rightarrow 17$ $l = -6 \rightarrow 7$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.076$	Hydrogen site location: inferred from
$wR(F^2) = 0.208$	neighbouring sites
S = 1.15	H-atom parameters constrained
2299 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0983P)^2 + 3.3682P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.63$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.37$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.04504 (4)	0.17240 (11)	-0.0360 (2)	0.0787 (5)
S1	0.21904 (4)	0.08514 (7)	0.52664 (16)	0.0494 (4)
01	0.43838 (11)	0.1057 (2)	0.1916 (6)	0.0656 (9)
N1	0.21907 (12)	0.1613 (2)	0.1301 (5)	0.0437 (8)
C1	0.16642 (15)	0.1048 (2)	0.4009 (6)	0.0450 (9)
C2	0.12234 (17)	0.0857 (3)	0.4807 (7)	0.0502 (10)
H2A	0.1179	0.0592	0.6231	0.060*
C3	0.08560 (16)	0.1072 (3)	0.3433 (7)	0.0556 (11)
H3A	0.0558	0.0946	0.3927	0.067*
C4	0.09246 (15)	0.1475 (3)	0.1304 (8)	0.0530 (10)
C5	0.13595 (15)	0.1688 (3)	0.0488 (7)	0.0471 (9)
H5A	0.1400	0.1968	-0.0922	0.057*
C6	0.17346 (14)	0.1466 (2)	0.1872 (6)	0.0420 (9)
C7	0.24620 (14)	0.1318 (2)	0.2888 (6)	0.0409 (9)
C8	0.29667 (14)	0.1305 (2)	0.2692 (6)	0.0420 (9)
C9	0.32493 (16)	0.0941 (3)	0.4380 (7)	0.0511 (10)
H9A	0.3118	0.0730	0.5727	0.061*

C10	0 37175 (16)	0.0885 (3)	0.4104(7)	0.0535 (11)	
H10A	0.3901	0.0646	0.5261	0.064*	
C11	0.39169 (15)	0.1187 (3)	0.2077 (7)	0.0487 (10)	
C12	0.36468 (15)	0.1576 (3)	0.0376 (7)	0.0479 (9)	
H12A	0.3780	0.1795	-0.0959	0.057*	
C13	0.31762 (15)	0.1631 (2)	0.0709 (7)	0.0461 (9)	
H13A	0.2994	0.1893	-0.0421	0.055*	
C14	0.46063 (17)	0.1316 (4)	-0.0114 (9)	0.0717 (14)	
H14A	0.4926	0.1149	-0.0032	0.108*	
H14B	0.4580	0.1969	-0.0316	0.108*	
H14C	0.4465	0.1007	-0.1379	0.108*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0538 (7)	0.1036 (11)	0.0787 (9)	0.0116 (7)	0.0019 (6)	0.0106 (7)
S 1	0.0692 (7)	0.0454 (6)	0.0336 (5)	-0.0036 (5)	0.0005 (4)	0.0084 (4)
O1	0.0598 (19)	0.072 (2)	0.065 (2)	0.0054 (15)	-0.0097 (16)	0.0031 (16)
N1	0.058 (2)	0.0384 (16)	0.0347 (16)	-0.0028 (14)	0.0022 (15)	0.0019 (13)
C1	0.069 (3)	0.0347 (18)	0.0308 (18)	-0.0014 (17)	0.0019 (18)	0.0005 (14)
C2	0.068 (3)	0.044 (2)	0.039 (2)	-0.0038 (19)	0.0129 (19)	0.0029 (16)
C3	0.066 (3)	0.051 (2)	0.050 (2)	-0.004(2)	0.020 (2)	-0.0059 (19)
C4	0.061 (3)	0.046 (2)	0.052 (2)	0.0044 (18)	0.007 (2)	-0.0042 (18)
C5	0.061 (2)	0.0386 (19)	0.042 (2)	0.0006 (17)	0.0043 (19)	-0.0007 (16)
C6	0.061 (2)	0.0313 (16)	0.0334 (18)	-0.0018 (16)	0.0071 (17)	-0.0023 (14)
C7	0.064 (2)	0.0315 (17)	0.0269 (17)	-0.0024 (16)	0.0010 (17)	-0.0002 (14)
C8	0.065 (2)	0.0298 (16)	0.0314 (18)	-0.0007 (15)	-0.0052 (17)	-0.0006 (14)
C9	0.072 (3)	0.045 (2)	0.036 (2)	-0.0032 (19)	-0.0038 (19)	0.0056 (16)
C10	0.071 (3)	0.047 (2)	0.043 (2)	0.0017 (19)	-0.016 (2)	0.0052 (17)
C11	0.056 (2)	0.043 (2)	0.047 (2)	0.0021 (17)	-0.0078 (19)	-0.0040 (17)
C12	0.059 (2)	0.042 (2)	0.043 (2)	-0.0012 (18)	-0.0009 (18)	0.0047 (16)
C13	0.061 (2)	0.0376 (19)	0.040 (2)	0.0003 (17)	-0.0088 (18)	0.0040 (15)
C14	0.055 (3)	0.092 (4)	0.068 (3)	-0.007 (3)	0.001 (2)	0.004 (3)

Geometric parameters (Å, °)

Cl1—C4	1.726 (5)	C5—H5A	0.9300	
S1—C1	1.720 (4)	C7—C8	1.470 (6)	
S1—C7	1.741 (4)	C8—C9	1.391 (5)	
01—C11	1.372 (5)	C8—C13	1.396 (5)	
O1-C14	1.407 (5)	C9—C10	1.371 (7)	
N1—C7	1.293 (5)	С9—Н9А	0.9300	
N1-C6	1.382 (5)	C10-C11	1.394 (6)	
C1—C2	1.391 (6)	C10—H10A	0.9300	
C1—C6	1.409 (5)	C11—C12	1.390 (5)	
C2—C3	1.373 (7)	C12—C13	1.382 (6)	
C2—H2A	0.9300	C12—H12A	0.9300	
C3—C4	1.394 (6)	C13—H13A	0.9300	
С3—НЗА	0.9300	C14—H14A	0.9600	
C4—C5	1.386 (6)	C14—H14B	0.9600	

supplementary materials

C5—C6	1.396 (6)	C14—H14C	0.9600
C1—S1—C7	89 62 (18)	C9—C8—C13	1178(4)
$C_{11} = 0_{1} = C_{14}$	1184(4)	C9 - C8 - C7	117.0(4) 122 5 (4)
C7-N1-C6	110.4(4) 110.9(3)	C_{13} C_{8} C_{7}	122.3(4) 1197(3)
C_{1} C_{1} C_{6}	110.9(3) 121.3(4)	$C_{10} = C_{0} = C_{10}$	117.7(3)
$C_2 = C_1 = C_0$	121.3(4) 120.8(3)	$C_{10} = C_{9} = C_{8}$	121.3 (4)
$C_{2} = C_{1} = S_{1}$	129.8(3) 100.0(2)	$C_{0} = C_{0} = H_{0}$	119.2
$C_0 = C_1 = S_1$	109.0(3)	$C_0 = C_1 = C_{11}$	119.2
C_{3}	110.2 (4)	$C_{0} = C_{10} = U_{10}$	119.0 (4)
$C_3 = C_2 = H_2 A$	120.9	C_{11} C_{10} H_{10A}	120.2
C1 - C2 - H2A	120.9	CII - CI0 - HI0A	120.2
$C_2 = C_3 = C_4$	120.7 (4)	OI = CII = CI2	124.4 (4)
C2—C3—H3A	119.6		115.2 (4)
С4—С3—НЗА	119.6	C12—C11—C10	120.5 (4)
C5—C4—C3	122.3 (4)	C13—C12—C11	118.7 (4)
C5—C4—Cl1	118.9 (3)	C13—C12—H12A	120.7
C3—C4—C11	118.8 (3)	C11—C12—H12A	120.7
C4—C5—C6	117.2 (4)	C12—C13—C8	121.9 (4)
C4—C5—H5A	121.4	C12—C13—H13A	119.0
С6—С5—Н5А	121.4	C8—C13—H13A	119.0
N1—C6—C5	124.7 (3)	O1—C14—H14A	109.5
N1—C6—C1	114.9 (4)	O1—C14—H14B	109.5
C5—C6—C1	120.3 (4)	H14A—C14—H14B	109.5
N1—C7—C8	123.7 (3)	O1—C14—H14C	109.5
N1—C7—S1	115.5 (3)	H14A—C14—H14C	109.5
C8—C7—S1	120.6 (3)	H14B—C14—H14C	109.5
C7 = S1 = C1 = C2	179 4 (4)	C1S1C7N1	11(3)
C7 S1 C1 C6	-0.7(3)	$C_1 = S_1 = C_7 = C_8$	-174.8(3)
C_{1}^{-}	12(6)	N1 C7 C8 C9	-1767(3)
$c_0 - c_1 - c_2 - c_3$	-1780(3)	$N_{}^{}C_{3-$	-1.1(5)
$S_1 = C_1 = C_2 = C_3$	-0.4(6)	S1 - C7 - C8 - C7	1.1(3)
$C_1 = C_2 = C_3 = C_4$	-0.4(0)	NI - C7 - C8 - C13	0.3(3)
$C_2 = C_3 = C_4 = C_3$	-0.9(0)	SI = C / = C = C = C = C = C = C = C = C =	170.0 (3)
$C_2 = C_3 = C_4 = C_1$	1/9.6 (5)	C13 - C8 - C9 - C10	-1.2(6)
$C_3 - C_4 - C_5 - C_6$	1.3 (6)	C/-C8-C9-C10	1/6.0 (4)
CII - C4 - C5 - C6	-1/9.2(3)		-0.9 (6)
C/NIC6C5	-178.4(3)		-1.3 (6)
C/—NI—C6—C1	0.7 (4)	C14—O1—C11—C10	177.8 (4)
C4—C5—C6—N1	178.6 (3)	C9—C10—C11—O1	-176.6 (4)
C4—C5—C6—C1	-0.4 (5)	C9—C10—C11—C12	2.5 (6)
C2—C1—C6—N1	-179.9 (3)	O1—C11—C12—C13	177.1 (4)
S1—C1—C6—N1	0.2 (4)	C10—C11—C12—C13	-1.9 (6)
C2—C1—C6—C5	-0.8 (5)	C11—C12—C13—C8	-0.2 (6)
S1—C1—C6—C5	179.3 (3)	C9—C8—C13—C12	1.8 (5)
C6—N1—C7—C8	174.5 (3)	C7—C8—C13—C12	-175.5 (3)
C6—N1—C7—S1	-1.2 (4)		