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Abstract

Mental disorders are a major source of disability, with few effective treatments. It has recently 

been argued that these diseases might be effectively treated by focusing on decision-making, 

and specifically remediating decision-making deficits that act as “ingredients” in these disorders. 

Prior work showed that direct electrical brain stimulation can enhance human cognitive control, 

and consequently decision-making. This raises a challenge of detecting cognitive control lapses 

directly from electrical brain activity. Here, we demonstrate approaches to overcome that 

challenge. We propose a novel method, referred to as maximal variance node merging (MVNM), 

that merges nodes within a brain region to construct informative inter-region brain networks. 

We employ this method to estimate functional (correlational) and effective (causal) networks 

using local field potentials (LFP) during a cognitive behavioral task. The effective networks 

computed using convergent cross mapping differentiate task engagement from background neural 

activity with 85% median classification accuracy. We also derive task engagement networks 
(TENs): networks that constitute the most discriminative inter-region connections. Subsequent 
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graph analysis illustrates the crucial role of the dorsolateral prefrontal cortex (dlPFC) in task 

engagement, consistent with a widely accepted model for cognition. We also show that task 

engagement is linked to prefrontal cortex theta (4-8 Hz) oscillations. We, therefore, identify 

objective biomarkers associated with task engagement. These approaches may generalize to other 

cognitive functions, forming the basis of a network-based approach to detecting and rectifying 

decision deficits.

Keywords

Multi-source interference task; task engagement network; cognitive control; functional 
connectivity; effective connectivity; maximal variance node merging; local field potential

I. INTRODUCTION

NEUROPSYCHIATRIC disorders impose an enormous global disease burden that leads to 

premature mortality and degraded quality of life. Existing treatments for these disorders are 

less than 50% effective [1]. Many patients with mental illness do not get relief from gold­

standard clinical therapies, resulting in a pressing need for new treatments. Recent studies 

indicate that these treatments might emerge from measuring and remediating cognitive 

deficits underpinning mental illness, e.g., through electric stimulation [2–4]. Dysfunctional 

decision-making and cognitive control are common features in a wide range of mental 

disorders such as depression, addiction, anxiety disorders, autism, and schizophrenia 

[5–7]. Cognitive control is a set of interrelated executive functions, including updating 

(i.e., monitoring working memory), inhibition (resisting prepotent responses), and shifting 

(switching between mental sets) [8]. It is, therefore, crucial to accommodating daily life 

requirements, ultimately affecting the quality of life [9]. The ability to remediate cognitive 

control might thus be a new approach to treating mental disorders.

Cognitive control can be measured in real time through standard laboratory tasks and direct 

brain stimulation can improve the performance during these tasks [10–12]. It is, however, 

unclear when this type of intervention should be automatically triggered to achieve a desired 

psychological effect. Increasing evidence indicates, however, that cognitive dysfunction 

in mental disorders can be described as aberrant patterns of interactions between neural 

elements in a large-scale brain network [3], [13–15]. It should therefore be possible to 

decode this dysfunction by examining changes in functional network communication.

The majority of the existing brain network studies related to cognitive control are limited to 

functional connectivity [9], [16]. Although some effective connectivity studies exist, they are 

based on signals acquired through functional magnetic resonance imaging (fMRI) [17], [18]. 

fMRI is an indirect measure of neural activity and recorded at a low temporal resolution, 

which is not ideal for capturing cognitive functions that involve finer temporal dynamics. 

A better approach would be direct decoding of cognitive control and control lapses from 

electrical brain recordings [11].

A recent attempt to decode cognitive control task engagement reported successful 

classification [19], [20], but only analyzed functional connectivity. Such correlational 
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analyses cannot identify the direction of information flow in brain networks, a critical 

variable for deciding how to stimulate. The prior paper’s analysis also suffered from data 

leakage, which may have led to unreliable evaluation of the classifiers. More specifically, (1) 

the feature extraction utilized test data that should be independent of the training data, and 

(2) the training and test data were not temporally separated. Another challenge is that the 

underlying datasets come from human participants with highly variable placement of their 

brain electrodes in each brain region. Data interpretation requires methods for measuring 

and controlling for that variability across participants.

Deriving meaningful causal networks from task-related activity has remained a challenge. 

Granger causality has been used in numerous neuroscience applications [21]. However, 

Granger’s approach could lead to ambiguity in biological and ecological networks due 

to non-separable dynamics [22]. This paper uses directed information and convergent 
cross-mapping, causal inference techniques that are not based on Granger’s theory. The 

problem of electrode variability can be addressed by merging several channels (electrodes) 

associated with a region to form region-level networks. In most prior research, region-level 

signals were computed by averaging signals from multiple channels in a region [23]. These 

averaged signals do not necessarily correlate to the tasks, as classifiers based on these 

networks fail to achieve high accuracy (as described in Section IV). This paper overcomes 

this challenge by using the proposed novel maximal variance node merging (MVNM) 

approach. Causal cognitive control networks based on electrophysiological signals have not 

been constructed before. These networks not only confirm known network properties of 

cognitive control but also lead to new findings that can be explored further.

The contributions of this paper are five-fold.

1. We construct and compare three different brain networks: one functional and 

two effective networks). We derive causal networks based on a technique called 

convergent cross-mapping (CCM) [24] and show that the causal networks help 

identify regions of interest associated with task engagement. Thus, we utilize 

distributed brain connectivity analysis to not only detect task engagement, but 

also identify potential biomarkers for cognitive control.

2. We propose a novel technique referred to as maximal variance node merging 

(MVNM) to estimate region-level interactions. Unlike channel-level networks, 

region-level networks are more interpretable and more relevant for clinical 

translation.

3. We introduce and present task engagement networks (TENs) by combining the 

most explanatory network interactions from multiple subjects. The TENS can be 

further analyzed to identify significant regions that may be useful as stimulation 

sites.

4. We demonstrate that the causal inter-region networks can differentiate mental 

states associated with task performance from resting-state activity with 85.2% 

median accuracy. A previous analysis using the same data attained 78% accuracy 

[19].
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5. We show that subband networks constructed from bandpass filtered signals also 

encode task specific activity. Especially, theta band (4–8 Hz) networks play a 

major role in detecting task engagement, consistent with prior findings that theta 

band oscillations are modulated during cognitive control.

II. MATERIALS AND METHODS

A. Subjects

Fourteen subjects participated in the experiment when they were hospitalized for invasive 

epilepsy monitoring and subsequent seizure localization. Use of intracranial recordings 

of patients undergoing epilepsy monitoring to study cognitive phenomena is gaining 

popularity [25–28]. Each subject had a history of drug-resistant complex-partial seizures. 

We discarded the data from 4 out of the 14 subjects due to lack of statistically sufficient 

task/non-task recordings. The remaining ten subjects were included this study. All surgical 

decisions, including the location, type, and the number of electrodes, were made by 

clinicians independent of this study. The participants were informed that participation in 

the experiment would not affect their treatment. They were allowed to withdraw at any 

point during the task. According to the study sponsor guidelines, each participant gave fully 

informed consent. The original study was approved by the Institutional Review Board of 

Massachusetts General Hospital and the US Army Human Research Protection Office. The 

present study re-analyzed a publicly available, de-identified copy of the published dataset, 

and thus did not require further review [19].

B. The Multi-Source Interference Task

The MSIT is a well-established paradigm that involves multiple dimensions of cognition, 

including but not limited to attention, object recognition, and decision making, and is a 

useful tool to study the network basis of cognitive control specifically [29]. The MSIT 

has been shown to evoke connectivity changes related to cognitive impairment in major 

depressive disorder (MDD), obsessive compulsive disorder (OCD), and schizophrenia [30–

32]. Its sensitivity to electrical stimulation makes it a good candidate to study cognitive 

control [10], [11]. In an MSIT trial (see Fig. 1), the participants were presented with a 

fixation cross for 2 s followed by a stimulus (until response) in the form of 3 digits – 

one of which is the ‘target.’ Two of the three numbers, known as ‘distractors,’ have the 

same value. The target is either 1, 2, or 3. Each trial is categorized as either ‘congruent’ or 

‘incongruent’ depending on its difficulty level. In the congruent condition, the distractors are 

always ‘0’, and the target’s position matches its value. In the incongruent (also known as 

interference) condition, the distractors are picked from potential targets, and the position of 

the unique target is different from its keyboard position (Simon effect). In a successful trial, 

the participant reports, via a button press on a keypad, the target’s value regardless of its 

position. Examples of congruent and incongruent trials are presented in Fig. 1(a).

The experiment comprised up to 5 blocks of trials, each with approximately 32 or 64 trials in 

each block (Fig. 1(b)). Signals recorded between the blocks, before the first block, and after 

the last block were labeled as non-task data. The task contained a roughly equal number 
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of congruent and incongruent trials. Median success rates of 100%±2.47% and 97.1±5.52% 

were reported during congruent and incongruent conditions, respectively [19].

C. Signal Acquisition and Preprocessing

1) Data Acquisition: Local field potential (LFP) signals were recorded through depth 

electrodes surgically implanted for seizure monitoring in each participant. Between five and 

nine electrodes with diameters 0.8-1.0 mm were placed in each hemisphere. Each electrode 

consisted of 8-16 platinum/iridium contacts. The distribution of electrodes is illustrated in 

Fig. 2. The Multi-Modality Visualization Tool was used to create the visualization [33]. 

The signals were acquired at a 2 kHz sampling rate via neural signal processor recording 

systems from Blackrock Microsystems Inc., Salt Lake City, UT. All signals were referenced 

to a scalp EEG electrode. Electrodes with excessive line noise (60 Hz), close to seizure 

focus (based on clinical reports), and other artifacts found on visual inspection were 

removed. Each channel was down-sampled to 1000 Hz. The line noise and its harmonics 

were removed. Adjacent channels were then bipolar re-referenced to each other to alleviate 

the effect of volume conduction [34]. This data was previously reported in [19], and was 

analyzed using a different approach.

2) Electrode Localization: Spatial coordinates of the electrodes were determined 

manually through post-operative computerized tomography (CT). Pre-operative T1 weighted 

MRI were aligned with the anatomical CT images through a volumetric image co­

registration method utilizing the FreeSurfer software package [35], [36]. An electrode 

labeling algorithm was employed to estimate the probability that a particular brain region 

contributes to the signal’s source at each electrode [37]. The regions of interest were 

parcellated based on the Desikan-Killiany-Tourville brain atlas [38]. The number of bipolar 

re-referenced channels ranged between 64 and 195 based on the subjects’ electrode 

montage, and these channels were mapped to 17-23 regions.

D. Defining Task and Non-Task Segments

The neural activity recorded during MSIT blocks is referred to as task data, and the data 

recorded during rest periods (before or after task blocks) is referred to as non-task data. 

To differentiate between the task and non-task states, the signals were divided into multiple 

task segments and non-task segments. On average, each MSIT trial was approximately 4 s 

long; each trial’s actual duration varies depending on the subject’s reaction time. The time 

when the fixation cross was presented during a trial was marked as the trial’s start. The time 

duration between two consecutive fixation crosses determined the length of each trial. The 

minimum trial length for most subjects was approximately 3.8 s. Therefore, the 3.8-second 

time segments from every trial’s start were labeled as ‘task’ data. The signals recorded 

during rest periods were windowed into ‘non-task’ segments with a window length equal to 

the minimum task duration.

Overlapping windows were used when the number of non-task segments was less than 

the number of task segments. If the amount of task data was less than the amount of 

non-task data, only a subset of the non-task data was used for classification. Thus, the two 

classes were balanced to make sure the classifiers were not biased. The multidimensional 
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time-series corresponding to task and non-task segments were then used to construct task 

and non-task networks.

E. Connectivity Measures

Network science provides a particularly appropriate framework to study brain mechanisms 

by treating neural elements (a population of neurons, a subregion) as nodes in a 

graph and neural interactions (synaptic connections, information flow) as its edges [39]. 

Structural connectivity represents large-scale anatomical connections between cortical 

regions. Functional and effective connectivities are generally estimated from the time­

series of brain signals. A fundamental distinction between the two is that the edge 

weights in functional networks correspond to cross-correlation coefficients, while those in 

effective networks correspond to patterns of causal interactions. Quantifying (correlative or 

causative) interactions between time-series is of particular interest in studying complex 

network systems such as the brain [40]. This study estimates and analyzes functional 

connectivity and effective connectivity between the electrodes and the regions. The effective 

networks were constructed using two methods: directed information (DI) and convergent 

cross-mapping (CCM). A review of these two methods is provided in the Supplementary 

Information (see Sections S1 and S2).

Instead of assuming parametric models such as the auto-regressive model used by Granger 

causality, DI is based on information theory [41]. It can therefore measure nonlinear 

interactions and is not dependent on accurate estimation of model parameters. A benefit 

of using CCM for causal inference is that, unlike Granger-related causality measures, 

CCM does not assume ‘separability’ between variables [24]. The separability assumption 

is usually valid in linear and strongly coupled non-linear systems. Complex subsystems such 

as the brain are characterized by moderate to weak coupling and are affected by unobserved/

external variables.

F. Maximal Variance Node Merging (MVNM) and Region-Level Networks

A significant challenge in this specific application space, read-out of cognition from 

distributed electrodes, is an imbalance in the number of measurements between nodes/edges. 

A given brain region (node) may have anywhere from 1 to 5 physical electrodes measuring 

it, depending on the size of the region and the specific clinical placement of the electrode. 

This imbalance makes it harder to interpret channel-level networks, where each node 

corresponds to a specific electrode contact. Similarly, since electrode positions vary between 

subjects, it is unclear which channels can be safely averaged/combined. That combination 

is achievable if we can identify channels as belonging to specific brain regions, such that 

we can work in terms of the dominant signal within each region and the inter-region 

interactions.

We introduce maximal variance node merging (MVNM) as an approach to combine nodes 

in a channel-level network that were mapped to the same brain region to generate a region­

level network. Each node in a region-level network is associated with a brain region. This 

enables us to interpret the network connections better and, consequently, detect specific task 

engagement regions.
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First, the channels were organized into their corresponding regions based on electrode 

localization results. Then, region-level networks were constructed from channel-level 

networks using MVNM. For each pair of regions, all the network connections between 

the regions (inter-region connections) were replaced by one representative connection in 

the case of undirected networks. Note that intra-region connections were discarded. There 

would be two resultant connections in directed networks: one representing all the edges from 

region-A to region-B and the other for the edges from region-B to region-A. Fig. 3(a) and 

Fig. 3(b) depict an example network before and after the node merging process, respectively.

These new inter-region edges were estimated by computing the optimal linear combination 

of the original edges to maximize the variance over time. This process is equivalent to 

finding the first principal component of the original edges between the two regions using 

principal component analysis (PCA) – a dimensionality reduction method that attempts to 

reduce the number of variables while preserving as much information as possible. This 

approach is beneficial since the goal is to use these edges as features for classification. The 

MVNM algorithm’s rationale is that a larger variance implies a broader spread in the feature 

space, which helps find the decision boundary.

Fig. 3(c) illustrates this process for two regions A and B with m and n channels, respectively. 

There can be mn edges between the two regions in an undirected network (functional) and 

2mn edges in a directed network (effective). Intra-region connections can be ignored here. If 

there are N such networks in the dataset, it can be represented by a matrix of dimensions N 
× mn, denoted by X. Note that N is the number of time-series segments (task and non-task) 

extracted for a given subject. There would be two such matrices, Xin and Xout, for effective 

networks. The optimal linear combination of the columns of X that maximizes its variance is 

given by Xw, where the mn × 1 weight vector w is computed as:

w = arg max
w = 1

wTXTXw . (1)

The optimal linear combination of these connections, Xw, provides the inter-region edge 

strengths for the N networks. Note that Xw is the first principal component of X. In effective 

networks, the incoming and outgoing connections were processed separately to determine 

the two inter-region connections. It can be noticed that the adjacency matrices in effective 

networks (Fig. 4(b) and Fig. 4(c)) are not symmetric, indicating the directionality of the 

networks.

G. Edge Importance Score and Task Engagement Networks (TENs)

Once all the networks were computed, PCA of the edges was used for feature extraction. 

Task engagement networks were constructed from the most significant connections that were 

effective in identifying MSIT states. Note that principal components of the network edges 

were used as the features for classification. The PCA assigns a weight to each network 

connection to compute optimal principal components. These PCA coefficients were used 

as an indicator of the significance of the connections. For a given connection between two 

regions, the sum of its coefficients linked to the top p features (principal components) is 
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defined as its importance score. The edges were then ranked based on their importance 

scores and the q highest-ranked edges were deemed significant edges – represented by the 

set Ssub for a given subject sub. Parameters p = 10 and q = 60 were used in our analysis. 

Note that p and q were chosen such that the choice of these parameters leads to high 

classification accuracy (see subsection below). This algorithm is depicted in Fig. 5.

A 10-fold cross-validation split was performed on the data before the PCA as shown in Fig. 

5. Since the cross validation results in ten models for each subject, Ssub is the intersection of 

significant edges from the ten models. This is given by the expression,

Ssub = ∩
fold

Ssub, fold .

This ensures that the edges are not specific to a subset of the data and generalize across the 

dataset. The mean network of all Ssub constitutes the task engagement network STEN. That 

is, the edge strength eAB from regions A to B is defined as

eAB = ΣsubeAB, sub
sub , (2)

where eAB,sub ∈ Ssub and |sub| is the number of subjects. Therefore, the edges in the TEN 

signify their prevalence among multiple subjects.

H. Task vs. Non-Task Classification

The PCA features were used as inputs to linear support vector machine (SVM) classifiers 

to distinguish task data from non-task data. For a given subject, training and testing sets for 

each of the ten folds were selected via sequential sub-sampling to ensure that test samples 

are not in the temporal vicinity of the training samples. Essentially, data from each class are 

sequentially partitioned into ten subsets (folds). In each iteration, one of the ten folds is used 

for testing, while the other nine are used for training. This setup ensures that all the data 

are tested, and the classifiers are less prone to overfitting. Fig. 5 depicts the classification 

process. Classifiers with a varying number of inputs were trained with a maximum limit of 

100 features and the testing accuracy with the optimal number of features is reported.

I. Subband Networks

Neurophysiological studies indicate that theta activity increases with the need for cognitive 

control [42–45]. We constructed subband networks to analyze the network interactions 

of frequency-specific neural activity. First, the neural recordings were bandpass filtered 

into five pre-defined subbands to quantify the role of individual frequency bands on task 

engagement. These bandpass filtered signals were then used to construct band-specific 

networks, named subband networks. The frequency bands considered in the study are theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma-1 (30-55 Hz), and gamma-2 (65-100 

Hz). The bandpass filtering was implemented using 6th order Butterworth IIR filters. All 

signals were filtered bidirectionally to avoid undesired phase shifts introduced by the 

filtering, which can affect causal inference.
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III. RESULTS

A. Identifying Task States

The SVM models were evaluated based on how accurately they could distinguish between 

task and non-task states for all subjects. Their classification accuracy, sensitivity (true­

positive rate), and specificity (true-negative rate) were calculated; the task data was 

considered as the positive class. Fig. 6 presents the SVM classification accuracy for all 

the subjects evaluated based on the three network construction approaches. The reported 

values represent the mean accuracy over 10-fold cross-validation. The plot illustrates that 

all network types attain accuracies substantially higher than the baseline of 50%, suggesting 

that there are patterns of interaction in the neural activity that can be used to identify task 

engagement. CCM networks perform the best with 85.2±5.0% accuracy. The high accuracy 

indicates that inter-region interactions contain useful task-related information. The median 

accuracy and interquartile range values across the ten subjects are summarized in Table 

I. The median accuracy, sensitivity, and specificity of all MVNM-based networks exceed 

80%. The interquartile range values are also low, indicating the algorithm’s reliability and 

robustness across multiple human subjects. All three methods outperform fixed canonical 

coherence analysis (FCHA) presented in [19].

B. Task Engagement Networks

Fig. 7 depicts the TENs from functional (R) and effective networks (DI and CCM). 

Each edge in the graphs represents the number of times a specific connection appears in 

STEN. Out of the fourteen regions of interest that emerged from the analysis, connections 

between some regions are more prominent than the others. More interestingly, the graph 

visualizations in Fig. 7(c) showcase a close resemblance to the results in Fig. 7(b), which are 

based on an independent causal approach. Task engagement networks for individual subjects 

are presented in the Supplementary Information (see Section S4).

To quantify the importance of each of the regions in task engagement, we measured the 

node centralities of the regions in each TEN (see Fig. 8). Node degree and outdegree 

were computed for functional and (two) effective networks, respectively. The dorsolateral 

PFC (dlPFC) and temporal lobe show more centrality in all three cases, although the 

distinction is more prominent in effective networks. In correlation networks, the difference 

between regions is less noticeable, making it harder to discriminate key hubs using just 

correlation analysis. However, dlPFC has a considerably higher outdegree in effective 

networks estimated from causal interactions, followed by temporal lobe and ventrolateral 

PFC (vlPFC).

C. Analysis of Networks for Specific Frequency Bands

1) Increased Theta Band Activity During Task Performance: Greater theta band 

activity is known to be associated with cognitive control [27], [42–46]. Using bandpass 

filtering, the neural activity in the task and non-task periods was divided into five subbands: 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma-1 (30-55 Hz), and gamma-2 

(65-100 Hz). Relative power in the theta band was computed as a ratio of the spectral 

power in the 4-8 Hz frequency range to the total power spectral density in 4-100 Hz. Fig. 
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9 shows a distribution of relative power in theta band in the left dlPFC of subject-2 in task 

vs. non-task segments. Theta power during the task and non-task states has a log-normal 

distribution, with means 0.28 and 0.21, respectively, demonstrating an increased theta band 

power during this cognitive control task. We also observed an enhanced dlPFC theta activity 

in seven out of the ten subjects. The increased mean relative power in the seven subjects 

is also associated with p-values <0.05 and Bayes factor >9 (in 6 of the 7 cases) according 

to the two-sample t-test. This is consistent with a wide range of prior reports implicating 

modulated theta-band activity during cognitive control [42–47].

D. Theta Band Network Interactions Differentiate Task and Non-Task States

To evaluate the role of inter-region subband activity of the five subbands in the MSIT, we 

decode the task states using the subband networks. The aim is to discern and compare 

the discriminative ability of network dynamics associated with each of the five subbands. 

Since CCM networks have the best performance, CCM based subband networks are used. 

We observe that the median classification accuracy of the subband networks is 79.5% – 

marginally less than the networks without frequency filtering. This implies that subband 

dynamics also encode task-related information. By measuring the number of significant 

edges corresponding to each subband, we observe that 4-8 Hz activity distinguishes task 

states better than other frequencies. This is illustrated in Fig. 10.

TENs built using only significant theta subband edges also highlight the influence of dlPFC 

and temporal lobes in the MSIT, as shown in Fig. 11. The dorsomedial PFC (dmPFC) attains 

the third highest centrality. This shows that theta oscillations (especially in dlPFC) and their 

network-level interactions can act as biomarkers for task engagement.

IV. DISCUSSION

Despite its pressing need, devising an effective neurological mechanism-based treatment to 

enhance cognitive control is still a major challenge. This might be achieved through adaptive 

brain stimulation that intervenes when cognitive control lapses [10], [11], [48]. Developing 

such a treatment requires a deeper understanding of cognitive control that may be provided 

by network analysis.

Authors in [19] describe a unique approach to construct inter-region networks using 

canonical correlation analysis, called fixed canonical coherence analysis (FCHA). Even 

though both FCHA and MVNM involve estimating a linear combination of multiple 

variables, there are fundamental distinctions between them. For a given pair of regions 

X and Y, the FCHA maximizes the coherence between multivariate time-series in X and Y. 

This optimization is accomplished by estimating the optimal linear combination of multiple 

channels within each region. MVNM is a novel method that optimizes the variance of 

the network interactions over time. Unlike FCHA, MVNM converts (possibly informative) 

channel-level networks into more interpretable region-level networks. This method can be 

applied to correlational or causal networks.

Averaging time-series recordings is a common approach to combine neural signals from 

the same anatomical region [23], [49]. Such techniques may discard valuable network 
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dynamics. Classification results presented in the Supplementary Information (see Section 

S3) demonstrate that the averaged connectivity is not well-suited to uncover the optimal 

causal interactions between the regions. Table S1 shows that MVNM attains a 10% increase 

in accuracy compared to the time-series averaging. The proposed methods help detect task 

engagement with approximately 85% median accuracy, a notable improvement over [19]. 

In addition, the classifiers are characterized by low variation across cross-validation folds 

and across subjects indicating the robustness of the approach. However, it should be noted 

that these classifiers are subject-specific. A generalized decoder for all subjects may lead to 

lower accuracy.

A high classification accuracy may not always lead to advances in understanding underlying 

brain mechanisms. Hence, we use graph analysis of the networks to determine TENs 

presented in Fig. 7. TENs highlight changes in network interactions across the subjects 

due to task-related effort. The causal TENs highlight dorsolateral PFC, temporal lobe, 

and ventrolateral PFC as the most influential regions of interest with high outdegree. The 

observations from CCM and DI networks – independent causality measures – corroborate 

each other, supporting the validity of our approach. The involvement of dlPFC in cognitive 

control, especially in tasks involving conflict or inhibition of irrelevant information, is 

reported in prior research [10], [25], [50]. Schizophrenia and OCD have been linked 

to dysfunctional modulation in dlPFC and vlPFC [51], [52]. Our TENs emphasize the 

activation of dlPFC better than [19]. dlPFC was also used as a stimulation site to enhance 

cognitive control successfully [53]. Several studies suggest that increased frontal theta 

activity is associated with cognitive control [10], [42], [43], [45], [54]. Fig. 10 shows that 

the majority of the discriminative features used in the classifiers originate from theta band 

activity in all the subjects. Fig. 11 implies that theta interactions in dlPFC, dmPFC and the 

temporal lobe play an important role in cognition. The alignment of our data-driven findings 

with prior studies validates the ability of our approach to discover true mechanistic network 

structure.

The role of the temporal lobe, which is outside the canonical frontoparietal cognitive control 

networks, is not entirely understood [55], [56]. This is partly because most cognitive control 

studies are focused on the frontal regions instead of observing a global brain network. 

It is shown in [57] that the temporal lobe had the largest response to a cognitive task 

among non-frontal regions. Alternately, the temporal lobe weighting could be related to the 

participants’ epilepsy. Patients with temporal lobe epilepsy have been reported to suffer from 

dysfunctional control characterized by interactions between the epileptogenic temporal lobe 

and the PFC [58], [59].

Even though the MSIT has been shown to activate cognition/attention networks [29–

31], clinical translation towards a viable treatment for psychiatric disorders presents 

significant challenges. First, any task performance can include several other behavioral and 

physiological mechanisms that may not be related to cognitive effort. For example, task 

engagement can provoke anxiety, leading to engagement of emotional arousal networks. 

Therefore, further research involving multiple tasks and a larger cohort of subjects is 

needed to form robust conclusions about the neural encoding of cognitive control. Another 

challenge is that the efficacy of adaptive DBS on psychiatric disorders is not sufficiently 
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understood. We believe that objective network biomarkers at an electrophysiological level 

can help detect and rectify cognitive dysfunction [3], [11]. Future studies may also explore 

non-invasive recording/stimulating modalities

V. CONCLUSION

Network representations can decode cognitive control and other mental functions by 

identifying relevant cross-region interactions. We show that network connections between 

dorsolateral PFC, temporal lobe and ventrolateral PFC were discriminative through graph 

analysis of causal task engagement networks. Moreover, independent causal inference 

techniques (DI and CCM) indicate a higher outdegree in those regions, supporting the 

potential for dlPFC as a stimulation site [3], [12], [53], [60]. Subband network analysis 

reveals that enhanced cognitive control is associated with modulated theta band activity.

There is substantial evidence supporting stimulation-induced modulation of pathological 

network activity as a therapeutic mechanism of treatments such as deep brain stimulation 

[61–63]. The methods developed in this paper enable the discovery of objective biomarkers, 

localized regions of interest, and band oscillatory activity associated with task engagement. 

This knowledge can facilitate a transition from symptom-based treatments to more effective 

mechanism-based treatments for mental illness.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The multi-source interference task.
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Fig. 2. 
Glass brain models showing the electrode locations. Colors represent different subjects.
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Fig. 3. 
The MVNM algorithm and graph visualization of a sample causal network before and after 

MVNM. The causal network has three regions with two channels (each) in regions 1 and 2, 

and three channels in region 3.
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Fig. 4. 
Functional (correlative) and effective (causal) networks of subject-1 constructed from a 

randomly chosen task segment.
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Fig. 5. 
Flowchart showing the key steps of ‘task’ vs. ‘non-task’ classification process and 

determination of task engagement networks.
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Fig. 6. 
Task vs. non-task classification accuracy using networks constructed using three 

connectivity measures: correlation (R), directed information (DI), convergent cross-mapping 

(CCM). Each point within the boxplots represents 10-fold cross-validation accuracy of a 

participant.
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Fig. 7. 
Task engagement networks generated from the three network construction methods. Each 

node represents one of the 14 regions of interest (Acc: accumbens, Amyg: amygdala, 

caudate, Hipp: hippocampus, dACC: dorsal anterior cingulate cortex, dlPFC: dorsolateral 

prefrontal cortex, dlPFC: dorsomedial prefrontal cortex, lOFC: lateral orbitofrontal cortex, 

mOFC: medial orbitofrontal cortex, parahipp: parahippocampus, postCC: posterior cingulate 

cortex, rACC: rostal anterior cingulate cortex, temporal lobe, vlPFC: ventral lateral 

prefrontal cortex). The thickness of the edges represent edge strength, as described by (2).
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Fig. 8. 
Node centrality of each region in the task engagement networks. The bar plots represent 

node degree for undirected (R) networks and outdegree for directed networks (DI and 

CCM).
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Fig. 9. 
Histogram of relative theta band power in left dorsolateral PFC of subject-2 for task and 

non-task periods.
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Fig. 10. 
Proportion of optimal features from each subband.
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Fig. 11. 
Outdegree of the regions in theta band TEN.
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TABLE I

SUMMARY OF TASK VS. NON-TASK CLASSIFICATION RESULTS. THE CLASSIFIERS ARE SUBJECT SPECIFIC. THE TABLE 

PRESENTS MEDIAN AND INTERQUARTILE RANGE VALUES OF CLASSIFICATION ACCURACY, SENSITIVITY (TASK ACCURACY) 

AND SPECIFICITY (NON-TASK ACCURACY) FOR EACH OF THE THREE NETWORK CONSTRUCTION METHODS. RANDOM 

LABEL-ASSIGNMENT WOULD RESULT IN A BASELINE ACCURACY OF 50%. THE HIGHEST ACCURACY IN EACH ROW IS 

PRESENTED IN BOLD

Network Functional Effective

Method FCHA [19] R+MVNM DI+MVNM CCM+MVNM

Acc. 78.1 ± 7.39 82.74 ± 7.45 80.85 ± 4.9 85.17 ± 5.0

Sens. 71.0 ± 10.3 84.86 ± 8.57 82.58 ± 8.57 87.49 ± 8.77

Spec. 79.2 ± 7.7 83.7 ± 9.31 79.74 ± 6.38 82.12 ± 13.2
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