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Abstract

Background: An enhanced understanding of the hookworm genome and its resident mobile genetic elements should
facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal
gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other
parasitic nematodes.

Methodology/Principal Findings: A novel mariner-like element (MLE) was characterized from the genome of the dog
hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base
pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with
a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues.
Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic
domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also
indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1
constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover,
homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site
residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and
either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was
amplified from RNA, indicating that this transposon is actively transcribed in hookworms.

Conclusions/Significance: A mariner-like transposon termed bandit has colonized the genome of the hookworm A.
caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative
of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally
between hookworm parasites and their mammalian hosts.
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Introduction

Almost one billion people throughout tropical and sub-tropical

latitudes are infected with hookworms. In the countries affected,

hookworm infection is often the major contributor to iron-

deficiency anemia, a direct consequence of the parasite’s blood-

feeding activities [1]. Comparatively little is known about the

genome or population genetics of hookworms. The karyotype of

only one hookworm species, the dog hookworm, Ancylostoma

caninum, is known where the haploid chromosome number n = 6

[2]. Hookworms are dioecious and sex determination is by an

XX-XO mechanism as in their free-living relative, the model

nematode Caenorhabditis elegans [3]. Although the genome size of

hookworms has not been reported, it may be of similar dimensions

and complexity to that of C. elegans-around 100 megabase pairs

(Mb) and containing about 20,000 protein-encoding genes (see

[3]). By contrast, flow cytometric based techniques have shown

that the haploid genome size of two trichostrongyle nematodes,

Haemonchus contortus and Teladorsagia circumcincta, is ,50 Mb in

length [4]. Trichostrongyle nematodes are more closely related to

hookworms than is the free-living nematode, C. elegans [5].

Over 20,000 expressed sequence tags (ESTs) from A. caninum

and the related parasite, A. ceylanicum, have been characterized to

some degree [6–8], including transcripts from the gut of adult
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worms[9]. Interestingly, most of the genes share homologues in C.

elegans, highlighting the suitability of this free-living nematode as

a model for hookworm developmental biology [8]. Moreover, the

Genome Survey Sequences (GSS) Database at GenBank contains

nearly 100,000 genome survey sequences from A. caninum (http://

www.ncbi.nlm.nih.gov/dbGSS/dbGSS_summary.html), which

when assembled provide a 57.6 Mb unique sequence, establishing

a tractable framework for an eventual genome sequence. It can be

anticipated that an enhanced understanding of the hookworm

genome will aid in the control of hookworm disease and

hookworm-associated anemia, including the development of new

anti-parasite interventions [10].

A substantial proportion of the genome of most metazoans is

composed of repetitive sequences, including various types of

mobile genetic elements (MGEs). MGEs are drivers of genome

evolution [11]. In addition to this role, from a practical perspective

MGEs offer potential as transgenesis and gene silencing vectors

[12–14], technologies that have yet to be reliably established for

the study of parasitic nematodes. Problematically, however, their

interspersed, repetitive nature can impede progress during genome

sequencing using shotgun sequencing approaches through the

confounding effects of their repetitions on sequence assembly

algorithms [15,16]. For these and other reasons, knowledge of

hookworm MGEs is of theoretical and practical value. Recently

we reported the presence of a family of non-long terminal repeat

(LTR) retrotransposons, the dingo retrotransposons, from the

genome of A. caninum [17]. Here we report the presence of

a mariner like transposon, termed bandit, within the genome of A.

caninum. Bandit is a DD(34)D family mariner-like transposon [18]

which, intriguingly, is much more closely related to the human

mariner-like element Hsmar1 than to any other MLE so far reported

from other species of the phylum Nematoda.

Methods

Genomic DNA of the hookworm Ancylostoma caninum
Adult A. caninum hookworms were collected from naturally

infected dogs from Ta Rae district, Sakonnakorn province,

Thailand, as described previously [17]. After removal from the

canine small intestines, the hookworms were identified microscop-

ically as A. caninum, and the living worms were snap frozen and

stored at 280uC. Subsequently, genomic DNA (gDNA) of adult

mixed sexes of A. caninum was isolated from the parasites using

a Qiagen genomic tip-100/G column and genomic buffer set kit

(Qiagen, Germany) according to the manufacturer’s instructions.

Briefly, worms (50–100 mg) were lysed in DNase-free lysis buffer

supplemented with RNase (Qiagen) using a DNase-free glass

homogenizer. Proteinase K was added to the extracts and

incubated at 50uC for 2 hours. The homogenate was clarified by

centrifugation, the supernatant applied to a Qiagen genomic-tip

column (Qiagen), the eluted A. caninum gDNA recovered by

ethanol precipitation, dissolved in TE buffer, and its concentration

and purity determined using a spectrophotomer.

Construction and screening of hookworm genomic DNA
libraries; bioinformatics

Size selected plasmid libraries of gDNA from adult A. caninum

were constructed as described [17]. Briefly, gDNA was digested

with the endonuclease Hind III and Xba I (Fermentas, Sweden)

and size separated through 0.8% agarose gel. Fragments ranging

in size from 2–7 kilobase pairs (kb) were excised, eluted from the

gel, and ligated into plasmid pBluescript SK (+/2) (Stratagene).

Bacterial E. coli strain XL-1 blue cells were transformed with the

ligation products and recombinant colonies selected by blue-white

screen on LB agar supplemented with ampicillin. White colonies

were transferred to wells of 96-well microtitre plates and

cryopreserved in 20% glycerol at 280uC.

Mobile genetic element (MGE)-like gene fragments were

identified from dbEST using text and blast searches. MGE

fragments were amplified by polymerase chain reaction (PCR)

from gDNA and used to probe gDNA libraries (see below). At the

outset, a gene probe was obtained by PCR using primers AcCR1F

(59-CAATTCTCCGATAAGGCAATG) and AcCR1R (59-

CGCGTATCCCATAGAATGTCA) specific for an A. caninum

transcript annotated in GenBank to have identity to reverse

transcriptase (GenBank AW700339), with PCR cycling conditions

of 35 cycles of 94uC for 1 min, 55uC for 1 min and 72uC for

1.5 mins, and a final elongation step at 72uC for 10 mins. An

amplicon encoding a retrotransposon-like gene was sequenced to

confirm its identity, and the probe was named AcCR1 (not shown).

Subsequently, a transposon-like gene probe (genomic DNA clone

H118; GenBank DQ377715) was obtained by library screening

with AcCR1. Nucleotides 118–416 of the insert of H118 were PCR

amplified, and after labeling with digoxygenin (DIG), the PCR

product was employed to screen ,500 clones from the size

selected, Hind III and Xba I libraries of A. caninum gDNA. The

inserts of positive clones were sequenced and the sequences used to

search the non-redundant database of GenBank using the Blastn,

Blastx and tBlastx algorithms [19]. Genomic DNA and cDNA of

A. caninum were amplified with the aim of obtaining longer fragments

of the A. caninum transposon, using specific primers, AcMarinerF;

59-GCTCACTCTTGGCTTGGTTC and AcMarinerR; 59-

TAATCGATTGGCGAAAGGTC, spanning nucleotide residues

154 to 1,033 of the consensus sequence of the full-length bandit

transposon (Figure 1). PCR conditions were 94uC for 1 min, 55uC
for 1 min and 72uC for 3 min, 35 cycles after which PCR products

were ligated into plasmid pTOPO (Stratagene) and sequenced.

A consensus sequence of a new transposon was assembled from

the positive clones and also from A. caninum GSS sequences in

GenBank with assistance from the contig assembly program of

BioEdit version 7.0.5.2 [20] (Figure 1). To identify bandit-like

sequences in related hookworm species, the bandit transposase

(342 amino acids) was queried against 4,953 polypeptides from

A. ceylanicum [8] and 2,328 polypeptides from N. americanus [21].

Author Summary

Because of its importance to public health, the hookworm
parasite has become the focus of increased research over
the past decade—research that will ultimately decipher its
genetic code. We now report a gene from hookworm
chromosomes known as a transposon. Transposons are
genes that can move around in the genome and even
between genomes of different species. We named the
hookworm transposon bandit because hookworms are
‘‘thieves’’ that steal the blood of their hosts, leading to
protein deficiency anemia. The bandit transposon is a close
relative of a well studied assemblage of transposons, the
mariner-like elements, known from the chromosomes of
many other organisms. The founding member of this
group—the mariner transposon—was isolated originally
from a fruit fly; mariner has been harnessed in the
laboratory as a valuable gene therapy tool. Likewise, it
may be feasible to employ the bandit transposon for
genetic manipulation of hookworms and functional
genomics to investigate the importance of hookworm
genes as new intervention targets. Finally, bandit may have
transferred horizontally from primates to hookworm or
vice versa in the relatively recent evolutionary history of
the hookworm–human host–parasite relationship.

The bandit, a New DNA Transposon from a Hookworm
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Only the best homologous sequence is reported, including the

identity and similarity values for the longest high-scoring segment

pair (HSP) in each subject.

Southern hybridization analysis
Thirty mg of A. caninum gDNA were cleaved with the restriction

enzymes, Xho I and Xba I. The bandit probe sequence did not

include recognition sites for either of these enzymes. Digested

gDNA was fractionated by electrophoresis through 0.8% agarose

gel, after which the fragments were transferred to nylon mem-

brane (Hybond-N+, Amersham Biosciences) by capillary action.

The bandit-specific probe was obtained by PCR using specific

primer AcMarinerF; 59-GCTCACTCTTGGCTTGGTTC and

AcMarinerR; 59-TAATCGATTGGCGAAAGGTC, spanning

nucleotide residues 154 to 1,033 of the consensus sequence of

the full-length bandit transposon (Figure 1). Southern hybridization

analysis was performed using DIG labelled probes and detection

system (Roche, USA). The membranes were incubated in hybridi-

zation medium under high stringency conditions. High stringency

washing conditions were performed as recommended by the

manufacturer. Signal was detected by exposure to X-ray film

(Fuji).

Reverse transcription-PCR
Total RNA of A. caninum mixed sex adult worms was extracted

using the Nucleospin RNA II kit (Machery-Nagel, Germany)

according to the manufacturer’s procedures. RT-PCR was

performed using the RobusT II RT-PCR Kit (FINNZYMES,

Finland), primers P118F (59-CTTCTAACGGATAGCTGCGGA

and P118R (59-GGGCGCTCTCTGATCCATCTT) specific for

the bandit transposase based on the sequence of genomic clone

H118 (GenBank accession number DQ377715) spanning nt. 118–

417 (Figure 1), and the following PCR cycling conditions: 42uC for

30 mins and 94uC for 2 mins for the first cycle, 94uC for 1 min,

55uC for 1 min and 72uC for 1.5 mins, for 40 cycles, and finally an

elongation step at 72uC for 10 mins. RT-PCR products were sized

by electrophoresis through a 1% agarose gel. To confirm the

identity of the RT-PCR products, they were transferred to nylon

membranes [22], and probed with a DIG-labelled bandit probe

(residues 152 to 1031 of bandit, shown in Figure 1). Southern

hybridization analysis was performed using DIG labelled probes

and the DIG detection system from Roche. Signals were detected

by exposure to X-ray film (Fuji).

Phylogenetic analysis
The entire transposase ORFs of bandit and other related

elements were employed for construction of the phylogenetic tree.

Alignments of amino acid sequences of functional domains were

accomplished with ClustalW [23] and edited with Bioedit version

5.0.9 [20]. Sequence alignments for phylogenetic analysis

comparing the conserved transposase domains were adjusted as

described previously [24,25]. A phylogenetic analysis was

performed on this sequence alignment using PROTDIST in

PHYLIP packages and a tree was constructed using the neighbor

joining method (PHYLIP, version 3.6 software) [26]. A distance

matrix analysis was also carried out using maximum parsimony.

The resulting phylogenetic trees were displayed using TreeView

[27]. Statistical significance of branching points was evaluated

with 1,000 repetitions in a bootstrap analysis (SEQBOOT). The

predicted protein sequences were obtained directly from the

GenBank entries where provided, otherwise ORFs were predicted

by translating the nucleotide sequences provided in GenBank.

Homology modeling
The transposase ORFs of bandit and Hsmar1 were used as

a query for the Swiss-Model comparative protein modeling server

(http://swissmodel.expasy.org). Homologues of known structure

were sought from the Research Collaboratory for Structural

Bioinformatics (RCSB) Protein Data Bank (http://www.rcsb.org./

pdb/home/home.do). Models were viewed and manipulated in

first approach mode using Swiss-PdbViewer (http://swissmodel.

expasy.org/spdbv).

Results

A mariner-like transposon present in the genome of
A. caninum

A positive clone was identified from an A. caninum genomic

DNA library that was screened with a reverse transcriptase-like

Figure 1. Schematic diagram representing clones and genomic survey sequences (GSS) from public databases which were used to
assemble the consensus sequence of the bandit transposon from the genome of Ancylostoma caninum. Numbers on clones represent the
nucleotide positions within the consensus, full length bandit sequence. GenBank accession numbers of contributing GSS clones are provided.
The sequences of the terminal inverted repeats are presented in the top panel. In clone H118, the black colored region is bandit sequence whereas
the white region on non-bandit encoding DNA.
doi:10.1371/journal.pntd.0000035.g001
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gene probe, clone H118 (GenBank accession number DQ377715).

The clone showed sequence identity with mariner-like transposons

from many eukaryotes including mariner from Homo sapiens and

mariner from Bos taurus. Sequence analysis revealed that clone H118

contained sequence that encoded part of a transposase protein

(Figure 1). The consensus full length transposon was constructed

using clone H118 and multiple GSSs identified by homology

searches from the GenBank database (GenBank accession

numbers CW709686, CZ213904 and CZ241797) (Figure 1). We

termed the new transposon bandit, in keeping with the informal

convention of naming mobile genetic elements with terms

suggestive of a peripatetic lifestyle (e.g. mariner, hobo and

fugitive)[28–30]. Given the present results, the name bandit seemed

appropriate since a bandit is often difficult to apprehend, and in

this present context, it appears that bandit has moved furtively

between hookworms and their mammalian hosts (see below). The

consensus sequence of bandit was 1,285 bp flanked by 32 nt perfect

terminal inverted repeats at each extremity with a common target

site duplication TA (Figure 1 and Figure S1). bandit has one ORF

of 342 amino acid residues encoding for a transposase enzyme.

The bandit transposase contained the conserved DD34D motif that

is found in the active site of the catalytic C-terminal domain of

mariner-like transposons as opposed to the DDE motif found in the

Tc1-like elements [12] (Figure 2). The ORF of the bandit showed

highest similarities to Hsmar1 from human (55% identity, 70%

similarity), Bos taurus (54% identity, 70% similarity) and Tc1 of C.

elegans (41% identity, 58% similarity), HcTc1 of Haemonchus contortus

(22% identity, 42% similarity). On the other hand, no bandit-like

sequences were identified in the National Center for Biotechnol-

ogy Information (NCBI) catalogue of dog sequences (not shown),

indicating that bandit is not of canine origin.

The perfect inverted repeats of 32 bp are the standard length for

mariner-like elements [31] compared with 54 bp for Tc1 from C.

elegans [32] and 55 bp for HcTc1 from H. contortus [33]. In addition

to the catalytic triad, bandit contains most of the additional

canonical features of mariner-like elements (MLEs); the WVPHEL

motif (RVPHEL in bandit) and YSPDLAP (CSPDLSP in bandit)

[34]. However, bandit did not contain the conserved

FLHDNARPH motif that overlaps the second D of catalytic triad

in most MLE transposases. In bandit, this motif is replaced by

a LLHDNARSH motif [35,36] (Figure S1).

Numerous copies of bandit interspersed throughout the
A. caninum genome

Smeared bands of hybridization were evident when a Southern

blot of A. caninum genomic DNA (gDNA) was probed with the

labeled bandit-specific sequence. Xba I and Xho I were used to

cleave the gDNA, and hybridization of each restriction digest to

a bandit-specific probe revealed a smear-like pattern of numerous

bands of hybridization ranging in size from .5-,0.5 kb (Figure 3),

confirming the presence of numerous copies of the bandit

transposon in the genome of natural populations of A. caninum

from north-eastern Thailand. This also suggests that the bandit

element is widely dispersed in the hookworm genome rather than

being localized at just one or a few isolated sites. To more

specifically address the copy number, we queried the A. caninum

GSS in NCBI with the bandit sequence using blastn and tblastx

algorithms. Using blastn, we identified 23 GSS with 87–98%

identity over at least 250 bp. Using tblastx, we identified .200

GSS with .90% identity over at least 50 amino acids (not shown).

The A. caninum GSS are predicted to cover about 15% of the

genome (M. Mitreva, unpublished). Extrapolating from these

numbers there may be between 150–1,500 copies of bandit

dispersed throughout the genome.

bandit is a novel mariner-like transposon of the cecropia
subfamily

A phylogenetic tree was constructed based on the sequence

alignment of the entire transposase ORFs of bandit and 37 other

transposon sequences available in public databases. A neighbor-

joining tree with 1,000 replicates revealed that bandit is most closely

related to Hsmar1 from Homo sapiens (Figure 4). Mariner-like

transposons can be classified into six subfamilies [24,25]. Bandit

formed a clade with elements from the cecropia subfamily with solid

bootstrap support (564), and this diphyletic clade included a branch

containing bandit and three primate-originated MLEs, and a branch

with Funmar1 from the coral Fungia sp., Aamar1 from the atlas moth,

Attacus atlas and Dtmar1 from the planarian, Girardia tigrina. The

appearance of the branches of the cecropia clade was the same when

Figure 3. Southern hybridization analysis of Ancylostoma
caninum genomic DNA to a probe specific for the bandit
transposon. The genomic DNAs were cleaved with endonucleases
Xba I (lane 1) and Xho I (lane 2). Molecular size standards in kilobase
pairs (kb) are shown at the left.
doi:10.1371/journal.pntd.0000035.g003

Figure 2. Multiple sequence alignment of the transposases of bandit with those from related transposons. The position of the catalytic
triad domain DD(34)D/E is indicated. The conserved motifs of mariner-like elements were overlined. Conservation of residues is indicated by the
shading of boxes. The GenBank accession numbers of these aligned transposons are human (Hsmar1, AAC52010), Rhesus monkey (XP_001099426),
G. tigrina (CAA50801), Atlas moth (BAA21826), C. elegans (T23086), Meloidogyne chitwoodi (CAD26968), MOS-1 (AAC16609), Tc1 (P03939), HcTc1
(AAD34306).
doi:10.1371/journal.pntd.0000035.g002

The bandit, a New DNA Transposon from a Hookworm
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Figure 4. Phylogram constructed using the neighbor-joining method to compare the relationships among transposases of the
bandit transposon and of representative mariner-like elements belonging to the Tc1/mariner superfamily of transposons from
a range of host genomes. Representatives of six clades of mariner-like elements including the mori, irritans, mauritiana, and cecropia were
included in the analysis. The elements used in the tree includes Tc1-like (AAD12818) and Tc1 (P03934), T19261, T23086 and AF003149 from C. elegans,
HcTc1 (AAD34306) from Haemonchus contortus, TCb1 (CAA30681) from C. briggsae, Bmmar1 (U47917) and BmMar6 (AAN06610) from Bombyx mori,
Crmar1 (AAK61417) from Ceratitis rosa, Himar1 (ABB59013) mutagenesis vector pFNLTP16H3, Cpmar1 (AAC46945) from Chrysoperla plorabunda,
Damar1 (DAU11648) from Drosophila ananassae, Bytmar1-8 (CAD45868) and Bytmar1-11 (CAD45369) from Bythogreae thermydron, Dtesmar1
(AAC28261) from D. teissieri, Dsecmar1 (AAC16609) from D. sechellia, Mbmar1 (AAL69970) from Mamesta brassicae, Mudmar1 (AK54758) from Musca
domestica, Mos1 (pdb2F7T) from D. mauritiana, XP_001099426 from Macaca mulatta, SETMAR (ABC72092) from Cercopithecus aethiops, Hsmar1
(AAC52010) from Homo sapiens, Aamar1 (BAA21826) from Attacus atlas, Funmar1 (BAB32436) from Fungia sp., Dtmar1 (CAA50801) from Girardia
tigrina, Mcmar1 (CAD26968) from Meloidogyne chitwoodi, Famar1 (AAO12863) from Forficula auricularia, Ammar1 (AAO12861) from Apis mellifera,
Ccmar2 (AAO12864) from Ceratitis capitata, Camar1 (AAO12862) from Chymomyza amoena, Acmar1 (BAB86288) from Apis cerana, Ccmar1
(AAB17945) from Ceratitis capitata. The outgroup included transposases from gram positive and negative bacteria including Bacillus halodurans
(BAA75315), Escherichia coli (AAB28848) and Klebsiella pneumoniae (CAB82575). Bootstrap values, where 500 or greater from a maximum of 1,000
replicates, are presented at the nodes.
doi:10.1371/journal.pntd.0000035.g004

The bandit, a New DNA Transposon from a Hookworm
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either neighbor joining or maximum parsimony (not shown)

methods were employed in tree construction. Indeed, bootstrap

support for the clade that included bandit and the primate elements

was even stronger in the maximum parsimony analysis (982) than

that obtained using the neighbor joining method (723). The

phylogenetic distance between human and hookworm is far greater

than that reflected in the phylogenetic analysis of these transposons,

suggesting to us that bandit is only distantly related to MLEs from

nematodes that are closely related to A. caninum, and is much more

similar to transposons from the hookworm’s mammalian hosts. For

example, the MLE HcTc1 from the trichostrongyle parasite, H.

contortus (a close relative of A. caninum) belongs to the mori clade of

MLEs (Figure 4). The remarkable identity between bandit and the

primate MLEs, Hsmar1 and SETMAR, strongly suggests horizontal

transmission of this element from host to parasite (or vice versa).

Homology models confirm close identity of hookworm
bandit and human Hsmar1 transposons

The catalytic C-terminal domain of the predicted transpose ORF

of bandit was modeled on the crystal structure of the C-terminal

catalytic domain (residues 126–345) of mos1 transposase from

Drosophila mauritiana (pdb accession number 2f7tA). The structural

alignment spanned residues 158–345 of mos1 and 178–342 of bandit.

The general fold of the bandit catalytic domain was highly conserved

with that of mos1 (Figure 5A). The first alpha helix and beta sheet of

the catalytic domain of bandit (including the first catalytic Asp residue)

were too dissimilar to mos1 to be included in the model; however, the

rest of the domain revealed similar active site architecture. Because

bandit is most similar to human Hsmar1 at the primary sequence level

(Figure 4), we also modeled the catalytic domain of Hsmar1

transposase on the crystal structure of mos1. The sequence

conservation between mos1 and Hsmar1 also was high (Figure 2).

Surprisingly, when the key active site residues of the catalytic

domains [37] of bandit and Hsmar1 were compared with those of

mos1, we observed that bandit and Hsmar1 had identical active site

residues but, by contrast, three of these residues had non-

conservative substitutions in mos1 (Figure 5B, C and D).

bandit is transcribed in the parasitic stages of A. caninum
Transcripts encoding the transposase of bandit were amplified by

PCR from cDNA from mixed sex adult hookworms. Products of

the expected size, 300 bp, were amplified (Figure 6), and the

identity of the amplicons was confirmed by sequence analysis and

Southern hybridization using a bandit-specific probe (not shown).

Together with the presence of relatively intact inverted repeats,

this approach indicated that functional domains of the element are

transcribed in the adult hookworm, and suggests that copies of

bandit are active and mobile within the genome of A. caninum.

bandit integrates into non-coding regions of the
A. caninum genome

Sequences flanking the different individual copies of bandit

(from the GSS dataset) were aligned (Figure 7). Blast search

analysis of the 59 and 39 flanking regions of bandit did not show

homology to sequences in the public database. The flanking

DNA was however generally AT-rich and appeared to be of

non-coding origin.

bandit in related hookworm species
Available transcriptomic data of related hookworm species,

A. ceylanicum [8] and N. americanus [21] was explored to identify

putative bandit-like transposons. The similarity search (BlastX)

resulted in identification of a homologous sequence from

A. ceylanicum (contig id AE04671, 44% identity, 64% similarity

over 185 amino acids) and from Necator americanus (contig id

NAC01255, 45% identity, 58% similarity over 91 amino acids)

(data not shown). Based on these interspecific partial matches the

conservation is lower compared to A. caninum bandit and Hsmar 1

(55% identity, 70% similarity), but higher between the A. caninum

bandit and other hookworm bandit-like sequences than with the

HcTc1 from the ruminant blood-feeder H. contortus (22% identity,

42% similarity) or the Tc1 from C. elegans (41% identity, 58%

similarity). Unavailability of the full length ORF of the bandit from

these two related hookworm species contributed to their exclusion

from the above described analysis.

Discussion

A new member of the Tc1/mariner superfamily of DNA

transposons has been characterized from the genome of a parasitic

nematode, and termed bandit. Sequence identity, structure, and

phylogenetic relationships demonstrated that the bandit transposon

belonged to the cecropia sub-family of mariner-like elements (MLEs).

The cecropia clade is populated by transposons from diverse

animal taxa including the cecropia moth [38], a coral [39],

primates including the African green monkey and humans [40]

and now from a hookworm. Earlier reports dealing with members

of this clade have suggested that horizontal transmission has likely

been involved in the present disposition of its members (e.g., [38]).

In like fashion, given that the closest relatives of bandit are Hsmar1

and SETMAR from humans and monkeys, bandit may have been

transmitted to or from hookworms and their primate hosts.

The bandit transposon displayed the structural hallmarks of the

Tc1/mariner superfamily of transposons including an overall length of

,1.3 kb, a single ORF encoding a transposase of 342 amino acid

residues in length, a DD(34)D catalytic motif, duplication of TA

dinucleotide pairs upon insertion and inverted terminal repeats of

32 bp in length [12]. The DD(34)D motif indicated that bandit was

a mariner-rather than a Tc1-family member. Phylogenetic analysis

confirmed that bandit was indeed mariner-like and, remarkably,

indicated that its closest relative was the primate Hsmar1 transposon.

Moreover, homology models established using the crystal structure

coordinates of mos1 transposase (from D. mauritiana) revealed closer

identity between bandit and Hsmar1 than between bandit or Hsmar1

and Mos1 in active site architecture and catalytic domain residues.

The hookworm, A. caninum, is a parasite of dogs but is frequently

found in the human small intestine. Although it does not generally

reach sexual maturity in humans, it may now be evolving this

capacity [41]. Moreover, A. caninum larvae commonly infect

human skin resulting in pruritic dermatitis termed cutaneous larva

migrans [42]. A. caninum is closely related to the anthropophilic

hookworm, Ancylostoma duodenale, and another close relative,

A. ceylanicum, parasitizes both humans and dogs. (The human

hookworms A. duodenale and N. americanus infect more than 700

million people, causing widespread morbidity–primarily iron

deficiency anemia– and mortality [1]). The intimacy of host-

parasite relationships is known to facilitate horizontal transmission

of genetic material [43], and parasitism is known to facilitate

horizontal transmission of transposons. For example, P elements

have been transferred among Drosophila species by a parasitic mite

[44], as have mariner-like elements between parasitic wasps and

their lepidopteran hosts [45]. Since the closest known relative of

bandit is Hsmar1 from humans, and given the parasitic association

between hookworms and primates–the hosts of bandit and Hsmar1,

respectively–it is likely that the presence of bandit and Hsmar1 in

both parasite and host genomes reflects parasitism-facilitated

horizontal transmission.
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After entry into a naı̈ve lineage, an active autonomous MLE

undergoes unrestrained spread through transposition and sexual

exchange for a time until regulatory and/or mutational in-

activation dampens transposition activity and associated deleteri-

ous mutations [46,47]. Given that transcription of bandit was

detected by RT-PCR analysis, and given that the intact integra-

tion footprint of bandit within the hookworm genome remains

readily apparent, it appears that bandit is transpositionally active

within the A. caninum genome. If so, the hypothesized horizontal

transmission of Hsmar1/bandit elements between host and parasite

Figure 5. Homology models of bandit from Ancylostoma caninum and Hsmar1 from Homo sapiens based on the crystal structure of the
mos1 element from Drosophila mauritiana. Ribbon diagram showing the predicted structure of the catalytic domains of bandit and mos1 (A). s1
and h1 refer to b sheet number 1 and a helix number 1 of the mos1 catalytic domain–homologous regions were present in bandit but were not
included in the model. Superimposition of the catalytic active sites of bandit (B) and Hsmar1 (C) on the crystal structure of mos1 highlighting the
residues involved in catalysis. Conserved active site residues are labeled in red font; where bandit or Hsmar1 active site residues differ from mos1, the
substitution is denoted in green font. Yellow arrows denote the three catalytic Asp residues. Numbering of side chains is based on the mos1
sequence. Comparison of the residues predicted to be involved in catalysis from bandit, Hsmar1 and mos1 (D). Residues selected were based on the
crystal structure of mos1.
doi:10.1371/journal.pntd.0000035.g005
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may be a recent event, and since Hsmar1 is now inactive [48], the

direction of the horizontal transfer may have been from host to

parasite.

Eukaryotic genomes generally include substantial amounts of

sequences derived from MGEs, primarily retrotransposons and

transposons. These mobile sequences are drivers of genome

evolution [11]. A number of MGEs have been characterized from

nematode genomes including Tas, a LTR retrotransposon, and

R4, a non-LTR retrotransposon, both from Ascaris lumbricoides

[49,50], mariner-like elements (MLEs) from Trichostrongylus colubri-

formis [51] and the RTE1, NeSL, and Cer retrotransposons from

C. elegans. Recently, it was reported that the A. caninum genome

includes elements with identity to the Transib superfamily of

transposons. In vertebrates, the Transib transposon has mutated to

form the RAG1 protein and recombination signal sequences

involved in catalyzing B and T cell receptor gene V(D)J recom-

bination [52]. Also, recently we described the dingo non-LTR

retrotransposons from the genome of A. caninum [17] and

numerous transcripts encoding reverse transcriptase are evident

in the EST database of A. caninum, A. ceylanicum and N. americanus

hookworms (http://nematode.net), indicating the presence of

endogenous retroviruses or retrotransposons. Based on the

genomes of C. elegans [53] and several parasitic helminths including

schistosomes [54], it is apparent that that the hookworm genome

has been colonized not only by the bandit transposon, but also by

numerous other waves of MGEs. From a practical perspective,

understanding of MGE complexity, diversity and copy numbers

can be expected to facilitate the assembly and annotation of the

hookworm genome sequence (a focus of current genome

sequencing effort, http://nematode.net). Finally, as with other

MGEs, an endogenous hookworm mariner-like transposon such as

bandit holds potential as a transgenesis vector for manipulation of

the hookworm genome, given the ability of other Tc1/mariner

superfamily members such as mos1 to transpose within the

genomes of C. elegans, planarians and other species (e.g., [55–57]).

Supporting Information

Figure S1 Consensus nucleotide and deduced amino acid

sequence of the entire bandit element. Sequence features of the

bandit are indicated within duplicated TA dinucleotides. The

inverted repeats at both ends are highlighted with green. The

ORF starts at the Met encoded at nt. 189 and terminates at the

stop codon at nt. 117, encoding an enzyme of 342 amino acid

residues. Two conserved hallmark motifs of mariner-like elements

[38] are highlighted with grey and the catalytic triad DD34D

residues are indicated by red colored font.

Found at: doi:10.1371/journal.pntd.0000035.s001 (0.03 MB

DOC)

Figure 6. Reverse transcription PCR targeting the bandit
transposon. Transcripts encoding the transposase of bandit were
amplified by PCR from cDNA of the adult mixed sex of A. caninum.
Products of the expected size, 300 bp are indicated with the arrow; lane
1, negative control where reverse transcriptase was omitted from the
reaction; lane 2, empty lane; lane 3, plasmid DNA of clone H118
(positive control); lane 4, cDNA of mixed sex adult hookworms.
Molecular size standards (lane M) are shown at the left.
doi:10.1371/journal.pntd.0000035.g006

Figure 7. Multiple sequence alignment of the nucleotide sequences flanking the insertion sites of copies of the bandit transposons
within the genome of Ancylostoma caninum. Alignments of nucleotide sequences flanking the 59- (A) and 39- (B) termini of bandit. Conservation
of residues is indicated by the shading of boxes. Target sequences, with GenBank accession numbers as indicated on the left, were identified among
entries in the GSS database of A. caninum sequences at GenBank. The target site TA duplications are indicated with asterisks.
doi:10.1371/journal.pntd.0000035.g007
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