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A B S T R A C T

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder. Hydrogen sulfide (H2S), the third
physiological gasotransmitter, is well recognized as an anti-inflammatory mediator in various inflammatory
conditions. Herein, we explored the protective effects of S-propargyl-cysteine (SPRC, also known as ZYZ-802),
an endogenous H2S modulator, on RA and determined the underlying mechanisms. In the present study, SPRC
concentration-dependently attenuated inflammatory mediator expression, reactive oxidase species generation,
and the expression and activity of matrix metalloproteinases (MMP)-9 in interleukin (IL)-1β-induced human
rheumatoid fibroblast-like synoviocytes MH7A. In addition, SPRC blocked IL-1β-mediated migration and
invasion of MH7A cells. As expected, the protective effects of SPRC were partially abrogated by DL-
propargylglycine (PAG, a H2S biosynthesis inhibitor). In vivo study also demonstrated that SPRC treatment
markedly ameliorated the severity of RA in adjuvant-induced arthritis rats, and this effect was associated with
the inhibition of inflammatory response. We further identified that SPRC remarkably induced heme oxygenase-
1 expression associated with the degradation of Kelch-like ECH-associated protein 1 (Keap1) and nuclear
translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); this effect was attributed to the sulfhydryla-
tion of the cysteine residue of Keap1. Our data demonstrated for the first time that SPRC, an endogenous H2S
modulator, exerted anti-inflammatory properties in RA by upregulating the Nrf2-antioxidant response element
(ARE) signaling pathway.

1. Introduction

Rheumatoid arthritis (RA) is a global intractable autoimmune
disease that affects about 1% of the whole world population [1].
Arbitrarily active RA causes joint damage, disability, and reduced life
quality, and patients require a long-term therapy. A common effect of
long-term therapy is the development of resistance to treatment and an
increased occurrence of adverse effects. Hence, a continuous need for
new agents in the therapy of RA is envisaged. Primary and dominant
processes in the etiopathogenesis of RA are autoimmunological me-
chanisms, and pathogenesis of such a disease is also associated with the
formation of free radicals produced by activated macrophages and
neutrophils at the site of inflammation [2,3].

RA is a chronic inflammatory disease, characterized by synovial
proliferation and destruction of articular cartilage at multiple joints
[4,5]. It is believed that fibroblast-like synoviocytes (FLSs), which
secrete synovial fluid and produce cytokines, are thought to play a key
role involving the joint destruction [6]. The overexpression of the
proinflammatory molecules, including cyclooxygenase 2 (COX-2),
intercellular adhesion molecule-1 (ICAM-1), and inducible nitric oxide
synthase (iNOS), are frequently detected in the synovial fluid and
plasma of patients with RA. Matrix metalloproteinases (MMPs) also
contribute to tissue remodeling during inflammation, and the elevated
levels of MMPs in synovial fluid mainly secreted by FLSs may be the
main cause of synovium and cartilage erosion [7–9].

Hydrogen sulfide (H2S), the third endogenous gasotransmitter follow-
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ing nitric oxide and carbon monoxide [10], has multiple effects on
disparate physiological and pathophysiological processes. Endogenous
H2S is generated from cysteine in a reaction catalyzed by three main
enzymes: cystathionine β-synthase (CBS), cystathionineγ-lyase (CSE),
and 3-mercaptopyruvate sulfurtransferase [11]. CSE has been identified
to be the primary enzyme responsible for the generation of H2S in
peripheral organs [12]. The numerous conflicting data concerning about
the role of H2S in inflammation attract increasing attention [13]. Recent
evidence demonstrated that H2S could activate the nuclear factor
erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE)
signaling pathway and upregulate the expression of the antioxidant
protein heme oxygenase-1 (HO-1) [14]. Conversely, in several inflamma-
tion animal models, higher concentration of H2S poses a threat to the
cells, involving the generation of free radical, calcium mobilization,
glutathione depletion, and so on [15]. Exogenous sources of H2S,
NaHS, and GYY4137 (a slow H2S-releasing agent) have shown significant
anti-inflammatory property in the model of osteoarthritis [16–19].

Our previous studies revealed that S-propargyl-cysteine (SPRC, also
known as ZYZ-802), an endogenous H2S modulator, exerted protective
effects against various inflammatory conditions by elevating the level
and the activity of CSE [20,21]. Nevertheless, the role of SPRC in other
inflammatory diseases such as RA is yet to be defined. Considering that
SPRC has antioxidant and anti-inflammatory properties, in the present
study, we attempted to clarify whether SPRC could prevent the
development of autoimmune arthritis and to determine the underlying
mechanisms.

2. Materials and methods

2.1. Materials

Recombinant human IL-1β was purchased from Peprotech (Rocky
Hill, NJ, USA). Freund's adjuvant (FA, heat-inactivated Mycobacterium
tuberculosis) was obtained from Chondrex. 3-(4,5-Dimethylthiazol-2-yl)
-2,5-diphenyl tetrazolium bromide (MTT), DL-propargylglycine (PAG),
2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), 2-aminobicyclo-
2(2,2,1)-heptane-2-caboxylic acid (BCH), and N,N-dimethyl-p-phenyle-
nediamine sulfate were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Antibodies were obtained from the following commercial sources:
MMP-9, IL-6, and ICAM-1 were purchased from Cell Signaling
Biotechnology (Danvers, MA, USA); Keap-1, HO-1, CSE, CBS, Nrf-2,
SOD1, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA); and
antibody against Lamin A/C was obtained from Epitomics (Burlingame,
CA, USA). SPRC was synthesized in our laboratory and purified by
recrystallization from ethanol–water mixture (99%).

2.2. Establishment of arthritis and drug treatment

All animals used in this study received humane care in compliance
with the principles of laboratory animal care formulated by Fudan
University for medical research and the Guide for the Care and Use of
Laboratory Animals. Male Sprague-Dawley (SD) rats weighing 200–
230 g were randomly divided into five groups of eight animals each.
Group 1 served as vehicle control and received an injection of 0.1 ml of
paraffin oil into the left hind paw. All the other groups received a single
subcutaneous injection of 0.1 ml of FA in the palmar surface of the left
hind paw to induce experimental adjuvant-induced arthritis (AIA).
Seven days after injection, the rats were started on various drug
regimens that continued up to 4 weeks. Group 2: assigned as AIA.
Group 3–5: received SPRC (25, 50, or 100 mg/kg, p.o., respectively).
All animals were sacrificed on the 29th day, and ankle joints samples
and serum were collected from all groups. The samples were stored at
−70 °C until use.

2.3. Hind paw volume measurement

The hind paw volume (HPV) of all animal groups was measured by
a plethysmometer at 0, 5, 10, and 20th day after the injection of FA
emulsion. AIA legs of experimental rats were examined, and the
percentage of inhibition was calculated according to the method of
Coelho [14].

2.4. Cell culture

FLS MH7A cell line was gifted by Prof. Zhang Peng (Chinese
Academy of Science, Shenzhen), the cells were purchased from the
Riken cell bank (Tsukuba, Japan). Human acute monocytic leukemia
cell line (THP-1) was obtained from the American Type Culture
Collection (Manassas, VA, USA). THP-1 and MH7A cells were cultured
in Roswell Park Memorial Institute 1640 medium (Hyclone), supple-
mented with 10% fetal bovine serum (Hyclone) and 1% penicillin/
streptomycin in a 5% CO2 humidified atmosphere at 37 °C.

2.5. Cell viability assay

Cell viability was evaluated by the MTT assay as described
previously [22]. In brief, MH7A cells were subcultured in a 96-well
plate at the density of 2×104 cells/ml and then incubated for 12 h. After
incubation with indicated concentration of SPRC for 24 h, final
concentration of MTT (0.5 mg/ml) was added to the cell culture and
incubated for another 4 h. Dimethylsulfoxide was then added to each
well, and the absorbance at 570 nm was measured using a microplate
reader (M1000, TECAN, Austria GmbH, Austria). Fold changes were
finally used to indicate the data normalized.

2.6. H2S concentration measurement

H2S concentration was measured as described previously [23].
Briefly, 500 μl of culture medium from different treated cells was mixed
with 250 μl of 1% zinc acetate in a test tube. Subsequently, N-dimethyl-
p-phenylenediamine sulfate (20 mM, 133 μl) in 7.2 mM HCl and FeCl3
(133 μl) in 1.2 mM HCl were added to this test tube and incubated for
10 min at room temperature. To remove the protein in the culture,
trichloroacetic acid (10% w/v, 250 μl) was added to the reaction, and
the protein was pelleted by centrifugation at 12,000 rpm for 5 min. The
absorbance (670 nm) intensity was measured by a spectrophotometer
(M1000, TECAN, Austria GmbH, Austria). The H2S concentrations of
each sample were calculated against a calibration curve of NaHS
(3.125–250 μM).

2.7. Measurement of serum TNF-α level by enzyme-linked
immunosorbent assay

Plasma obtained from the rats after sacrifice was analyzed for the
concentrations of TNF-α with a commercially available enzyme-linked
immunosorbent assay (ELISA) kit (Boatman Biotechnology, Shanghai,
China) according to the manufacturer's instructions. Optical densities
were read on a microplate reader (M1000, TECAN, Austria GmbH,
Austria) at 450 nm. Results are presented as pg/ml.

2.8. Cell adhesion assay

THP-1 cells were labeled by BCECF-AM (10 μM, Meilune
Biotechnology, Dalian, China) at 37 °C for 1 h in RPMI-1640. The
cells were then washed with culture medium and centrifuged. MH7A
cells grown on glass coverslip were incubated with SPRC (10 μM) with
or without PAG (2 mM) for 1 h and then stimulated with IL-1β (5 ng/
ml) for 12 h. After washing twice with phosphate-buffered saline (PBS),
the labeled THP-1 cells (2×106 cells/ml) were seeded onto MH7A cell
monolayers and incubated for 1 h in a CO2 incubator. The nonadherent
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THP-1 cells were removed by washing with PBS. The cell adhesion was
detected using a fluorescence microscope.

2.9. Cell invasion assay

The invasion assay of MH7A cells was determined as previously
described with modification [24]. MH7A cells were pretreated with
SPRC (10 μM) or together with PAG for 1 h; the cells were then re-
suspended and a total of 2×105 cells in 300 μl of medium with 1% fetal
calf serum were seeded in the upper chamber with 8-μm pore size
membrane. The lower wells of the chamber were filled with medium,
and the chamber was then incubated at 37 °C for 12 h to initiate
migration. Nonmigrated cells were wiped off with a cotton swab, and
the filter was fixed and stained with viola crystalline and counted. The
number of migrated cells in five random microscopy fields per well
were counted at 400× magnification. Experiments were repeated at
least three times, each time in triplicate.

2.10. Intracellular ROS production, GSH levels, and catalase and
glutathione peroxidase activity

Intracellular reactive oxygen species (ROS) generation was detected
using DCFH-DA as described previously with modification [25].
Briefly, MH7A cells were washed with serum-free DMEM and incu-
bated with DCFH-DA (10 μM) for 30 min at 37 °C. The cells were then
washed with PBS, and the fluorescence intensity of ROS production
was first quantified using a fluorescence spectrophotometer (M1000,
TECAN, Austria GmbH, Austria) at excitation and emission wave-
lengths of 485 and 530 nm, respectively. Intracellular ROS production
was also visualized by a fluorescence microscope (Carl Zeiss Inc.).
Relative fluorescence units were normalized to the control cells.

Intracellular activities of reduced glutathione (GSH), catalase, and
glutathione peroxidase (GPx) were determined using commercial kits
(Beyotime Biotechnology, Jiangsu, China). All procedures were per-
formed according to the manufacturer's instructions.

2.11. Gelatin zymography

MMP-9 was assayed for gelatinolytic activity by gelatin zymography
as previously described [26]. Briefly, 8% polyacrylamide gel of 1 mm
thickness containing 1 mg/ml gelatin was used. A total of 20 μl of the
supernatant of MH7A cells was loaded and separated on 10% SDS-
polyacrylamide gels (containing 1 mg/ml gelatin) under nonreducing
conditions. After electrophoresis, the gels were soaked in 2.5% Triton
X-100 for 30 min to remove SDS and incubated in Tris–HCl (50 mM,
pH 7.5) containing CaCl2 (5 mM) and ZnCl2 (1 mM) overnight at 37 °C.
After Coomassie blue staining, white bands of lysis indicated digestion
of the gelatin by MMP-9. The gels were scanned, and the optical density
of the band was analyzed by Image J software.

2.12. Preparation of whole cell extracts and nuclear fraction

For whole cell extraction, cells were washed twice with ice-cold PBS
and lyzed in RIPA buffer with protease and phosphatase inhibitor.
After centrifugation (4 °C, 10 min, 10,000g), samples were prepared
for western blot analysis.

For preparation of nuclear fraction, nuclear proteins of MH7A cells
were extracted using the NE-PER@ Nuclear and Cytoplasmic
Extraction Reagents (ThermoFisher Scientific, Shanghai, China) ac-
cording to the manufacturer's instructions.

2.13. Western blot analysis

Western blot analysis was performed as previously described [27].
Equal amounts (50 μg) of proteins were separated and transferred to a
polyvinyl difluoride membrane. After blocking with 5% nonfat dried

milk, the membranes were probed with antibodies MMP9, IL-6, ICAM-
1, GAPDH, Keap1, Nrf2, SOD1, HO-1, and Lamin A/C and incubated
with either horseradish peroxidase-conjugated goat anti-rabbit or anti-
mouse antibody (1:5000, ThermoFisher Scientific, Shanghai, China).
Immunoreactive proteins were visualized by enhanced chemilumines-
cence and signal intensity was detected and quantified by Alpha Imager
(Alpha Innotech Corp, San Leandro, CA, USA).

2.14. Quantitative real-time reverse transcription polymerase chain
reaction analysis

Total RNA from different treatment MH7A cells was extracted
using Trizol reagent (Takara Biotechnology, Dalian, China) according
to the manufacturer’s instructions. RNA (1 μg) of each sample was
reverse transcribed using the reverse transcription system of Takara.
An equal volume of cDNA was used as a polymerase chain reaction
(PCR) template for determining the mRNA expression level using
SYBR-Green Quantitative PCR kit (Takara Biotechnology, Dalian,
China) by iCycler iQ system (Bio-Rad, Hercules, CA, USA). Human-
specific primers were as follows: GAPDH (forward: 5′-TGTTGC
CATCAATGACCCCTT-3′; reverse: 5′-CTCCACGACGTACTCAGC-3′);
ICAM-1 (forward: 5′- ATGCCCAGACATCTGTGTCC-3′; reverse: 5′-GG
GGTCTCTATGCCCAACAA-3′); IL-6 (forward: 5′- CCTGAACCTTC
CAAAGATGGC-3′; reverse: 5′-TTCACCAGGCAAGTCTCCTC A-3′).
Relative gene expression was calculated by the △△Ct method.

2.15. CSE-shRNA lentivirus generation and infection

The specific Short Hairpin RNA (shRNA) CSE and shRNA-control
(CTR) plasmids were gifted by Prof. Zha (Department of Biochemistry
and Molecular Biology, Fudan University, Shanghai, China). To obtain
the lentivirus, the recombinant plasmid and packaging vectors pΔ8.2
and pVSVG were co-transfected into 293T cells using the transfection
reagent lipofectamine 2000 (Invitrogen, USA). After 48 h, the lenti-
virus in the culture medium was collected by filtration with 0.45-μm
filters. The lentivirus was added to the culture medium with 8 μg/ml
polybrene (Sigma, America). The infection efficiency of lentivirus was
verified by fluorescence microscopy. In experiments with MH7A cells,
1×106 cells were spun and then mixed with 50 μl of concentrated virus.
The cells were incubated for 4 h at 37 °C. Subsequently, MH7A culture
medium (500 μl) was added to prepare a suspension of the infected
cells, and the cells were incubated for additional 72 h. To generate
stable transfected cells, puromycin (3 μg/ml) was added after 72 h of
incubation.

2.16. Small interfering RNA transfection

To introduce Nrf2 small interfering RNA (siRNA) into MH7A cells,
the cells were plated on 6-well plates at 30–50% confluence before
transfection. Individual siRNA (30 nM), lipofectamine RNAiMAX, and
Opti-MEM were mixed and incubated at room temperature for 5 min
siRNA–lipofectamine RNAiMAX complexes were added to cells for
24 h, and the medium was replaced by fresh serum DMEM medium
after transfection. Nrf2 siRNA and scrambled siRNA were purchased
from GenePharma Co. Ltd (Shanghai, China). The following is the
sequence of human Nrf2 siRNA used in this study: sense: 5′-
CGCUCAGUUACAACUAGAUTT-3′; antisense: 5′-AUCUAGUUGUAA
CUGAGCGTT-3′. Experiments were performed 72 h after transfection.
Knockdown of Nrf2 was assessed by western blot assay.

2.17. Statistical analysis

Results of the experimental studies are expressed as mean ±
standard error of the mean (SEM). All data analysis was performed
using GraphPad Prism 5 software (GraphPad, La Jolla, CA, USA).
Statistical analyses were performed by one-way analysis of variance
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with Tukey's test for post hoc comparisons and Student's t-test when
comparing between two groups. Statistical significance was set at p <
0.05.

3. Results

3.1. SPRC inhibited IL-1β-mediated inflammatory mediators in
MH7A cells

To demonstrate the anti-inflammatory activity of SPRC, the effects
of SPRC on inflammatory mediators (IL-6 and ICAM-1) and MMP-9
and its activity were measured in IL-1β-stimulated MH7A cells. As
shown in Fig. 1A and B, IL-1β stimulation resulted in a significant
increase in ICAM-1 expression at mRNA and protein levels, which was
remarkably inhibited by pretreatment with SPRC in a concentration-
dependent manner. Similarly, SPRC also concentration-dependently
suppressed IL-1β-induced IL-6 expression at the mRNA level (Fig. 1C).
SPRC also concentration-dependently reduced IL-1β-mediated MMP-9
expression and its activity (Fig. 1D and E). However, the effects of
SPRC on IL-1β-stimulated MH7A cells were partly abolished by
pretreatment with PAG (a specific CSE inhibitor, Fig. 1A–E). To assess
the potential cytotoxicity of SPRC, cell viability was evaluated by the
MTT assay. As shown in Fig. 1F, SPRC alone at concentration in the
range of 1–200 µM did not affect cell viability after 24 h incubation.
Taken together, our results suggested SPRC exhibited prominent anti-
inflammatory activities in IL-1β-stimulated MH7A cells, but not due to
cytotoxicity.

3.2. SPRC suppressed monocyte adhesion and MH7A cells migration

We first investigated the effect of SPRC on the adhesion of THP-1
cells to IL-1β-activated MH7A cells, a critical inflammatory process in
arthritis. As shown in Fig. 2A, the adhesion of THP-1 cells was
remarkably increased when MH7A cells were stimulated with IL-1β
for 12 h, which was significantly attenuated by SPRC (10 µM) treat-
ment. Next, we examined the migratory potential of MH7A cells treated
without or with SPRC (10 µM) prior to IL-1β exposure. As shown in
Fig. 2B, IL-1β markedly induced the migration of MH7A cells. SPRC
(10 µM) also suppressed IL-1β-induced MH7A cell migration.
Intriguingly, the effects of SPRC on the adhesion of THP-1 cells to
IL-1β-activated MH7A cells and the migration of MH7A cells were
reversed by PAG pretreatment (Fig. 2A and B). Taken together, our
results indicated that SPRC effectively inhibited the adhesion of THP-1
cells to MH7A cells and the migration of MH7A cells, at least in part,
through modulation of the endogenous CSE/H2S pathway.

3.3. SPRC-modulated intracellular redox balance in IL-1β-stimulated
MH7A cells

To elucidate the protective effects of SPRC on IL-1β-induced
cellular injury, intracellular ROS production, SOD1 expression, and
the activities of GSH, catalase, and GPx were measured. As shown in
Fig. 3A, IL-1β stimulation significantly increased intracellular ROS
production, which was evidently ameliorated by SPRC pretreatment in
a concentration-dependent manner. In addition, SPRC treatment
significantly increased intercellular antioxidative capacity, as evidenced
by upregulation of SOD1 expression (Fig. 3B) and activities of catalase
(Fig. 3C), GPx (Fig. 3D), and GSH (Fig. 3E) in IL-1β-stimulated MH7A
cells. SPRC-mediated expression of SOD1 and activities of catalase,
GPx, and GSH in IL-1β-stimulated MH7A cells were also abrogated by
PAG (Fig. 3C). These results indicated that the CSE/H2S pathway was
involved in SPRC-mediated intracellular redox balance in MH7A cells.

3.4. SPRC-modulated CSE expression and endogenous H2S
production

To confirm the involvement of the CSE/H2S pathway in the anti-
inflammation activity of SPRC, the CSE expression and H2S production
in MH7A cells were analyzed. Our results showed that SPRC (10 µM)
or cysteine (CYS, 10 µM) treatment markedly induced CSE expression,
which was abolished by BCH (a competitive L-type amino acid
transporter 1 inhibitor, LAT1) (Fig. 4A). SPRC (10 µM) treatment for
6 h markedly increased H2S level in MH7A cells (Fig. 4B).
Furthermore, CSE expression was silenced by lentiviral CSE shRNA
knockdown strategy. As shown in Fig. 4C, transfection with lentiviral
CSE shRNA, but not scramble shRNA, dramatically reduced CSE in
both MH7A cells and IL-1β-stimulated MH7A cells. As shown in
Fig. 4D–F, SPRC (10 µM) or NaHS (an exogenous H2S donor, 100 µM)
treatment significantly attenuated IL-1β-induced ICAM-1 and MMP-9
expression. However, transfection with lentiviral CSE shRNA upregu-
lated IL-1β-induced MMP-9 expression. Knockdown CSE feedback
increased CBS expression in IL-1β-stimulated MH7A cells. Taken
together, our results clearly demonstrated that SPRC exerted anti-
inflammatory activity in MH7A cells by modulation of the endogenous
CSE/H2S pathway.

3.5. SPRC-induced HO-1 expression by activation of Nrf2 signaling in
MH7A cells

Maintaining high levels of HO-1 is a promising strategy to protect
from inflammation and arthritis [28]. As shown in Fig. 5A and B, SPRC
incubation for 12 h concentration-dependently induced the expression of
HO-1 and Nrf2 protein in IL-1β-stimulated MH7A cells, and IL-1β alone
did not significantly affect HO-1 and Nrf2 expression. However, SPRC-
mediated HO-1 and Nrf2 expression was abolished by PAG pretreat-
ment. SPRC treatment time-dependently induced CSE expression.
Consistent with the increase in CSE expression, SPRC treatment also
time-dependently induced Nrf2 expression and decreased Keap1 ex-
pression (Fig. 5C). In addition, SPRC-mediated increase in Nrf2 protein
expression levels resulted in increased nuclear translocation of Nrf2
(Fig. 5D). However, Nrf2 silencing by siRNA abolished SPRC-mediated
Nrf2 expression, accompanied by decrease in HO-1 and SOD1 expres-
sion and increase in ICAM-1 and COX-2 expression (Fig. 5E).

3.6. SPRC-inhibited inflammatory response and ameliorated
symptoms of arthritis in AIA rats

The effect of SPRC was evaluated in AIA rats, a well-established in
vivo model of inflammatory joint diseases. Supplementation of SPRC
(i.g.) once a day started from day 1 to day 28 after initial immunization.
As shown in Fig. 6A, SPRC treatment dose-dependently attenuated the
severity of AIA. The body weight of each rat was recorded following
arthritis induction. In the present study, the mean body weights of rats
in all groups increased during the experiment and from the beginning
to the end of investigation. However, the model group rats showed slow
weight gain after 1 week immunization. In contrast, the mean body
weights of rats that received SPRC treatment did not show abnormality
compared with the sham group (Fig. 6B). In addition, SPRC (25 mg/
kg) supplementation yielded a slight decrease in paw volume, and
excellent anti-rheumatic activities were observed in the groups given
50 or 100 mg/kg of SPRC (Fig. 6C).

Because inflammatory response is thought to be dominant in the
induction of RA, we monitored the production of TNF-α in the sera and
inflammatory mediators (MMP-9, ICAM-1, and IL-6) in inflamed
joints of AIA rats. As shown in Fig. 6D, the level of TNF-α was
dramatically increased in the sera of AIA rats, which was reduced by
SPRC (25–100 mg/kg) supplementation in a dose-dependent manner.
The expression of MMP-9, ICAM-1, and IL-6 in inflamed joints was
also analyzed. As shown in Fig. 6E, compared with vehicle-treated AIA
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rats, SPRC therapy dose-dependently reduced the expression of MMP-
9, ICAM-1, and IL-6 in inflamed joints. Intriguingly, SPRC treatment
markedly increased the expression of CSE and Nrf2 in inflamed joints
(Fig. 6E).

4. Discussion

H2S, the third gasotransmitter, is considered as the crucial med-
iator of the inflammation process [13,29]. However, the role of H2S in

Fig. 1. SPRC-attenuated IL-1β-induced inflammatory mediators in MH7A cells. MH7A cells were incubated with SPRC or together with PAG (2 mM) for 1 h and then stimulated with
IL-1β (5 ng/ml) for indicated periods, and the mRNA and protein levels of inflammatory mediators were analyzed as described in Section 2. Bar graphs showed quantitative analysis of
the mRNA level (A) and protein level (B) of ICAM-1, the mRNA level of IL-6 (C), the protein level of MMP-9 (D), and the activity of MMP-9 activity (E). (F) MH7A cells were incubated
with SPRC (1–200 μM) for 24 h, and the cell viability was determined by the MTT assay. Data are expressed as mean ± SEM from triplicate experiments. *p < 0.05, **p < 0.01, ***p <
0.001 vs. IL-1β-stimulated cells. ###p < 0.001 vs. SPRC-treated cells.

W.-J. Wu et al. Redox Biology 10 (2016) 157–167

161



inflammation remains controversial because it is reported to have both
inflammatory and anti-inflammatory activities [18,30,31]. Our recent
findings showed that SPRC, an endogenous H2S modulator, exerted
salubrious effects because of its various biological activities, including
antioxidant and anti-inflammatory activities [32,33]. Therefore, we
hypothesized that SPRC played a positive role in RA. In this study, we
found that SPRC remarkably ameliorated inflammatory response in IL-
1β-stimulated FLS and AIA rats associated with the modulation of the
CSE/H2S pathway. We further elucidated that SPRC exerted beneficial
effects in RA in vitro and in vivo and was associated with the activation
of Nrf2 signaling axis and an increase in HO-1 expression, and that this
process requires sulfhydrylation of the cysteine residue of Keap1 by
endogenous H2S.

FLSs, a specialized cell type located in the inner layer of the
synovium, are the main source of synovial fluid and are important in
maintaining the homeostasis of the internal joints. FLSs also play
crucial roles in the damage, destruction, and deformation of cartilage
and joints in the pathogenesis of RA [34]. Activated FLSs exhibit an

aggressive/transformed phenotype and induced and/or enhanced the
production of MMPs and inflammatory mediators in the synovial tissue
and eventually leading to ongoing inflammation and destruction of
cartilage and bone [8,35,36]. Therefore, the activation of FLSs is
generally regarded as a key process in the development of RA. In this
study, we clearly demonstrated that SPRC, an endogenous H2S
modulator, significantly inhibited the IL-1β-induced migration and
adhesion of cells. SPRC also attenuated IL-1β-mediated ICAM-1, IL-6,
and MMP-9 expression and MMP-9 activity. Consistent with the results
in vitro, we further confirmed that SPRC downregulated the produc-
tion of pro-inflammatory cytokines and ameliorated the symptoms of
arthritis in AIA rats. CSE represents the prominent enzyme for the
generation of H2S in peripheral organs [37]. Consistent with our
previous studies [38,39], in the study, SPRC treatment markedly
enhanced the expression of CSE and level of H2S in vitro and in vivo.
This was associated with decreased inflammatory response and ame-
liorated knee joint swelling in AIA rats. However, pharmacological
inhibition or knockdown strategy of CSE reversed the anti-inflamma-

Fig. 2. SPRC-inhibited IL-1β-induced adhesion of THP-1 cells and migration of MH7A cells. MH7A cells were pre-incubated with SPRC (10 μM) or together with PAG (2 mM) for 1 h
and stimulated with IL-1β for another 12 h, and the adhesion of THP-1 on MH7A cells and migration of MH7A cells were analyzed as described in Section 2. (A) Representative images
show that cell adhesion detected by a fluorescence microscope (magnification, 100×). (B) Representative images and quantitative analysis of migration of MH7A cells (magnification,
200×). Data are expressed as mean ± SEM from triplicate experiments. ***p < 0.001 vs. IL-1β-stimulated cells. ###p < 0.001 vs. SPRC-treated cells.

W.-J. Wu et al. Redox Biology 10 (2016) 157–167

162



tory activities of SPRC. Taken together, our findings established that
SPRC attenuated inflammatory response in RA associated with the
modulation of the CSE/H2S pathway.

The role of oxidative stress is represented by a significant increase
in the concentration of ROS in RA patients [40,41]. Oxidative stress
plays a crucial role in the development of arthritis; ROS distinctly
contribute to the destructive, proliferative synovitis of RA and play a
prominent role in cell signaling events [41]. In addition, several
previous studies have showed higher total oxidative stress in RA
patients. Intriguingly, supplementation of antioxidants or modulation
of intracellular antioxidative capacities has been shown to ameliorate
arthritis in animal models [40,41]. In the present study, IL-1β

stimulation significantly attenuated intracellular antioxidative process.
However, SPRC significantly enhanced intracellular antioxidative ca-
pacities in IL-1β-stimulated FLS, as evidenced by the increase in CAT,
GPx, and GSH activities as well as SOD1 expression and decrease in
intracellular ROS production. Importantly, the beneficial effects of
SPRC on intracellular antioxidative ability were blocked by PAG
treatment, indicating SPRC-modulated intracellular redox balance
through the CSE/H2S signaling pathway. HO-1, a member of the
family of heat shock protein, is an important anti-inflammatory,
antioxidative, and cytoprotective enzyme that is regulated by the
activation of the major transcription factor Nrf2 [42,43]. Another
major finding of the present study relates to SPRC-mediated upregula-

Fig. 3. SPRC-modulated intracellular redox balance in IL-1β-stimulated MH7A cells. (A) MH7A cells were pretreated with SPRC (10 μM) or together with PAG (2 mM) for 1 h and then
stimulated with IL-1β (5 ng/ml) for 24 h, and intracellular ROS production was analyzed as described in Section 2. H2O2 stimulation served as positive control. Representative images
and quantitative analysis of intracellular ROS production (control set as 1) are shown. MH7A Cells were pretreated with indicated concentration of SPRC or together with PAG for 1 h,
and stimulated with IL-1β (5 ng/ml) for 24 h, and the activities and expression of intracellular antioxidative enzymes were analyzed as described in Section 2. Bar graphs showed
quantitative analysis of the expression of SOD1 (B) and activities of catalase (C), GPx (D), and GSH (E), GAPDH was used as a loading control for western blot analysis. Data are
expressed as mean ± SEM from triplicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001 vs. IL-1β-stimulated cells; ###p < 0.001 vs. SPRC-treated cells.
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tion of HO-1 expression in association with reduced inflammatory
response in vivo and in vitro. However, SPRC-mediated HO-1 expres-
sion was abolished by Nrf2 silencing in IL-1β-stimulated FLS. The
results were consistent with the report that of HO-1 is upregulated by
transcriptional factor Nrf2 [44]. Interestingly, our data showed that
SPRC significantly increased the expression and nuclear translocation

of Nrf2 and promoted degradation of Keap1, which were reversed by
pharmacological inhibition or knockdown strategy of CSE. Considering
that HO-1 acts as a regulator of inflammatory response, it is con-
ceivable that the upregulation of HO-1 by SPRC, an endogenous H2S
modulator, was involved in the regulation of inflammatory response in
RA by activation of the Nrf2/ARE pathway.

Fig. 4. Modulation of endogenous H2S by SPRC contributed to anti-inflammation activity in IL-1β-stimulated MH7A cells. (A) After pre-incubation with BCH for 1 h, MH7A cells were
treated for 24 h with or without SPRC or CYS. Bar graph showed quantitative analysis of CSE expression; data are expressed as mean ± SEM from triplicate experiments. ***p < 0.001 vs.
untreated cells; & &p < 0.01 vs. SPRC-treated cells; #p < 0.05 vs. CYS-treated cells. (B) MH7A cells were incubated by SPRC (10 μM) for indicated time, curve chart showed quantitative
analysis of H2S level in the culture medium. Data are expressed as mean ± SEM from triplicate experiments. ***p < 0.001 vs. untreated cells; (C) MH7A cells were transfected with
lentiviral scrambled shRNA or CSE shRNA; the representative image shows silencing efficiency of CSE. GAPDH was used as a loading control. (D) MH7A cells were transfected with
lentiviral CSE shRNA or scrambled shRNA and then stimulated with IL-1β for 24 h with or without SPRC (10 μM) or NaHS (100 μM). Western blot result and quantitative analysis of
MMP-9, ICAM-1, and COX-2 expression are shown; data are expressed as mean ± SEM from triplicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001 vs. IL-1β-stimulated cells; %p <
0.05 vs. NaHS-treated cells.
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Fig. 5. SPRC-induced HO-1 expression by activation of Nrf2 signaling in MH7A cells. (A) MH7A cells were pretreated with SPRC (0.1–10 μM) or together with PAG for 1 h and then
stimulated with IL-1β (5 ng/ml) for 24 h; western blot result and quantitative analysis of Nrf2 and HO-1 expression are shown. Data are expressed as mean ± SEM from triplicate
experiments. *p < 0.05, **p < 0.01, ***p < 0.001 vs. IL-1β-stimulated cells; ###p < 0.001 vs. SPRC (10 μM)-treated cells. (B) MH7A cells were incubated with 10 μM SPRC for indicated
time; western blot result and quantitative analysis of Nrf2, CSE, and Keap1 expression are shown. Data are expressed as mean ± SEM from triplicate experiments. *p < 0.05, **p < 0.01,
***p < 0.001 vs. unstimulated cells; (D) MH7A cells pretreated with SPRC (1 or 10 μM) with or without PAG (2 mM) for 1 h, and then stimulated with IL-1β (5 ng/ml) for another 4 h;
western blot result and quantitative analysis of Nrf2 in cytosolic and nuclear fractions, respectively, are shown. GAPDH and Lamin A/C were used as loading controls for cytosolic and
nuclear fractions, respectively, and data are expressed as mean ± SEM from triplicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001 vs. unstimulated cells. (D) MH7A cells were
transfected with lentiviral scrambled siRNA or Nrf siRNA and then stimulated with IL-1β (5 ng/ml) for 24 h after incubation with SPRC (10 μM); the representative image shows
silencing efficiency of Nrf2 and the expression of HO-1, SOD1, ICAM-1, and COX-2 expression. GAPDH was used as a loading control, and data are from triplicate experiments.
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5. Conclusions

In conclusion, this study highlighted the role of SPRC supplemen-
tation in inflammatory response in IL-1β-stimulated FLS and AIA rats,
and showed that SPRC treatment suppressed inflammatory mediators
in IL-1β-stimulated FLS and AIA rats, at least in part, through
modulation of Nrf2/HO-1 and CSE/H2S signaling. Therefore, the
results of this study suggested that SPRC has the potential for beneficial
therapeutic interventions for RA.
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