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Abstract: Positioning is considered one of the key features in various novel industry verticals in
future radio systems. Since path loss (PL) or received signal strength-based measurements are widely
available in the majority of wireless standards, PL-based positioning has an important role among
positioning technologies. Conventionally, PL-based positioning has two phases—fitting a PL model
to training data and positioning based on the link distance estimates. However, in both phases,
the maximum measurable PL is limited by measurement noise. Such immeasurable samples are
called censored PL data and such noisy data are commonly neglected in both the model fitting
and in the positioning phase. In the case of censored PL, the loss is known to be above a known
threshold level and that information can be used in model fitting and in the positioning phase. In
this paper, we examine and propose how to use censored PL data in PL model-based positioning.
Additionally, we demonstrate with several simulations the potential of the proposed approach for
considerable improvements in positioning accuracy (23–57%) and improved robustness against PL
model fitting errors.

Keywords: positioning; path loss; path loss model; maximum-likelihood estimation; censored data;
localization; shadow fading; wireless networks; probabilistic modeling

1. Introduction
1.1. Motivation

Radio-based positioning has rapidly grown into one of the most significant features in
future wireless networks. As stated in the specifications of the upcoming 5th generation
of new radio networks in [1], positioning is considered part of basic network capability,
and it offers a wide variety of performance requirements tailored to specific needs of
numerous use cases and industry verticals. Path loss (PL) or received signal strength
(RSS)-based positioning, studied earlier, for example, in [2–8], enables low-cost positioning
capability. PL-based positioning is especially useful for use cases with limited power
and computational resources. In addition, PL-based positioning can introduce additional
support to various other high-precision positioning and tracking solutions. As shown,
for example, in [8,9] PL or RSS positioning can provide increased positioning accuracy,
availability, stability or reliability when combined with other methods. Since PL and RSS
are power-related measurements, they are typically continually measured and monitored
in mobile networks over multiple base stations (BS) to support mobility management and
other radio resource management functionalities. Thus, PL-based positioning can rely on
regular reference signals of the underlying communications system without introducing
any additional training overhead due to positioning capability. However, due to a chal-
lenging and highly dynamic propagation environment, PL-based positioning methods are
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typically limited to positioning accuracy of tens or hundreds of meters in outdoor cellular
networks [3,5,6].

Conventionally PL-based positioning has two phases (e.g., [3–5]): (i) fitting a PL
model to training data, if such training data are available, and (ii) determining link distance
estimates based on the PL model and calculating the position estimate. Channel measure-
ments can be used to measure the training data and then a PL model can be fitted to the
data [3,10–13]. The PL model describes the link distance dependency and the variation from
the expected value, i.e., shadow fading (SF). Sometimes training data may be unavailable
and the PL model can be taken from a standard channel model, e.g., [14]. In practice, the
maximum measurable PL is limited by measurement noise. Therefore, in both the training
data and in the positioning it may happen that the PL value cannot be determined. In that
case, the PL is known to be more than the noise threshold level. When data above or below
a certain range are immeasurable, meaning that all data above or below a certain range are
counted, but not measured, the term is censored data [10,11,13,15–18]. The PL model can
be fitted to censored data by using Tobit maximum likelihood estimation (MLE) [10,11,13].
Just as in the training phase, the noise threshold limits the maximum PL in the positioning
phase. When PL measured from a certain BS is larger than the noise threshold, the true
location is likely to be far from the BS, and the true distance is subject to the distance
dependence of the PL and the threshold level. Therefore, measuring PL at the positioning
phase is censoring data in the same fashion as in the case of the training data. Censored PL
can be taken into account in the likelihood function in the positioning phase [3,13,19–23].
Likelihood function examples of a measured and censored PL are presented in Figure 1.
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Figure 1. Likelihood function illustration example in 1D: measured path loss (PL) of 130 dB to BS1,
censored PL > 140 dB to BS2, and the combined likelihood function. Note that one measured and
one censored PL are sufficient to get a unique positioning solution and the same is true in 2D and 3D.

1.2. Contributions

The censored PL data (may) exist in both the training phase and the positioning phase.
Therefore, in terms of taking or not taking into account the censored samples, there are four
options. In [10], fitting without the censored data is called ordinary least squares (OLS)
fitting, as opposed to the Tobit MLE. Similarly, for the positioning there is the ordinary
positioning, using only the distance estimates from the contacted BSs, which we now call
ordinary trilateration positioning (OTP). Then, there is the option to include the censored
data with Tobit MLE positioning. The four options are [13]:
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• OLS-OPT, with ordinary least squares fitting to the training data and the ordinary
trilateration positioning.

• MLE-OPT, with Tobit MLE fitting to the training data and the ordinary trilateration
positioning.

• OLS-MLE, with ordinary least squares fitting to the training data and the Tobit MLE
positioning.

• MLE-MLE, with Tobit MLE fitting to the training data and the Tobit MLE positioning.

Traditionally, distance estimates between two sources in one dimension (e.g., corridor),
three sources in two dimensions (e.g., antennas at about the same height), or four sources
in the typical three dimensions, are needed to give a unique position estimate. When the
censored PLs are included, this requirement is loosened significantly, as only one contacted
and one censored source are needed to give the unique position estimate. The one contacted
BS provides one distance estimate (two points in 1D, circle in 2D, or sphere in 3D) and the
censored BS selects the furthest point as the unique position estimate. An example in 1D is
presented in Figure 1.

To the best of the authors’ knowledge, this is the first time (1) the effect of the noise-
limited censored path loss data has been studied in both phases of the PL model-based
positioning and both phases are explicitly written as Tobit MLE; (2) a selection criterion ac-
counting for BSs with censored PL in the positioning phase is presented; and (3) the reduced
amount of information needed for a unique positioning solution is noted. We examine the
influence of including the censored data through simple simulations. The simulations use
a typical log-distance PL model and illustrate the potential of the proposed approach for
considerable improvements in positioning accuracy. Three different realistic PL distribu-
tions are considered, including examples in which line-of-sight (LOS) and non-line-of-sight
(NLOS) follow different distributions according to [14]. Additionally, the dependence on
the noise threshold level and LOS detection probability is examined. Usually, in positioning
the antennas are, or are assumed to be, omnidirectional [2–9,19–23]. In this paper, the
positioning simulations compare omnidirectional and directional BS antennas assuming a
simple antenna model.

1.3. Extension

This paper is an extended version of the authors’ conference paper [13]. In this ex-
tended paper, we present more examples and a more extensive analysis demonstrating the
influence of the censored PL on positioning in a wide range of radio channel conditions.
The conference paper is extended as follows: (1) more examples with realistic PL distri-
butions, one with the model parameters taken from a measurement campaign and one
using the 3GPP path loss model for urban microcellular scenarios at 2 and 28 GHz; (2) a
selection criterion for the BSs with censored PL; (3) the reduced amount of information
needed for a unique positioning solution is noted; (4) examples with different LOS and
NLOS PL distributions; (5) examination of the influences of the noise threshold value and
LOS detection probability.

1.4. Organization of This Paper

The remainder of the paper is organized as follows: The noise-limited PL is explained
in more detail in Section 2. Section 3 lists the path loss, antenna models, and three examples
of PL distributions used in this study. In Section 4, the PL model is fitted to simulated
training data. The PL model fitting results are in Section 5. Positioning with or without the
censored PL is examined in Section 6 and the positioning simulation results are presented
in Section 7. Finally, conclusions are given in Section 8.

2. Noise-Limited Path Loss and Positioning

In this section, we present some definitions and prior works related to PL-based
positioning. These include the definitions of RSS and PL, the determination of a PL value,
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and a review of prior works on the two phases of PL-based positioning with noise-limited
PL (or RSS). The PL and antenna models used in this study are then presented in Section 3.

Path loss is the inverse of small-scale-averaged path gain between the base station (BS)
and the mobile station (MS) calculated as the instantaneous local channel gain averaged
over the small-scale fading. The positioning can be done based on RSS or PL. Provided
that the RSS is small-scale averaged, the only relevant difference is that for PL the transmit
power needs to be known. In both cases, the measured RSS or PL is noise limited, and it is
therefore censored data. Noise-limited RSS is under the receiver noise threshold level and
noise-limited PL is over the path loss noise threshold. In this paper, the notation is given
for PL, but the methods and equations apply also for RSS positioning with minor changes.

The instantaneous local channel gain is the difference between transmitted and re-
ceived power, and importantly, it includes the small-scale fading, i.e., multipath fading.
For PL, the small-scale-averaging can be performed by averaging over traveled distance,
time, antenna elements, or frequency. If the multipath powers can be resolved, the PL
can be calculated as the inverse of sum of the multipath powers. Measurement of RSS or
the multipath powers is limited by noise which affects the PL values in case of poor or
limited signal to noise ratio (SNR). Therefore, even when calculating a single PL value the
data are truncated [24] or censored [25]. Reference [24] examines how to calculate PL from
instantaneous RSS that is truncated by noise. In [25], the detectable multipaths are limited
by the measurement noise, and therefore, the sum of the multipath powers is censored
data. Naturally, a PL measurement can also be unaffected by noise when the SNR is good
or simply censored by the noise power when the measurement is practically only noise.
For simplicity, in this paper, we assume that the PL values are either available or censored
by noise.

Censored PL samples are typically ignored as outages and are not taken into account,
which can lead to significant error in the PL model distribution. The censored PL samples
can be taken into account when fitting the PL model to the training data using Tobit
MLE [10,11,13]. For example, in [10] it is shown with measured path loss data that by
ignoring the censored samples the slope of the PL model, i.e., path loss exponent, is
drastically underestimated at 1.3 instead of 2.2. Thus, it is important to use the Tobit MLE
when fitting the model to the training data. Note that ignoring the censored PL data in the
training phase may lead to a similarly erroneous PL model as when getting the model from
the literature without conducting the laborious training measurements.

In the training data, there are two types of data samples—ones with measured PLs and
those with PLs larger than the threshold. In the positioning phase, there are two types of
data samples—ones with distance estimates and ones with distance estimates more than
a threshold distance. The noise-limited measurements can be taken into account in the
positioning phase [3,13,19–23]. In [20,22,23], the likelihood of connecting or not connecting
to a BS is taken into account in the case of time-of-arrival (TOA) positioning. In [20], it is
noted that the audibility information resolves most of the ambiguity when a unique solution
is not available with less than three signals measured in 2D. Reference [19] proposes a
likelihood function for failing to detect a device in the case when the received power is
below a threshold value. The noise level is taken into account in the likelihood function
using proximity and quantized RSS positioning in [21]. Two-phased RSS-based positioning
method is presented in [3]. In [3], the data are binned and truncated, i.e., rounded to the
closest dBm and only a limited number of strongest signals are available, and the incomplete
data are taken into account in both phases. In this paper, unlike in [3,19–23], we frame
both the training and the positioning phase as Tobit MLE, and we examine the influence of
including or not including the censored PL in both phases.

It should be noted that (nearly) all positioning methods have the potential to include
the noise-limited censored data. In this work, we focus on the probabilistic PL positioning
since censored PL has a simple interpretation as the probability of measuring only noise.
Any measurement, e.g., Doppler and angle-of-arrival (AoA) [26], not just PL or RSS, is
potentially unavailable due to noise and the likelihood that a censored measurement could
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in principle be included. Notably, at a relatively short distance, e.g., in case of neighbor
discovery [27], censoring does not happen. Additionally, e.g., in wireless sensor networks
(WNSs) [28,29] positioning is based on measuring link distance estimates with RSS and/or
TOA. As such measurements are limited by noise, the availability or unavailability has a
similar link distance-dependent probability as does censored PL.

3. Path Loss and Antenna Model

A PL model describes the probability distribution as a function of the link distance,
and possibly, also as a function of frequency, BS height, etc. The model has two parts—a
model for the expected value and a model for SF, i.e., the variation from the expected value.
The expected value is typically modeled as a simple linear function of the logarithm of the
link distance and the SF is modeled as a zero-mean log-normal distribution. If needed, the
SF model may include the auto-correlation function and correlation distance. Usually, the
standard deviation of the SF, σ, is assumed to be a constant, e.g., [14], but it can be also
a function of the link distance [11]. In channel models, such as [14,30], there are two
models, one for the line-of-sight (LOS) scenario and one for the non-line-of-sight (NLOS)
scenario, depending on whether the line-of-sight is clear of obstacles. In positioning,
typically there is no distinction between LOS and NLOS, and the same model is used for
both—e.g., [2–9,13,19,21–23].

Path loss-based positioning always has two PL distributions that may be more or less
different. These are the true PL distribution and the PL model fitted to training data and
used in the positioning to estimate the link distances based on the measured PL to the BSs.
The purpose of the training phase is to attain accurate information on the PL distribution.
In practice, there are several possible reasons why the model used in the positioning phase
may either underestimate or overestimate the link distances as compared to the true PL
distribution. In this paper, we examine one such reason, namely, the effect of ignoring the
noise-limited censored PL data.

A simple log-distance PL model is assumed as follows:

PL(d) = PL(d) + S, (1)

PL(d) = 10· α· log10(d/d0) + β, (2)

where S is the zero-mean shadow fading with variance σ2, PL(d) is the link distance-
dependent expected path loss, and d0 = 1 m is a reference distance. Equation (2) has
two free parameters: path loss exponent α and floating intercept point β, which can be
interpreted as the mean PL at d0. Parameters α, β, and σ can be attained by fitting the model
to measurement data or, e.g., taken from a channel model. Additionally, other PL models
exist, such as the close-in (CI) reference model, where β is fixed to free-space path loss at
the reference distance [31,32], and the dual slope model in which the path loss exponent
changes after a break point [11,14]. In this work, we use the single-slope log-distance PL
model (1) and (2) when fitting the model to training data and in the positioning phase.
It should be noted that the methods presented in this paper are not limited only to the
single-slope model.

Models such as [14] also define SF correlation properties. SF inter-site cross-correlation
is small for widely spaced sites and large for closely spaced BSs [33,34]. Therefore, we
use zero correlation between BS sites and the same SF for different beams of the same
BS location. In this work, we do not use any tracking algorithm, and therefore SF auto-
correlation function and correlation distance are not defined.

In the case of a directive antenna, we approximate

PL(d, θ) = PL(d)− G(θ), (3)

PL(d, θ) = 10· α· log10(d/d0) + β− G(θ) + S, (4)
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where G(θ) is the antenna gain pattern. A simple BS antenna pattern from [14,35] is used:

A(θ) = −min(12(θ/θ3dB)
2, 20 dB), (5)

where min(·) denotes the minimum function, θ is the offset angle from boresight, and θ3dB
is the antenna half-power beam-width. The relative sidelobe level is fixed at a constant
20 dB below the maximum gain. Antenna gain G(θ) is the A(θ) normalized for unit gain,
i.e., for same total radiated power as with an omni-directional antenna with G(θ) = 0 dB.
The BS is assumed to cover 360◦ with N antenna beams with 3 dB beam overlap, i.e.,
θ3dB = 360◦/N. Examples of the omnidirectional and directive antenna patterns are
illustrated in Figure 2. Only the omni-directional and 8-sector BS antennas (N = 8, θ3dB =
45◦, max(G) = 9 dB) are taken as examples in this paper. The MS has omni-directional
antenna. The approximation (3) assumes that (most of) the power is near the direct line
between BS and MS. More accurately, the antenna gain is applied to the multipaths that may
arrive/depart at any angle [14]. Additionally, the user effect, e.g., [36–38], and polarization
of antennas and the radio channel, e.g., [18], are ignored in this study. Nevertheless,
the simplistic approximation is assumed, as it allows simple simulations with directive
antennas to examine the influence of the noise-limited censored PL.
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Figure 2. Antenna gain as a function of the offset angle θ. The directive beam patterns have beam-
width of θ3dB = 360◦/N.

In the simulations conducted in this study, we considered three example PL distribu-
tions that were used to create the true PL samples in both training and positioning phases.
These examples were:

• Example 1, in which, the parameter values are selected as approximate median values
given in 3GPP model [14] for various environments including both LOS and NLOS in
both outdoor and indoor environments. For simplicity we do not distinguish between
LOS and NLOS, nor do we specify the used radio frequency. The model (1) and (2) is
used with parameters α = 4, β = 60 dB, σ = 7 dB, and noise threshold at 140 dB [13].

• Example 2 is similar to Example 1, except that the parameter values were taken from
a channel measurement campaign [10]. In [10], the parameters, when the censored
PL data points are taken into account, are α = 2.2, β = 51 dB, σ = 7.6 dB, and noise
threshold at 95 dB.

• Example 3, the third example is the 3GPP path loss model for urban microcellular
scenarios at 2.0 GHz and 28 GHz frequencies [14]. The model is a dual-slope model
with different parameters for LOS and NLOS. The LOS-state is defined by a link
distance-dependent LOS probability model.

In all of the examples, we assume that the PL statistics are stationary and use the
same PL model for all BSs [5,12,30,39]. The BS antenna is either an omni-directional or
an eight-sector directive antenna that covers 360◦ with θ3dB = 45◦ and max(G) = 9 dB.
The model-fitting results are presented in Section 5 and the positioning simulations in
Section 7.
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4. Censored Path Loss and Model Fitting

The first phase of the two-phase PL model-based positioning is the measurement of
training data and fitting the model to the data. Training data consist of Ns samples of PL
and the corresponding linked distances. In OLS fitting, only these measurable PL samples
are used. In the case of noise-limited censored PL, the link distance is known and PL is
more than the threshold limit PL∗. Using Tobit MLE, the censored PL samples can be taken
into account [10,11,13].

The likelihood of measuring PL is [10]

l(PL) = (1/σ)φ((PL− PL)/σ), (6)

where σ is the standard deviation (std) of the shadow fading, and PL is the expected
path loss model. Here, φ(·) is the standard normal probability density function (PDF).
The log-likelihood function for known PL samples at distances di is

LLF =
Ns

∑
i=1

(
− ln σ + ln φ

(
PL(di)− PL(di)

σ

))
, (7)

where Ns is the number of uncensored data samples. The likelihood of measuring PL > PL∗

is [10]
l(PL > PL∗) = 1−Φ((PL∗ − PL)/σ), (8)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distribu-
tion. The log-likelihood function for censored samples at distances di is

LLF∗ =
N∗s

∑
i=1

ln
(

1−Φ

(
PL∗ − PL(di)

σ

))
, (9)

where ∗ refers to censored data; i.e., N∗s is the number of censored data points.
The path loss parameters are then estimated as the minimum of the negative of the

log-likelihood function. For the OLS fitting, the censored samples are not used; i.e.,

[α̂, β̂, σ̂] = argmin
α,β,σ
{−LLF)}, (10)

where parameter estimates are marked with ·̂; i.e., α̂, β̂, and σ̂. The MLE fitting uses
both (7) and (9) as

[α̂, β̂, σ̂] = argmin
α,β,σ
{−(LLF + LLF∗)}. (11)

Therefore, the only difference is whether the censored data are used or not. In Section 7,
the influence of noise-limited PL in model fitting is then examined by comparing position-
ing error statistics using the OLS fitted model and MLE fitted model.

It should be noted that, e.g., in the case of a very small ratio of σ/α or if only very
short link distances exist in the training data, then the OLS and MLE fitted models can be
practically identical. In practice, in many typical radio channel conditions, there is a wide
range of link distances where there is a relatively large probability of censored PL.

Path loss-based positioning can be done also without the training phase. In that case,
the PL model parameters can be taken, e.g., from a standard channel model. The OLS
fitting result can be seen as serving double duty, both as the OLS fitting result and as a
(rather poor) example of an educated guess in the absence of training data.

5. Model Fitting Results

The single-slope log distance PL model (1) and (2) was fitted to training data. The train-
ing data were created using the PL distribution defined in the three examples. The model
fitting results are presented and analyzed in Sections 5.1–5.3. In all these examples, for
simplicity, the training data were created assuming omnidirectional antennas at both ends
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of the link and with a large sample size. Large sample size is needed to avoid uncertainty
in the parameter estimates [5,10]. Additionally, a uniform distribution of distances was
used [11,40].

5.1. Example 1

In this example the true PL distribution is the log-distance PL model (1) and (2) with
the parameters α = 4, β = 60 dB, σ = 7 dB, and noise threshold 140 dB [13]. The PL
distribution, threshold level, and the fitted models are illustrated in Figure 3. Note that
the figure shows only samples of measurable PL data points but the link distances and the
number of noise-limited censored PL data points are also known.

Training data were created with a uniform distribution of distances between 20 and
500 m. The PL model was fitted to the data using OLS or Tobit MLE. With OLS the noise-
limited censored data are ignored and with MLE all data are taken into account. The fitted
PL models are illustrated in Figure 3 and the parameter estimates are listed in Table 1. The
OLS fitting underestimates PL distribution for large link distances because there are more
censored samples above the true mean, and as they were omitted the expected value was
lowered. The OLS fitting gives parameter estimates α̂ ≈ 2.5, β̂ ≈ 83 dB, and σ̂ ≈ 5.7 dB.
The MLE gives parameter estimates α̂ ≈ 4, β̂ ≈ 60 dB, and σ̂ ≈ 7 dB. The MLE estimates
are very close to the true values α = 4, β = 60 dB, and σ = 7 dB. As can be seen, ignoring
the censored samples can lead to significant errors in the PL model distribution. The same
conclusion was made in [10,11], and in this paper, we study the effects on positioning
accuracy.
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Figure 3. Fitting the path loss model to the training data with OLS (green) and MLE (red)—Example
1 (α = 4, β = 60, σ = 7) and Example 2 (α = 2.2, β = 51). Training data with PL under the noise
threshold are shown with black dots, solid lines show PL(d), and the dash lines are PL(d)± 1.96σ̂.

Table 1. Fitted ordinary least squares (OLS) and maximum likelihood estimation (MLE) parameter
estimates for Example 1 (α = 4, β = 60, σ = 7) and Example 2 (α = 2.2, β = 51, σ = 7.6).

α̂ β̂ σ̂

Example 1
OLS 2.5 83 5.8

MLE 4.0 60 7.0

Example 2
OLS 1.3 63 5.6

MLE 2.2 51 7.6

The noise threshold level PL∗ limits the maximum path loss that can be measured.
The expected PL reaches the 140-dB level at a link distance of 100 m. Therefore, PL at
that distance has a 50% probability of being immeasurable, i.e., censored. Due to the
large shadow fading, σ = 7 dB, there is significant probability of censored PL between 40
and 220 m, i.e., where the dash lines PL(d)± 1.96σ cross the noise threshold of 140 dB in
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Figure 3. The OLS and MLE fitted models give the same expected PL at a link distance of
about 37 m. Therefore, for most reasonable link distances the OLS model underestimates
the expected PL, i.e., overestimates the link distance for a given PL. With MLE, the link
distance corresponding to PL = PL∗ is 100 m and with the OLS fitted model, it is about
170 m. The OLS fitted model predicts a significant probability of censored PL between 63
and 490 m (PL(d)± 1.96σ).

5.2. Example 2

In Example 2, the PL parameters for the single-slope log-distance PL model were taken
from a measurement campaign [10]. In [10], the MLE parameter estimates are α̂ = 2.2,
β̂ = 51, and σ̂ = 7.6, and we used these parameters as the true values. The noise threshold
is PL∗ = 95 dB. The OLS fitting without the censored data gives α̂ = 1.3, β̂ = 63, and
σ̂ = 5.6 [10]. The fitted PL models are illustrated in Figure 3; the training data were created
with a uniform distribution of distances between 10 and 200 m. The parameter estimates
are summarized in Table 1.

The true PL distribution and the MLE fitted model predict a significant probability of
censored PL between 21 and 470 m (PL(d)± 1.96σ). The OLS fitted model overestimates
this range to 430–2200 m link distance range. This overestimation is clearly larger than in
Example 1 due to smaller path loss exponent α.

5.3. Example 3

The 3GPP TR 38.901 channel model includes PL models for various scenarios from 0.5
to 100 GHz [14]. In this paper, we use this model for the urban microcell scenario at 2 and
28 GHz frequencies. The model describes the PL distributions for LOS and NLOS and the
LOS probability model.

The LOS probability depends on the link distance:

PrLOS =

{
1 , d < 18 m
18 m

d + exp
(
− d

36 m

)(
1− 18 m

d

)
, 18 m < d.

(12)

The LOS probability is 100% up to 18 m, 50% at 52 m, 10% at 189 m, and 1% at 1800 m.
In LOS, the expected PL is

PLLOS =

{
PL1 , 18 m < d < d′BP

PL2 , d′BP < d < 5000 m
(13)

PL1 = 32.4 + 21 log10(d) + 20 log10( fc) (14)

PL2 = 32.4 + 40 log10(d) + 20 log10( fc)− 9.5 log10((d
′
BP)

2 + (hBS − hUT)
2), (15)

where fc is frequency in GHz, hBS is the base station height, hUT is the user terminal height,
and d′BP is the break point defined as [14]

d′BP = 4h′BSh′UT fc/c0, (16)

where h′BS = hBS − 1 m and h′UT = hUT − 1 m, fc is the frequency in Hz, and c0 is the speed
of light. We assume hBS = 10 m and hUT = 2 m. The breakpoint distances are 240 and
3400 m at 2 and 28 GHz, respectively. Therefore, within reasonable link distances, at 2 GHz
the LOS PL model is a dual-slope model with path loss exponent 2.1 up to 240 m and 4.0
for longer link distances.

In NLOS, the expected PL is

PLNLOS = max (PLLOS, PL′NLOS), (17)

where
PL′NLOS = 35.3 log10(d) + 22.4 + 21.3 log10( fc)− 0.3(hUT − 1.5 m), (18)
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and PLLOS is given by (13). The NLOS PL model has a path loss exponent of 3.53 and
stronger frequency dependency than the LOS model.

The shadow fading is modeled as a zero-mean log-normal distribution with σ = 4 dB
in LOS and σ = 7.82 dB in NLOS.

Training data were created with a uniform distribution of distances between 20 and
3000 m and divided into LOS and NLOS according to the LOS probability. The training
data, fitted models, and noise threshold levels are illustrated in Figure 4 for LOS and NLOS
at 2 and 28 GHz. Noise threshold levels of 120 and 140 dB were used at 2 and 28 GHz,
respectively. The parameter estimates are summarized in Table 2. In LOS, censored PL,
with the chosen PL∗ and maximum link distance range, is rare, and therefore, the OLS and
MLE fitted models are quite similar. In NLOS, there is a clear difference between OLS and
MLE, just as in Examples 1 and 2 presented in Sections 5.1 and 5.2.
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Figure 4. Fitting the path loss model to the training data with OLS (green) and MLE (red); Example
3, 2 GHz LOS, 2 GHz NLOS, 28 GHz LOS, 28 GHz NLOS. Training data with PL under the noise
threshold are shown with black dots, solid lines show PL(d), and the dash lines are PL(d)± 1.96σ̂.

Table 2. Fitted OLS and MLE parameter estimates for Example 3 at 2 and 28 GHz.

α̂ β̂ σ̂

2 GHz

LOS
OLS 2.8 27 4.5

MLE 3.0 23 4.7

NLOS
OLS 2.2 56 6.3

MLE 3.5 29 7.8

28 GHz

LOS
OLS 2.1 61 4.0

MLE 2.1 61 4.0

NLOS
OLS 2.1 81 6.2

MLE 3.5 53 7.8
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Again, let us look at where the fitted models cross the noise threshold level. At both
frequencies the MLE fitted model for NLOS matches the true PL distribution at PL = PL∗

and PL(d)± 1.96σ = PL∗. These distances are 140, 390, and 1100 m at the 2 GHz frequency
and 110, 290, and 800 m at 28 GHz. Similarly to examples 1 and 2, the OLS fitted model
overestimates these as 220, 820, and 3000 m in the 2 GHz case and as 170, 640, and 2400 m
at 28 GHz. The accuracy of the model at the threshold level becomes relevant when
these models are used in the positioning phase to define likelihood functions for BSs with
PL > PL∗.

6. Censored Path Loss and Positioning

Path loss model-based positioning is based on getting distance estimates from mea-
sured PL to BSs with known locations. For a given distance the PL model describes a
probability distribution for PL, or inversely a PL value gives a distribution for the link
distance. The width of the distribution is proportional to shadow fading. In ordinary
trilateration positioning (OTP), distance estimates to contacted BSs are used to trilaterate
the positioning estimate.

When fitting the model to training data, the censored PL is a measurement result at a
known link distance and PL known to be more than the noise threshold level. In positioning,
censored PL is an uncontacted BS due to PL larger than the threshold. Therefore, the
minimum link distance has a probability distribution associated with the noise threshold
level. Thus, failing to contact a given BS has position information as it means that the
true position is unlikely to be close to that particular BS. Figure 1 illustrates examples of
likelihood functions associated with measured PL and censored PL. Next, we will frame
the positioning problem as a Tobit maximum likelihood estimation (MLE) in a similar
manner as in the case of fitting the PL model to training data.

Let us first write the log-distance as q = 10 · log10(d/d0), then the expected distance is

q(PLi, θi) = (PLi − β + G(θi))/α, (19)

q∗(θi) = (PL∗ − β + G(θi))/α, (20)

where PLi is the measured PL to ith base station (or beam), PL∗ is the noise threshold, q∗

is the corresponding log-distance, and the standard deviation corresponding to shadow
fading is σ/α. qi is the log-distance from point (x, y) to BSi (or beam) and θi is the beam
offset angle.

The log-likelihood function for known measured PL at point (x, y) is

LLF =
NBS

∑
i=1

(
− ln

σ

α
+ ln φ

(
qi − q(PLi, θi)

σ/α

))
, (21)

where NBS is the number of BSs (or directive beams) with measured PL under the noise
threshold. The log-likelihood function for censored PL at point (x, y) is

LLF∗ =
N∗BS

∑
i=1

ln
(

1−Φ

(
q∗(θi)− qi

σ/α

))
, (22)

where N∗BS is the number of BSs (or directive beams) with censored PL. The position
estimate (x̂, ŷ) is derived as the minimum of the negative of the log-likelihood function.
For the OTP positioning, the censored samples are not used; i.e.,

[x̂, ŷ] = argmin
x,y
{−LLF)}. (23)

The MLE positioning uses both (21) and (22) as

[x̂, ŷ] = argmin
x,y
{−(LLF + LLF∗)}. (24)
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Thus, the only difference is whether or not the location information from the noise-
limited censored PL data is used. In Section 7, the influence of noise-limited PL in model
fitting is then examined by comparing positioning error statistics using the OLS fitted
model and MLE fitted model.

Far away, uncontacted BSs have no effect on the positioning result, and therefore,
it is useful to limit the BSs that are considered. In principle, the considered BSs should
be chosen based on the properties of the likelihood functions, i.e., based on the PL model.
In practice, of course, the database of known BS locations is also limiting which BSs can
be considered. In this work, we propose to limit the considered censored BSs to an area
around the OTP result with a radius equal to the link distance where the PL model predicts
PL(d)− 1 · σ = PL∗. This limit was chosen due to a small performance difference observed
between selection criteria PL(d) − 1 · σ = PL∗ and PL(d) − 2 · σ = PL∗. Importantly,
the OLS and MLE fitted models give different radii for the area. The OLS fitted models
systematically overestimate the link distances related to PL∗, and therefore, OLS-MLE
includes many more censored BSs than MLE-MLE.

7. Positioning Simulation Results

The four options, with and without the censored data, were compared by conducting
simulations in a regular BS grid, following a hexagonal layout. The true PL values were
calculated based on the three examples, and positioning simulation results are presented
and analyzed in Sections 7.1–7.3. The positioning is based on PL model derived, in
Sections 5.1–5.3, either by OLS or by MLE. Positioning is done either with OTP or with
Tobit MLE, as presented in Section 6. Therefore, the four options are OLS-OTP, MLE-OTP,
OLS-MLE, and MLE-MLE. Positioning error is the distance between the true position and
the estimated position. These statistics are based on 10,000 samples with random true
locations and different realizations of SF. In all examples, two BS antennas are considered,
omni-directional (N = 1) and directional beams with eighth beams (N = 8 and θ3dB = 45◦).
A few BS grid densities are considered where the distance between BSs, dBS, is selected
such that an average number of contacted BSs, NBS, is, e.g., 5.0. It is assumed that the
signals from the BSs do not interfere and the BS locations and beam directions are known.

Before we analyze the positioning error statistics, let us look at the likelihood function
illustrations presented in Figures 5 and 6. These figures were calculated assuming that the
true PL follows the distribution in Example 1 and positioning using OLS and MLE fitted
models presented in Section 5.1. In Figure 5a is the LLFi of a single contacted BS with an
omnidirectional antenna where the highest likelihood is found on a ring around the BS.
In Figure 5b is the LLF∗i of an uncontacted BS showing a low likelihood close to the BS.
Figure 5c,d shows the corresponding examples with single directive antennae where the
likelihood functions are stretched by the antenna gain pattern. Figure 6 shows an example
of the sum of the likelihood functions in one location using the four options. In this example,
the distance between BSs is 245 m, BSs antennas have eight beams (N = 8, θ3dB = 45◦), and
three BSs are contacted with a total of four beams (PL < PL∗). The positioning errors are
81, 72, 9, and 14 m for OLS-OTP, MLE-OTP, OLS-MLE, and MLE-MLE, respectively. Using
MLE, positioning results in smaller and narrower likelihood function optimum. Let us
compare OLS-OTP, Figure 6a, and OLS-MLE, Figure 6c. The OTP result is to the right-hand
side to the true location, and the the closest uncontacted BSs are on the right side of the
OTP result at (xBS, yBS) = (385, 521) and (430, 123). In MLE positioning these BSs are
taken into account, which corrects the positioning away from the uncontacted BSs and thus
reduces the error. Thus, MLE positioning can, at least sometimes, compensate for the error
resulting from the OLS fitted model, which overestimates the link distances.
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Figure 5. Likelihood function illustrations: (a) measured PL and omnidirectional antenna, (b) cen-
sored PL and omnidirectional antenna, (c) measured PL and directive beam (N = 8), (d) censored PL
and directive beam (N = 8). White is likely, gray is possible, and black is an unlikely location.

Figure 6. Likelihood function illustrations: true location (+), position estimate (×), base stations (BSs;
stars), contact with three BSs with directive antennas (N = 8) at (xBS, yBS) = (302,324), (547,363), and
(146,516). White is likely, gray is possible, and black is an unlikely location.(a) OLS-OPT: ordinary
least squares fitting and trilateration positioning. (b) MLE-OPT: Tobit MLE fitting and the ordinary
trilateration positioning. (c) OLS-MLE: ordinary least squares fitting and the Tobit MLE positioning.
(d) MLE-MLE: Tobit MLE fitting and the Tobit MLE positioning.
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7.1. Example 1

In this section, we analyze the positioning results assuming the true PL follows the
Example 1 distribution. The OLS and MLE model fitting results are presented in Section 5.1
and positioning is based on (4) with parameters from Table 1 and PL∗ = 140 dB. Three BS
grid densities are considered, leading to an average of 2, 3, or 5 contacted BSs. Each average
number of contacted BSs, NBS, corresponds to a constant distance between neighbours dBS.
Two BS antennas are considered, omni-directional and directional beams with N = 8 and
θ3dB = 45◦. Positioning error 50th and 90th percentiles are listed in Table 3 and three of the
error CDFs are presented in Figure 7.
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Figure 7. CDF of positioning error of Example 1. Model fitting to training data with ordinary least
squares (OLS-) or Tobit MLE fitting (MLE-) and positioning with either ordinary trilateration (-OTP)
of Tobit MLE positioning (-MLE). (a) N = 1, NBS = 2; (b) N = 8, NBS = 2; (c) N = 8, NBS = 5.

The considered BSs with censored PL are limited to an area around the OTP result with
a radius equal to the link distance where the PL model predicts PL(d)− 1 · σ = PL∗. This
radius depends on the PL model. With the MLE fitted model, this is 150 m and with the OLS
it is 300 m. The OLS fitted model overestimates the large link distances, and therefore, more
censored BSs are taken into account with OLS-MLE than with the MLE-MLE. For example,
in the case of NBS = 5 and N = 8, OLS-MLE includes an average of 13 censored BSs
and MLE-MLE includes only an average of 2.9. Note that in this example the positioning
error statistics do not change significantly even if more censored BSs are included. When
comparing OLS-MLE and MLE-MLE there are two effects. First, the OTP positioning based
on OLS fitted model creates typically larger error than the OTP positioning based on MLE
fitted model. Second, a larger number of censored BSs accounted for in case of OLS-MLE
may correct the error caused by positioning with OLS fitted model, whereas in case of
MLE-MLE a smaller number of censored BSs being included may be sufficient.

The BS grid density affects the positioning accuracy. In a regular hexagonal grid, the
distance between BSs is constant. The positioning error with the directive antennas is
smaller than with the omnidirectional antennas, and similarly, with the denser BS grid
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the errors are smaller. These trends apply to all the presented cases and also for the other
examples of the true PL distribution.

In all of the simulated cases, OLS-OTP is the worst. It is the worst-case scenario with
the PL model that does not fit the reality and has positioning that does not use all the
available information. For example, with omnidirectional antennas and NBS = 2, the
median errors are 60, 43, 43, and 42 m for OLS-OTP, MLE-OTP, OLS-MLE, and MLE-MLE,
respectively. In this case, there is a 29% improvement from OLS-OTP to MLE-MLE.

Using MLE in either phase improves accuracy. The best example of this is a dense
BS grid with NBS = 5 and the directive antennas resulting in the 90th percentile error of
74 m with OLS-OTP and a 42–55% improvement to about 43–33 m with MLE in either or
both phases (see Table 3). When using the noise-limited censored PL with MLE in both
phases, MLE-MLE is in general the most accurate option. The improvement from OLS-OTP
to MLE-MLE ranged from 29% (from 60 to 42 m with N = 1 and NBS = 2) to 55% (from 53
to 24 m with N = 8 and NBS = 2) for the median error and from 24% (from 149 to 114 m
with N = 1 and NBS = 2) to 56% (from 101 to 45 m with N = 8 and NBS = 3) for the 90th
percentile.

Table 3. Positioning error, in meters, 50th and 90th percentiles of Example 1. Base stations have
omnidirectional (N = 1) or directional antennas (N = 8) and the average number of contacted BSs
is NBS = 2, 3, or 5.

NBS 2 3 5 2 3 5

N 1 1 1 8 8 8

dBS 159 129 100 245 199 154

50% 90% 50% 90% 50% 90% 50% 90% 50% 90% 50% 90%

OLS-OTP 60 149 43 108 29 77 53 137 34 101 20 74

MLE-OTP 43 117 29 72 20 48 27 88 19 59 14 43

OLS-MLE 43 116 28 72 20 44 25 64 19 44 14 33

MLE-MLE 42 114 28 69 19 43 24 69 18 45 13 34

Lastly, let us compare MLE-OTP to OLS-MLE. The median and the 90th percentiles
are close to each other. In MLE-OTP, the positioning is based on the correct PL model but
the censored PL is not used in the positioning phase. In OLS-MLE, the censored PL is
used in the positioning phase with MLE, but the OLS fitting results in wrong parameter
estimates, as shown in Section 4. As pointed out earlier, the OLS fitting result can be also
interpreted as (a rather poor) educated guess in the absence of training data. Using MLE in
the positioning phase compensates for the poor PL model. Therefore, it can be concluded
that if the noise-limited censored PL is taken into account in the positioning phase, the
training phase is perhaps not needed, or at least, the training phase is not very critical
when MLE positioning is used.

7.2. Example 2

In this section, we analyze the positioning results while assuming the true PL fol-
lows Example 2’s distribution. The OLS and MLE model fitting results are presented in
Section 5.2 and positioning is based on (4) with parameters from Table 1 and PL∗ = 95 dB.
Two BS grid densities are considered, leading to an average of five or ten contacted BSs.
Two BS antennas are considered, omni-directional and directional beams with N = 8 and
θ3dB = 45◦. Positioning error 50th and 90th percentiles are listed in Table 4 and three of
the error CDFs presented in Figure 8. The BSs with censored PL around the OTP results,
OLS-OTP and MLE-OTP, are included if they lie withing 85 and 220 m in case of OLS-MLE
and MLE-MLE, respectively. For example, in the case of NBS = 5 and N = 8, OLS-MLE
includes an average of 21 censored BSs and MLE-MLE includes only an average of 1.2.
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Table 4. Positioning error, in meters, 50th and 90th percentiles of Example 2. Base stations have
omnidirectional (N = 1) or directional antennas (N = 8) and the average number of contacted BSs
is NBS = 5 or 10.

NBS 5 10 5 10

N 1 1 8 8

dBS 459 325 515 420

50% 90% 50% 90% 50% 90% 50% 90%

OLS-OTP 96 251 66 164 101 228 64 146

MLE-OTP 71 182 46 105 61 168 34 90

OLS-MLE 82 352 49 259 49 236 28 78

MLE-MLE 69 190 45 106 47 149 28 77
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Figure 8. CDF of positioning error of Example 2. Model fitting to training data with ordinary least
squares (OLS-) or Tobit MLE fitting (MLE-) and positioning with either ordinary trilateration (-OTP)
of Tobit MLE positioning (-MLE). (a) N = 1, NBS = 5; (b) N = 8, NBS = 5; (c) N = 8, NBS = 10.

The relative performances of OLS-OTP, MLE-OTP, OLS-MLE, and MLE-MLE are the
same as in Example 1. Using MLE in either case reduces the positioning errors; OLS-OTP
is the worst and MLE-MLE is the best method. For example, in the case of NBS = 5 and
omnidirectional BS antennas, the improvement in median error is 35% or 28% for Examples
1 and 2, respectively. The errors are larger in Example 2 than in Example 1 due to larger
σ/α, i.e., larger standard deviation of the expected log-distance (19). The improvement
from OLS-OTP to MLE-MLE ranged from 28% (from 96 to 69 m with N = 1 and NBS = 5) to
57% (from 64 to 28 m with N = 8 and NBS = 10) for the median error and from 24% (from
251 to 190 m with N = 1 and NBS = 5) to 47% (from 146 to 77 m with N = 8 and NBS = 10)
for the 90th percentile.
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It can be noted that in this example, the tail end of the error CDF of OLS-MLE is lower
than in any other result in this paper. For example, with NBS = 5 and N = 1 the 90th
percentile error is 352 m. This shows that occasionally, with a small number of contacted
BSs (and large σ/α), MLE positioning can cause larger errors when the PL model does
not fit the true distribution. In this example, the OLS fitted model overestimates the large
link distances more than in Examples 1 and 3. In this example, because the link distance
overestimation is so large, it could be beneficial to include more censored BSs in the case
of OLS-MLE. For example, in case of NBS = 5 and N = 1, the OLS-MLE 90th percentile
error is 246 m with a 2300 m radius (PL(d)− 2 · σ = PL∗) and an average of 760 censored
BSs around the OLS-OTP result. Apparently, the MLE positioning may help only if the
overestimation in the link distances is not excessively large.

7.3. Example 3

In this section, we analyze the positioning results assuming the true PL follows the
Example 3 distribution, given in Section 5.3, at 2 and 28 GHz. The OLS and MLE model
fitting results for LOS and NLOS are presented in Section 5.3. The positioning is based
on (4) with parameters from Table 2 and PL∗ = 120 dB and 140 dB at 2 and 28 GHz,
respectively. The noise threshold is varied for one 2 GHz case to test the performance with
different cutoff values. The LOS probability (12) is used to determine the LOS/NLOS state
for the BSs. For simplicity, we assume that the LOS detection probability is 100% and the
appropriate LOS or NLOS model parameters are used. BSs with censored PL are assumed
to be in NLOS. In practice, the LOS state needs to be detected [41–43]. One 28 GHz case
is presented with 100%, 95%, 90%, 85%, and 80% LOS detection rates in the positioning
phase. LOS detection error leads to using LOS model parameters in NLOS, or NLOS
parameters in LOS, and therefore, severe overestimation or underestimation of the link
distances, respectively.

Two BS grid densities are considered, leading to an average of five or ten contacted
BSs, and two BS antennas are considered, omnidirectional and eight directional beams
with N = 8 and θ3dB = 45◦. The numbers of detected LOS and NLOS BSs depend on the
average total number of contacted BSs, BS antenna, frequency, and the noise threshold.
For example, NBS = 10 and the eight-sector directional antennas (N = 8) the average
number of contacted LOS BSs is 1.2 or 2.1 at 2 and 28 GHz, respectively. At 2 GHz, BSs
with censored PL around the OTP results are included if they lie within 1600 and 640 m
(OLS-MLE and MLE-MLE, respectively). At 28 GHz, these numbers are 1300 and 480 m.
For example, at 2 GHz in the case of NBS = 5 and N = 8, OLS-MLE includes an average of
17 censored BSs and MLE-MLE includes an average of only 2.2.

Positioning error 50th and 90th percentiles are listed in Tables 5 and 6, and four of
the error CDFs are presented in Figure 9. At 2 GHz, the improvement from OLS-OTP to
MLE-MLE ranged from 27% (from 73 to 53 m with N = 8 and NBS = 10) to 44% (from 139
to 77 m with N = 8 and NBS = 5) for the median error and from 40% (from 434 to 259 m
with N = 1 and NBS = 5) to 52% (from 392 to 188 m with N = 8 and NBS = 5) for the 90th
percentile. At 28 GHz, the improvement from OLS-OTP to MLE-MLE ranged from 25%
(from 54 to 40 m with N = 8 and NBS = 10) to 46% (from 107 to 58 m with N = 8 and NBS = 5)
for the median error and from 36% (from 394 to 253 m with N = 1 and NBS = 5) to 51%
(from 198 to 98 m with N = 8 and NBS = 10) for the 90th percentile.

Even though the underlying PL model is quite different than in Examples 1 and 2, the
influence of the noise-limited PL is the same. Usually the error percentiles in Tables 3–6
are lower for OLS-MLE than MLE-OPT. This indicates that including the censored PL is
more critical in the positioning phase than in the training phase. Of course, if possible, the
MLE-MLE method should be used when possible. The influence of including the noise-
limited PL in the positioning phase is much greater from OLS-OTP to OLS-MLE compared
to MLE-OTP to MLE-MLE. In other words, including the censored PL in positioning is
especially effective for correcting or compensating for the difference between the OLS fitted
model and the true PL distribution. When the PL model fits well, the influence of MLE
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positioning is clearly smaller and can be mostly seen in the 90th percentiles of MLE-OTP
and MLE-MLE. For example, at 28 GHz with N = 8 and NBS = 5, the 90th percentile error
is reduced by 21% from MLE-OTP to MLE-MLE.

Table 5. Positioning error, in meters, 50th and 90th percentiles of Example 3 (2 GHz) with variable
noise threshold level PL∗. Base stations have omni-directional (N = 1) BS antennas and the average
number of contacted BSs is NBS = 5.

PL∗ 120 dB 125 dB 130 dB 135 dB 140 dB

dBS 459 m 623 m 846 m 1164 m 1600 m

50% 90% 50% 90% 50% 90% 50% 90% 50% 90%

OLS-OTP 168 434 234 595 316 801 425 1063 554 1396

MLE-OTP 114 265 158 377 218 525 302 716 416 987

OLS-MLE 114 279 154 361 206 500 283 683 395 950

MLE-MLE 110 259 150 351 203 485 283 674 391 929

Table 6. Positioning error, in meters, 50th and 90th percentiles of Example 3 (28 GHz) with variable
LOS detection probability in the positioning phase Ppos. Base stations have directional antennas
(N = 8) and the average number of contacted BSs is NBS = 10.

Ppos 100 95 90 85 80

50% 90% 50% 90% 50% 90% 50% 90% 50% 90%

OLS-OTP 54 198 64 258 78 357 98 458 126 548

MLE-OTP 42 117 50 183 61 270 74 341 96 436

OLS-MLE 38 92 41 126 47 196 55 288 66 403

MLE-MLE 40 98 45 148 53 244 63 329 78 421
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Figure 9. CDF of positioning error of Example 3. Model fitting to training data with ordinary least
squares (OLS-) or Tobit MLE fitting (MLE-) and positioning with either ordinary trilateration (-OTP)
of Tobit MLE positioning (-MLE). (a) 2 GHz, N = 1, NBS = 5, (b) 2 GHz, N = 8, NBS = 5, (c) 28 GHz,
N = 8, NBS = 5, (d) 28 GHz, N = 8, NBS = 10.
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Positioning error 50th and 90th percentiles are listed in Table 7 for noise cutoff levels
varying from 120 dB to 140 dB at 2 GHz, N = 1, and NBS = 5. Since the average number
of contacted BSs is fixed, the higher threshold levels lead to larger distance between
the BSs. With larger PL∗, and larger dBS, the errors are larger but quite stable when
compared to dBS. For example, with MLE-MLE the median error is a constant 24% of the
dBS. The improvement from OLS-OTP to MLE-MLE ranged from 29% (from 554 to 391 m
with PL∗ = 140 dB) to 36% (from 234 to 150 m with PL∗ = 125 dB) for the median error
and from 33% (from 1396 to 929 m with PL∗ = 140 dB) to 41% (from 595 to 351 m with
PL∗ = 125 dB) for the 90th percentile. Therefore, performance improvement by using MLE
is not sensitive to the noise cutoff level.

Positioning error 50th and 90th percentiles are listed in Table 8 for positioning-phase
LOS detection probabilities Ppos. The detection probability is varied from 100% to 80% at
28 GHz, N = 8, and NBS = 10. For simplicity, detection probability is 100% in the training
phase and same PL model parameters can be used. LOS detection errors cause larger
positioning errors since wrong PL model parameters are used. With worse Ppos the relative
improvement from OLS-OTP to MLE-MLE increases for the median but decreases for the
90th percentile. The improvement from OLS-OTP to MLE-MLE ranged from 25% (from 54
to 40 m with Ppos 100%) to 38% (from 126 to 78 m with Ppos 80%) for the median error and
from 23% (from 548 to 421 m with Ppos 80%) to 51% (from 198 to 98 m with Ppos 100%) for
the 90th percentile. Therefore, the results demonstrate improved positioning performance
when the noise-limited censored PL is taken into account also in the case of LOS detection
errors.

Table 7. Positioning error, in meters, 50th and 90th percentiles of Example 3 (2 GHz). Base stations
have omnidirectional (N = 1) or directional antennas (N = 8) and the average number of contacted
BSs is NBS = 5 or 10.

NBS 5 10 5 10

N 1 1 8 8

dBS 253 207 160 113

50% 90% 50% 90% 50% 90% 50% 90%

OLS-OTP 168 434 104 273 139 392 73 250

MLE-OTP 114 265 73 162 86 240 57 156

OLS-MLE 114 279 73 158 76 184 50 119

MLE-MLE 110 259 70 150 77 188 53 132

Table 8. Positioning error, in meters, 50th and 90th percentiles of Example 3 (28 GHz). Base stations
have omnidirectional (N = 1) or directional antennas (N = 8) and the average number of contacted
BSs is NBS = 5 or 10.

NBS 5 10 5 10

N 1 1 8 8

dBS 390 276 565 399

50% 90% 50% 90% 50% 90% 50% 90%

OLS-OTP 158 394 97 250 107 295 54 198

MLE-OTP 110 258 68 160 66 195 42 117

OLS-MLE 109 275 66 146 59 144 38 92

MLE-MLE 107 253 64 144 58 154 40 98
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8. Conclusions

In this paper, we have shown that the noise-limited censored PL data can be used in
the training and positioning phases of PL model-based positioning. The censored data,
i.e., when PL is larger than the noise threshold, can be taken into account using Tobit MLE
when fitting the model to the training data and also in the positioning phase.

Three different PL distribution examples are used as the true PL. Simulations com-
pared PL model fitting and positioning results both without and with the noise-limited
PL data. The results show that if the censored PL is omitted in the training phase, then
the fitted PL model overestimates the long link distances. It is also shown that when the
censored PL is taken into account, the fitted model matches the true distribution well.
Positioning simulations were conducted with a simple log-distance law PL model. The
results show improved positioning accuracy when the censored PL is properly taken in to
account with MLE. A selection criterion based on PL model properties was presented that
limits the number of BSs in the MLE positioning. The positioning error median and 90th
percentile were reduced by 23% to 57% when MLE is used in both phases as compared to
when it is omitted in both. Positioning error reductions were demonstrated in a wide range
of radio channel properties. These included different path loss exponents, omnidirectional
and directional BS antennas, and different BS grid densities. Additionally, separate distri-
butions for LOS and NLOS, various noise threshold values, and LOS detection probabilities
were considered. The results also indicate that if the censored PL is taken into account in
the positioning phase, then the accuracy of the PL model fitting to training data becomes
far less important. With the improved accuracy and robustness against PL model fitting
errors, the PL-based positioning show good promise, especially if combined with other
high-precision positioning and tracking methods.
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