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A B S T R A C T   

A plenty of cytochrome P450s have been annotated in the Daldinia eschosholzii genome. Inspired by the fact that 
some P450s have been reported to catalyze the carbon-nitrogen (C–N) bond formation, we were curious about 
whether hybrids through C–N bond formation could be generated in the indole-3-carbinol (I3C) exposed culture 
of D. eschscholzii. As expected, two skeletally undescribed polyketide-indole hybrids, designated as indolpoly-
ketone A and B (1 and 2), were isolated and assigned to be constructed through C–N bond formation. Their 
structures were elucidated by 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined 
by comparing the recorded and calculated electronic circular dichroism (ECD) spectra. Furthermore, the plau-
sible biosynthetic pathways for 1 and 2 were proposed. Compounds 1 and 2 exhibited significant antiviral ac-
tivity against H1N1 with IC50 values of 45.2 and 31.4 μM, respectively. In brief, compounds 1 and 2 were 
reported here for the first time and were the first example of polyketide-indole hybrids pieced together through 
C–N bond formation in the I3C-exposed culture of D. eschscholzii. Therefore, this study expands the knowledge 
about the chemical production of D. eschscholzii through precursor-directed biosynthesis (PDB).   

1. Introduction 

Microbes and plants produce diverse natural products (also called 
secondary metabolites), which remain an important source of medi-
cines, pesticides and chemical tools [1,2]. In particular, the central 
significance of natural products as prime starting molecules for the drug 
discovery is reflected both by the fact that half of all the new chemical 
entity-based drugs introduced in the last three decades—540 out of 
1073—are ‘nature-derived’ [3]. With the development of society, the 
demand for new compounds for drug discovery pipelines has become 
more and more urgent. To address the issue, several strategies have been 
developed, such as bioactivity-guided isolation [4], engineering strate-
gies [5], and genome-focused approaches [4]. However, we are 
increasingly disturbed by the fact that more and more known natural 
products were re-isolation, which is incredibly time consuming [4]. To 
overcome such frustration, precursor-directed biosynthesis (PDB) 
approach was thus established to selectively and efficiently produce 
target new natural or semi-natural skeletons [6,7]. 

Scrutiny of the structures of marketed drugs, we found that both 
polyketides [8] and indole alkaloids are among the privileged scaffolds 
[9]. Polyketides represent a viable source of chemically diverse and 
biologically active natural compounds, of which many have become 
important clinical therapeutics [10]. Besides, indole alkaloids are one of 
the hot topics as an important source of lead compounds that have 
resulted in diverse clinical medicines [11]. Such information reminds us 
to ask whether the hybrids of polyketides and indoles could be another 
valuable source of lead compounds. Screening of our fungal library, we 
found that D. eschscholzii, a fungus residing originally in the Tenodera 
aridifolia gut generated a plenty of polyketides without detecting any 
alkaloids [12,13]. After supplementation of indole-3-carbinol (I3C) in 
the culture of D. eschscholzii, we obtained an antibacterial and 
anti-inflammatory polyketide-indole hybrid, dalesindole, which was 
stereoselectively biosynthesized by D. eschscholzii through class II 
aldolase catalyzed C–C bond formation between 3,3′-diindolylmethane 
(DIM) and C-3 of fungal chromone [14]. Furthermore, two more skeletal 
polyketide-indole hybrids, named indolchromins A and B, were 
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identified by piecing polyketide and indole together through C–C bond 
formation [15]. Notably, C–N bond formation is another key step toward 
the construction of novel skeletons [16] and many cytochrome P450s 
have been evidenced to be responsible for C–N bond formation [17,18]. 
Through the bioinformatics analysis, we found that a total of 119 cy-
tochrome P450s have been annotated in the D. eschscholzii genome [19] 
(Fig. 1), encouraging us to hypothesize that the I3C exposed-culture of 
D. eschscholzii could generate new polyketide-indole hybrids through 
C–N bond formation. Gratifyingly, the endeavor led to the character-
ization of two new skeletal polyketide-indole hybrids, named indolpo-
lyketone A and B (1 and 2), formed through C–N bond formation 
between polyketide and DIM, an oxidative dimer of I3C. We herein 
provide details of the structure identification, plausible biosynthetic 
pathway and biological activities of 1 and 2. 

2. Materials and methods 

2.1. General experimental procedures 

Silica gel (200–300 mesh) for column chromatography (CC) and 
GF254 (10–20 mm) for TLC (thin layer chromatography) were produced 
by the Qingdao Marine Chemical Company, China. The ODS silica gel 
(50 μm) was purchased from YMC Co. Ltd, Japan, and Sephadex LH-20 
from Pharmacia Biotech, Sweden. Reagents and solvents used in the 
study were of analytical grade. HPLC separations were carried out using 
Agilent ODS column (5 μm, 250 × 10 mm), a 1260 infinity II preparative 
binary pump G7161A, and a UV detector G7114A. MS spectra were 
determined on an Agilent 6546 LC/TOF-MS spectrometer operating in a 
positive mode with direct infusion. NMR spectra were analyzed on a 

Bruker DRX400 and Varian Inova-600 NMR spectrometer with TMS as 
an internal standard. Electronic CD (ECD) spectra were acquired on a 
JASCO J-810 chirascan. Optical rotations were recorded in MeOH on a 
Rudolph Research Analytical Autopol IV automatic polarimeter. IR 
spectra were acquired in KBr disks on a Nexus 870 FT-IR spectrometer. 

2.2. Fungal cultivation and extraction 

Daldinia eschscholzii IFB-TL01 was cultured on Petri dishes of potato 
dextrose agar (PDA) at 28 ◦C for 3 days. The fresh mycelium taken from 
the grown fungal colony was inoculated into the flasks (always 1-L 
sized), each containing 400 mL of malt-extract medium (20 g/L malt 
extract, 20 g/L sucrose, 1 g/L peptone). After a 2-day incubation at 28 ◦C 
with an agitation of 200 rpm, 20 mL of culture liquid was transferred as 
inoculating seed into each flask containing 400 mL of ME medium. I3C 
at the final concentration of 1.0 mM was added into the flasks at 72 h 
after inoculation. Cultivations were continued for the ensuing 10 days at 
28 ◦C with agitation (200 rpm). The broth was collected and extracted 
with EtOAc. 

2.3. Polyketide-indole hybrids from the I3C-exposed fungal cultivation 

In vacuo evaporation of EtOAc from the above extract gave the res-
idue (25.63 g), which was subjected to CC over silica gel with petroleum 
ether/acetone mixtures (v/v 100:2, 100:5, 10:1, 5:1, 3:1, 2:1, 1:1) to 
yield seven fractions (A–G). The CC fraction F (5.14 g) derived from the 
petroleum ether/acetone (2:1) was verified to be alkaloid-rich by the LC- 
HR-MS analysis, thereby being subjected to CCs over ODS with a 
gradient of MeOH/H2O (30:70 → 100:0, v/v) to give seven subfractions 

Fig. 1. Phylogenetic analysis-based recognition of cytochrome P450 in the D. eschscholzii.  
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(F1–F7). The subfraction F6 (0.32 g) was then subjected to the semi- 
preparative RP-HPLC equipped with a xbridge C18 PN FWXB 12S05- 
2510 (10 × 250 mm) using 75% MeOH in water for 30 min (flow 
rate: 2 mL/min) to yield 1 (5.7 mg, tR = 17.6 min) and 2 (4.2 mg, tR =

21.2 min). 

2.4. Chiral HPLC separation of 1 and 2 

The commercialized chiral column (CHIRALPAK® IA, Lot No. 
IA00CG-RE001, 10 × 250 mm) was used for the Chiral HPLC resolution 
of racemates 1 and 2 with n-hexane/ethanol (85:15, v/v) as the mobile 
phase. 

2.5. Computational details 

The corresponding excited-state calculations were performed at the 
ground-state optimized geometries. Time-dependent density functional 
theory (DFT) in combination with polarizable continuum model (PCM, 
dielectric constant ε = 32.64 for MeOH) (TD-DFT/PCM) with the same 
basis set was carried out to calculate the spin-allowed excitation energy 
and rotatory strength of the lowest 100 excited states. The ECD spectra 
were generated using the program SpecDis [20] by applying a Gaussian 
band shape with the width of 0.20 eV, from oscillator strengths and 
dipole-velocity rotational strengths, respectively. 

2.6. Cells and viruses [21] 

Vero cells were routinely cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine serum (Gibco, 
USA), penicillin (100 U/mL), and streptomycin (100 μg/mL) at 37 ◦C in 
5% CO2. Madin-Darby canine kidney (MDCK) cells were grown in 
DMEM medium supplemented with 10% FBS, 100 U/mL of penicillin 
and 100 μg/mL of streptomycin. Influenza A virus H1N1 (A/Puerto 
Rico/8/34), and H1N1 (A/Virginia/ATCC1/2009) were purchased from 
ATCC (USA), and propagated in 10-day-old embryonated eggs for three 
days at 36.5 ◦C. 

2.7. Cytopathic effect (CPE) inhibition assay 

The antiviral activity was evaluated by the CPE inhibition assay [21]. 
Briefly, MDCK or Vero cells in 96-well plates were infected with influ-
enza A virus at a multiplicity of infection (MOI) of 0.1, respectively, and 
then treated with indicated concentrations of compounds in triplicate 
after removal of virus inoculum. After 24 h incubation, the cells were 
fixed with 4% formaldehyde for 20 min at room temperature (RT). After 
removal of the formaldehyde, the cells were stained with 0.1% (w/v) 
crystal violet for 30 min at 37 ◦C. The plates were washed and dried, and 
the intensity of crystal violet staining for each well was measured at 570 
nm. The concentration required for a test compound to reduce the CPE 
of virus by 50% (IC50) was determined. 

3. Results 

3.1. Phylogenetic analysis-based recognition of cytochrome P450 in D. 
eschscholzii 

The genome of D. eschscholzii was deposited at https://www.ncbi.nl 
m.nih.gov. GenBank: GCA_000751375.2, GenBank: GCA_001951055.1, 
and GenBank: GCA_000261445.1, respectively. A total of 119 cyto-
chrome P450s have been annotated in the D. eschscholzii genome [19] 
(Fig. 1). 

3.2. Structure elucidation 

Indolpolyketone A (1) was obtained as a yellow amorphous powder. 
Its molecular formula was determined to be C27H24N2O2 on the basis of 

high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) 
ion at m/z 431.1731 (431.1730 calcd for C27H24N2O2Na), implying 17◦

of unsaturation. The 1H NMR spectrum of 1 showed characteristic sig-
nals for the presence of a 2-methylchroman-5-ol moiety and a DIM motif 
by comparing with those of indolchromins A [15] and DIM [22], 
respectively (Table S1 and Fig. S4-9). However, in the case of 1, the 
2-methylchroman-5-ol motif was found to anchor on the N-1 atom of 
DIM by the absence of NH-1 signal and the HMBC correlations of the H-4 
double doublet at δ 5.88 with C-2’, C-10, C-5 and C-2 (Fig. 2). Chiral 
HPLC of 1 (Fig. S1) afforded (+)-(2R,4R)-1 (2.1 mg, tR = 10.556 min) 
and (− )-(2S,4S)-1 (1.8 mg, tR = 12.076 min), whose absolute configu-
rations were demonstrated by comparing the recorded and calculated 
ECD spectra (Fig. 3). In theory, 1 should have four enantiomers, but only 
two more stable trans-oriented enantiomers were obtained owing to be 
interchangeable via retro-Michael reaction. 

Indolpolyketone B (2) was obtained as a yellow amorphous powder, 
which was evidenced to have a molecular formula of C36H31N3O2 (23◦ of 
unsaturation) from the Na+-liganded molecular ion at m/z 560.2307 
(560.2308 requires C36H31N3O2Na) in its HR-ESI-MS. Its 1H and 13C 
NMR spectral data (Table S2 and Fig. S10-16) were well comparable to 
those of 1 except for a set of signals ascribable for an additional (3- 
indolyl)methyl motif, that was shown to attach to C-2′′ resonating 
downfield at δC 134.9. Such an indole trimer was demonstrated to an-
chor on C-4 via a C–N bond with the pentaketide moiety by the absence 
of NH-1 and 4-carbonyl resonances, but the presence of H-4 signal at δH 
5.84 (Fig. 2). This assumption was further determined by the HMBC 
correlations of H-4 with C-2′ and C-7′a (Fig. 2). 

Chiral HPLC of 2 (Fig. S2) gave (+)-(2R,4R)-2 (1.5 mg, tR = 7.374 
min) and (− )-2S,4S)-2 (1.6 mg, tR = 7.975 min), which were stereo-
chemically assigned by comparing their ECD spectra with those of 1 
(Fig. 4). These two enantiomers formed dominantly upon the addition 
reaction owing to the trans-orientation of the 2,4-substituents. 

3.3. The putative biosynthetic pathways of 1 and 2 

The isolation of 1 and 2 highlights the possibility of expanding the 
chemical skeleton through hybridizing indole vestiges and polyketides. 
Therefore, we were encouraged to address the fungal biosynthesis of 1 
and 2. Previously, we identified DIM from the same I3C-exposed fungal 
culture [22,23], and we have addressed the formation of DIM through 
three pathways [24]. Due to the slight acidity in the I3C-exposed culture 
of D. eschscholzii (Fig. S3), at least two (CO2 –liberating and 
formaldehyde-releasing) pathways may explain the biosynthesis of DIM 
[24] (Fig. 5). In addition, 1-(2,6-dihydroxyphenyl)but-2-en-1-one 
(PBEO) was recognized as a reactive polyketide intermediate and results 
from the orchestration of the polyketide synthase (ChrA) ketoreductase 
(KR) domain with that of the KR partner (ChrB) in D. eschscholzii [19]. 
Therefore, compound 1 was hypothesized to be produced through the 
Michael addition of DIM with PBEO, which may be catalyzed by an 
uncertain P450 enzyme. Compound 2 was generated through another 
round of Michael addition of 1 with 3-methyleneindolium (3MI, an 
acidolysis product of I3C) [24] and followed by a Wagner–Meerwein 
rearrangement (WMR) (Fig. 5). 

3.4. Bioactivity tests 

The obtained compounds 1 and 2 were assayed for their antiviral 
activity against H1N1. As a result, 1 and 2 exhibited significant antiviral 
activity against H1N1 with IC50 values of 45.2 and 31.4 μM, 
respectively. 

4. Discussion and conclusion 

Natural products are the major source of lead compounds for drug 
development and represent the majority of small-molecule drugs that 
were already on the market [25,26]. However, due to the repeated 
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discovery of known compounds, the hit rate of new skeletal compounds 
come down every year since the study of streptomyces metabolites 
reached its summit in the 1970s [27]. To further expand the chemical 
diversity, development of new strategies for the discovery of novel 
compounds is of great significance. 

Recently, precursor-directed biosynthesis (PDB) has become an 
important approach for the biosynthesis of a variety of semi-natural 
chemicals. PDB exploits the native biosynthetic machinery of a pro-
ducing organism in culture medium supplemented with non-native 
substrates that compete against native substrates in situ, thus greatly 
expands the pharmaceutical library of lead compounds with promising 
or even enhanced biological performance [28,29]. Although the pro-
duction of metabolites constructed by PDB are usually in low yield and 
need to be further purified from a complex mixture, however, through 
rational design of PDB, such access to target compounds remains 
economical, practical and environmental benign. 

In fact, the key to the successful application of PDB is the selection of 
the proper platform (such as a fungus) and precursors. D. eschscholzii was 

rich in polyketides that was pieced together through promiscuous cou-
plings of radicals derived from 1,3,6,8-tetrahydroxynaphthalene, 1,3,8- 
trihydroxynaphthalene and 1,8-dihydroxynaphthalene. Based on the 
genome of D. eschscholzii, pksTL gene was found to participate in the 
biosynthesis of these naphthol-derived polyketides [30,31]. In addition, 
the combined application of the functional dimorphism of the polyke-
tide synthase ChrA KR with ChrB allows the fungal generation of PBEO, 
which is inclined to cyclization spontaneously [19]. PBEO is an active 
intermediate, which facilitates the fungal production of expanded pol-
yketide diversity [19]. Therefore, choosing D. eschscholzii as the plat-
form of PDB seems reasonable. A body of work showed that cytochrome 
P450s involved in the formation of C–N bonds. For example, StaN in 
Streptomyces sp. TP-A0274 is responsible for the C–N bond formation 
between the nitrogen at N-12 of aglycone and the carbon at C-5’ of 
deoxysugar [32]. TleB from Streptomyces blastmyceticus and its homolog 
HinD from Streptoalloteichus hindustanus, were characterized to catalyze 
unusual intramolecular C–N bond formation to generate indolactam V 
from the dipeptide N-methylvalyl-tryptophanol [33]. A total of 119 

Fig. 2. The structures and key 1H– 1H COSY and HMBC correlations of 1 and 2 (HMBC, red arrows; 1H–1H COSY, bold lines).  

Fig. 3. Comparison of the experimental ECD spectrum (in black) of the compound 1 with those calculated for the optional enantiomers (2S,4S)- and (2R,4R)-isomers 
(in red). 
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cytochrome P450s have been annotated in the D. eschscholzii genome 
[19] (Fig. 1), which endows a great opportunity to construct new 
compounds by forming C–N bonds. However, further experimental 
verification is desired to ascertain the exact role and mechanism of the 
P450 enzyme involved in the C–N bond formation in 1 and 2. 

Additionally, indole-3-carbinol is abundant in cruciferous vegetable 
and shows cancer-preventive potency in diverse models [34,35]. Under 

acid environment, I3C dehydrate to form an active intermediate 3MI, 
which could further polymerize to form oligomeric products, such as 
DIM and 2-(indol-3-ylmethyl)-3,3′-diindolylmethane (LTr1) [24,36]. 
The I3C-exposed culture of D. eschscholzii was slightly acidic (Fig. S3), 
thus facilitating the transformation of I3C into 3MI, an acceptable pre-
cursor for the PDB-based generation of new chemicals. 

In conclusion, 1 and 2 were characterized as skeletally undescribed 

Fig. 4. Absolute configurations assignment of 2 by comparing their ECD spectra with those of 1.  

Fig. 5. The putative biosynthetic pathways of 1 and 2 in the I3C-exposed culture of Daldinia eschscholzii. I3C, indole-3-carbinol; I3A, indole-3-carbaldehyde; I3CA, 
indole-3-carboxylic acid; DIM, 3,3′-diindolylmethane; PBEO, 1-(2,6-dihydrox-yphenyl)but-2-en-1-one; 3MI, 3-methyleneindolium; IS, intermediate state; WMR, 
Wagner–Meerwein rearrangement [24]. 
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polyketide-indole hybrids with the two substructures pieced together 
through C–N bond formation in I3C-exposed culture of D. eschscholzii. 
This study expands the knowledge about the chemical production of 
D. eschscholzii, thereby increasing the possibility to afford new bioactive 
molecules that may invigorate the drug discovery pipelines. 
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