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Abstract: Surface plasmon resonance (SPR) biosensors consisting of alternate layers of silver (Ag) and
TiO2 thin film have been proposed as a high sensitivity biosensor. The structure not only prevents
the Ag film from oxidation, but also enhances the field inside the structure, thereby improving the
performance of the sensor. Genetic algorithm (GA) was used to optimize the proposed structure
and its maximum angular sensitivity was 384◦/RIU (refractive index unit) at the refractive index
environment of 1.3425, which is about 3.12 times that of the conventional Ag-based biosensor. A
detailed discussion, based on the finite difference time domain (FDTD) method, revealed that an
enhanced evanescent field at the top layer–analyte region results in the ultra-sensitivity characteristic.
We expect that the proposed structure can be a suitable biosensor for chemical detection, clinical
diagnostics, and biological examination.

Keywords: genetic algorithm; high sensitivity; SPR sensor; multilayer thin film

1. Introduction

Surface plasmon resonance (SPR) biosensors have extensive applications in the fields
of medical diagnostics, enzyme detection, and food safety analysis due to their unique
abilities for label-free, real-time detection [1–5]. These sensors utilize surface plasmon
polarization to monitor the change refractive index (RI) of the detected target, and a minor
change of RI will result in a significant shift in SPR signal [6]. Generally, silver (Ag) and
gold (Au) have been widely used for SPR sensors as plasmonic material. Au is considered
as a good material because it is highly resistant to oxidation and corrosion. However, it
has low detection accuracy due to a broader resonance curve [7]. In contrast, Ag has a
narrower reflectance curve showing higher accuracy, but is less chemically stable because
it should oxidize quickly when exposed to the atmosphere [8]. If some protective layers
are used to prevent its oxidation, Ag can be effectively used in SPR sensors. According to
the widely accepted definition of the angular sensitivity Sθ = ∂θ/∂n (where n is the RI of
sensing medium and θ is the resonant angle), the angular sensitivity of the conventional
SPR sensor composed of a single metal film using the angular interrogation architecture is
only 50–150◦/RIU [9]. SPR sensors with low sensitivity will hinder direct label-free analysis
(especially for small molecules). To achieve high sensitivity, one method is to improve
the adsorption efficiency of the biosensor to the biomolecules, and another method is to
improve the sensitivity of the biosensor to the RI changes [10].

Generally, biomolecules have poor attachment on the metal surface. In order to
improve the attachment of molecules, several surface chemistry methods have been used
to attach molecules to the metal surface. For instance, a self-assembled monolayer (SAM)
or polymer film is used as a more stable sensing layer covering the metal surface for
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further immobilization of bioreceptors [11]. Although frequently used, both of them
cannot ensure the controlled distribution or orientation of bioreceptors. Therefore, many
studies have been reported to obtain uniform orientation, high surface coverage, and make
analyte binding more accessible. Nitrilotriacetic acid (NTA) SAMs are widely used for
oriented protein immobilization [12]. Based on this method, a high density of oriented
protein bioreceptors is covered on the SPR chip, and the limit of detection (LOD) for small
molecule drugs is 14 nM [13]. However, this approach is limited to binding to specific
proteins.

2D materials such as graphene, transition metal dichalcogenides (TMDCs), and black
phosphorous (BP) are also used as a biomolecular recognition element (BRE) on a chip-
SPR platform to increase the adsorption of biomolecules [14,15]. Among these materials,
graphene has attracted the most attention due to its superior functions including large
surface area, charge carrier mobility, and rich π conjugation structure. Singh et al. [16] used
a functionalized single graphene layer on a thin gold film to amplify the SPR signal and
the LOD for specific antibody anticholera toxin was 4 pg mL−1. However, the 2D material
had a large extinction coefficient, which may cause unnecessary energy loss, resulting in a
wider SPR curve and decreasing the depth of dip.

In addition, numerous efforts have also been devoted to enhance the sensitivity to
RI change in a SPR sensor. Researchers have proposed biosensors based on metallic
nanoslits [17] and nanoholes [18,19] to improve sensing performances. The local EM
field enhancement near nanostructure causes improved sensitivity. In addition, some
researchers have investigated biosensors based on hyperbolic metamaterials (HMM) [20,21].
This sensing substrate, with hyperbolic dispersion properties, has been confirmed to
significantly improve the performance of the SPR sensors. For instance, Sreekanth et al. [21]
fabricated an HMM-based sensor consisting of alternating Au and Al2O3 layers and
achieved a sensitivity of 30,000 nm/RIU and a figure of merit (FOM) of 590. However, the
fabrication of these structures involves reactive ion etching or electron beam lithography,
which is time-consuming, expensive, and only fabricated in small areas. Moreover, the
accurate control of the geometry and optical properties of nanostructures is challenging.
Besides the ordered nanoarrays, the disordered system without a delicate structure design
also has good prospects for sensors. Garoli et al. [22] exploited nanoporous gold (NPG)
as a high-performance sensing platform. Due to the higher surface/volume ratio, these
porous materials exhibit extremely high sensitivity. Especially in the near-infrared (NIR),
the sensing platform has shown high sensitivity close to 15,000 nm/RIU.

Apart from nanostructures significantly altering the sensing performance, the use of
different metal oxides or high RI silicon (Si) over the metal layer can also greatly improve
the sensitivity of the biosensor. Bhatia et al. [23] used the high RI of Si material to coat
the Ag surface to improve the sensitivity of the SPR sensor. This is because the Si layer
improves the intensity of the evanescent field at the Si–analyte interface [24,25]. However,
due to the formation of an oxide layer on the surface of Si, the device performance may
deteriorate. In contrast, titanium dioxide (TiO2) has chemical stability and high RI, which
is expected to replace the use of Si in sensing applications. In addition, the use of low
RI prism [26] has been proposed to further improve the performance of the biosensor.
However, a lower RI prism will reduce the detection range due to the increased resonance
angle. Therefore, it is very valuable to propose a SPR biosensor with many advantages
such as simple structure, high sensitivity, and low cost.

For SPR sensors with complex structures, performance optimization becomes difficult,
which makes the traditional manual optimization methods inefficient. Genetic algorithm
(GA) is an efficient global optimization method inspired from the biological evolution
process [27]. It is a very powerful tool to deal with the multi-parameter and multi-objective
optimization problems. At present, GA is widely used to solve optimization issues of SPR
sensors [28].

In this paper, a high sensitivity sensor based on a periodic Ag–TiO2 multilayer struc-
ture was theoretically investigated. The TiO2 layer was used to protect the Ag layer from
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oxidation. Numerical optimization of sensors was performed using the GA and transfer
matrix method (TMM). The result showed that the sensitivity of the sensor reached about
384◦/RIU when the RI of the sensing target was 1.3425. Furthermore, the finite-difference
time-domain (FDTD) method was used to clearly analyze the physical mechanism that
produces the ultra-sensitivity characteristics.

2. Structure Design and Optimization

The proposed SPR biosensor was composed of eight alternating thin films of Ag and
TiO2, whose configuration is shown in Figure 1a. BK7 glass was selected as the coupling
prism, Ag was chosen as the metal layer to excite a surface wave, and TiO2 film was used
as the dielectric layer to propagate SPP. Figure 1b corresponds to the cross-section view,
where h1 and h2 denote the thicknesses of TiO2 and Ag layers, respectively. The operating
wavelength (λ) of 633 nm was considered throughout this manuscript. At this wavelength,
the BK7 glass had a RI of 1.516 [29]. The RI of TiO2 was chosen to 2.41 [30]. The complex
RI of Ag is described by the Drude–Lorentz model as follows [31]:

nm =

[
1 − λ2λc

λ2
p(λc + iλ)

]1/2

(1)

where λc and λp represent the collision and the plasma wavelengths, and the numerical
values of λc and λp for Ag were 1.7614 × 10−5 m and 1.451 × 10−7 m, respectively.
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Figure 1. (a) 3D schematic diagram of the proposed SPR sensor. (b) The corresponding cross-section
view.

Generally speaking, for the performance of SPR sensors, it is required that the sensi-
tivity should be as large as possible, and the full width at half maximum (FWHM) should
be as small as possible to achieve reliable resonance sensing. In this paper, a single pa-
rameter, combined sensitivity factor (CSF), was used as the performance parameter of the
sensor [32,33].

CSF =
∂θSPR

∂ns
× (Rmax − Rmin)

FWHM
(2)

In the above expression, ∂ns is the change in RI of the sensing medium caused by
chemical reaction or biological action, and ∂θSPR is the corresponding change in resonance
angle. In addition, Rmin and Rmax represent the normalized reflection values corresponding
to the lowest point and highest point of the resonance curve, respectively. From the above
expression, an excellent sensor requires a larger CSF value.

In numerical optimization, we used a combination of TMM [34] and GA methods to
determine the optimal parameters of the proposed sensor. First, GA randomly generated
the original population of structural parameters. Then, TMM was used to calculate the
reflectivity curve of the sensor in different refractive index environments. The purpose of
the GA optimization was to obtain a minimum value of the fitness function. Therefore,
the fitness function was set to -CSF. At the end of each generation, some members with
the maximum fitness value are removed by GA. The new offspring are produced through
crossover and mutation of the remaining members of population, and are then added to the
new population. When the fitness function satisfies the end conditions, the optimization
process stops, and the most appropriate population members are found. However, if not,
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the procedure repeats until the number of iterations is met. A more detailed description of
GA can be found in [35]. Figure 2 shows the change in fitness value of each generation in the
GA operation. As shown in Figure 2, the fitness function rapidly decreased to a relatively
stable value at 90 generations. To ensure the accuracy of these results, the iterations were
continued up to 180 generations. Finally, we obtained the value of the fitness function of
−104.9 and the best individuals were as follows: h1 = 7.7 nm and h2 = 11.2 nm.
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3. Results and Discussion

In our simulations, the RI for the surrounding detected medium was ns = 1.330 + ∆ns,
where ∆ns refers to the change in the RI of the surrounding detected medium. Figure 3
shows the resonance curve for different sensor configurations and the ∆ns was set to 0.005.
The results show that as the RI of analyte increases, the resonance angle shifts to higher
values. Figure 3a is the reflectivity curve of a conventional SPR sensor with an Ag thin film
thickness of 50 nm. It has been shown that the sensitivity of this sensor was 115.4◦/RIU,
but was still not high enough to detect minor changes of the sensing targets. Figure 3b
is the resonance curve of the sensor based on the optimized geometry. The result shows
that the sensitivity was greatly improved, with a sensitivity up to 278◦/RIU. The high
sensitivity can be attributed to the fact that the periodic multilayer structure increases
the light propagation distance within the structure. Thus, most of the incident energy is
transferred to the free electrons on the plasmonic metal, so more surface plasmons are
generated, resulting in higher sensitivity [36,37]. All in all, in this structure, first, compared
with the traditional SPR sensor, the sensitivity was improved several times, and second,
the stability of the Ag layer was improved because the top TiO2 acted as a protective layer
of Ag, which suffers from poor chemical stability.
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It is well known that the performance of the SPR sensors is largely affected by the SP
field distribution on the interface of the sensing medium. Enhancing the evanescent field at
the interface of the sensing medium is a direct way to improve the performance of the SPR
biosensor [38,39]. The field distribution of the proposed structure was studied by using a
finite difference time domain (FDTD) method. Electric field intensity as a function of the
distance along the prism to the sensing medium is represented in Figure 4a,b. Moreover,
two dimensional plots of the electric field distribution are also illustrated in Figure 4c,d.
Obviously, the electric field of the proposed sensor at the interface of the sensing medium is
greater than that of a conventional Ag-based biosensor. In the periodic Ag–TiO2 multilayer
structure, the incident light intensity is first enhanced by the bottom Ag–TiO2 layer, and
finally gains a great amplification in the top TiO2 layer. It is seen that the enhancement of
the electric field strength leads to an increased sensitivity.
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Figure 5a is the SPR spectra for the proposed sensor in RI varying from 1.330 to
1.345, with a step of 0.005. Each curve has a dip at a particular angle known as the
resonance angle. With the increases in RI, the SPR curve moved toward the higher angle
side. This is due to the increase in the propagation wave vector of the surface plasmon
waves (SPWs) [40–42]. In addition, the resonance angles were 80.21◦, 81.6◦, 83.19◦, and
85.06◦ for ns = 1.33, ns = 1.335, ns = 1.34, and ns = 1.345, respectively. Figure 5b indicates
the resonance angle shift corresponded to the RI of the sensing medium varying from 1.33
to 1.345. As shown in Figure 5b, there was a good linear relationship between resonance
angle and the RI of the sensing medium. Therefore, the structure still maintained a
relatively stable sensing performance in a wide RI span. In addition, we also compared the
sensitivity between the proposed SPR sensor and the conventional Ag-based sensor (see
Figure 5c). The results showed that the proposed SPR sensor had higher sensitivity than
the conventional Ag-based sensor when the RI of the sensing medium varied from 1.33
to 1.345. The maximum sensitivity of the proposed SPR sensor could be obtained at the
refractive index environment of 1.3425. It is worth noting that when the RI of the sensing
medium exceeded 1.3425, the sensitivity began to decrease. This is because when the RI of
the sensing medium was equal to 1.3425, the resonance angle was already up to 83.19◦. As
the RI continuously increases, the resonance angle will move to 90◦, but the detection angle
cannot reach 90◦ [43]. Therefore, the sensitivity will decrease. In addition, corresponding
to these resonance angles in Figure 5a, the electric field distributions of the proposed sensor
are shown in Figure 5d. The electric field is concentrated at the top TiO2–sensing medium,
suggesting a strong SP excitation. Furthermore, as the RI of the sensing medium varied
from 1.330 to 1.345, the intensity of electric field changed significantly, indicating that the
proposed SPR sensor is very sensitive to minor changes in RI.
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Considering fabrication feasibility, we further investigated the fabrication tolerance
of the proposed SPR sensor in simulations. The fabrication errors were defined as ±10
variations of layer thickness. The sensitivities of the proposed SPR sensor at the refractive
index environment of 1.3425 with different fabrication errors were calculated, and the
results are shown in Table 1. The fabrication tolerance of the Ag layer was larger than that
of the TiO2 layer. For this structure, in the actual manufacturing process, the thickness of
the TiO2 layer above the required thickness causes a sharp decrease in sensitivity. This is
because the increase in the thickness of the TiO2 layer will cause the resonance angle to
move quickly to a high angle. Due to the limitation of the angle range, the sensitivity drops
sharply.

Table 1. The sensitivity of proposed SPR sensor at the refractive index environment of 1.3425 with
different fabrication errors.

Layer Thickness
Fabrication Errors

−10 Variations +10 Variations

Ag 372◦/RIU 353◦/RIU

TiO2 323◦/RIU 284◦/RIU

In addition, the RI of the material was also affected by the fabrication process. For
example, the material of TiO2 is known to have two main phases, anatase and rutile, and
the corresponding RI are about 2.5 and 2.7, respectively [44]. We calculated the sensitivity
of the proposed SPR sensor with different RIs of TiO2 and the results are shown in Figure 6.
The results show that the RI of TiO2 had a great effect on the change in sensitivity. As the
RI of TiO2 increases, the maximum sensitivity shifts to a low RI of the sensing medium. At
the high RI of the sensing medium, the sensitivity drops sharply (especially for anatase
and rutile). This is due to increased RI of TiO2, leading to higher resonance angle, which
limits the sensitivity. In sum, in the actual manufacturing process, the deposition control of
TiO2 is very important for the proposed SPR sensor.
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Finally, we provide a table showing the performance comparisons between the pro-
posed SPR sensor and other existing sensors in the literature. The sensitivity, metal type,
and operating wavelength are considered in Table 2. The result shows that the sensitivity
obtained here was much higher than all the previously proposed configurations.

Table 2. The sensitivity, metal type, and operating wavelength for all sensor structures.

Reference Publication Year Operating
Wavelength Metal Sensitivity

(Degree/RIU)

[8] 2020 633 nm Ag 264
[25] 2020 633 nm Al 148.2
[37] 2019 633 nm Au 175
[39] 2017 633 nm Ag 279
[40] 2019 633 nm Ag 257
[41] 2016 632 nm Rh and Ag 220
[42] 2019 633 nm Au 198
[43] 2018 532 nm Au 224.5

This work —— 633 nm Ag 384

4. Conclusions

The high-sensitivity SPR sensor based on a periodic Ag–TiO2 multilayer structure
is theoretically optimized by GA to obtain good sensing performance. Compared to the
conventional Ag-based biosensor, the sensitivity of the proposed SPR sensor was as high
as 384◦/RIU at the refractive index environment of 1.3425. The Ag–TiO2 multilayer can
effectively couple the light and finally lead to a significant amplification of the electric field
on the top TiO2 layer. The proposed structure may provide a new approach for the design
of ultra-sensitive SPR biosensors.
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