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Abstract: This paper introduces an ambient light rejection (ALR) circuit for the autonomous adapta-
tion of a subretinal implant system. The sub-retinal implants, located beneath a bipolar cell layer,
are known to have a significant advantage in spatial resolution by integrating more than a thousand
pixels, compared to epi-retinal implants. However, challenges remain regarding current dispersion
in high-density retinal implants, and ambient light induces pixel saturation. Thus, the technical
issues of ambient light associated with a conventional image processing technique, which lead to
high power consumption and area occupation, are still unresolved. Thus, it is necessary to develop
a novel image-processing unit to handle ambient light, considering constraints related to power
and area. In this paper, we present an ALR circuit as an image-processing unit for sub-retinal im-
plants. We first introduced an ALR algorithm to reduce the ambient light in conventional retinal
implants; next, we implemented the ALR algorithm as an application-specific integrated chip (ASIC).
The ALR circuit was fabricated using a standard 0.35-µm CMOS process along with an image-
sensor-based stimulator, a sensor pixel, and digital blocks. As experimental results, the ALR circuit
occupies an area of 190 µm2, consumes a power of 3.2 mW and shows a maximum response time
of 1.6 s at a light intensity of 20,000 lux. The proposed ALR circuit also has a pixel loss rate of 0.3%.
The experimental results show that the ALR circuit leads to a sensor pixel (SP) being autonomously
adjusted, depending on the light intensity.

Keywords: retina implant; active pixel sensor; image sensor; ambient light

1. Introduction

Retinal implants have great promise in restoring vision for the blind, who suffer from
retinal diseases such as retinitis pigmentosa and age-related macular degeneration [1–4].
The fundamental idea for retinal prosthetics is to electrically stimulate impaired retina cells
using a microelectrode array and its driving circuitry [5–9]. This retinal prosthesis can
be classified into epi-retinal [5,6] and sub-retinal implants [7–9], based on the anatomical
location. While the epi-retinal implant is placed onto an inner retinal layer, known as the
ganglion cells, the subretinal implant is located in the outer retina, called photoreceptor
cells. Although the developed implant methods have their advantages and disadvantages,
it is widely known that sub-retinal implants can purse for a high resolution of more than
1000 pixels, compared with epi-retinal implants [10–12].

It has been reported that high-resolution stimulation pixels can support high visual
acuity [12]. According to a clinical trial [11,12], however, the sub-retinal implant with
1500 stimulation pixels shows equal vision restoration compared with the epi-retinal im-
plant with only 60 pixels. This mainly arises from the interface between neighboring
pixels during stimulation and a strong ambient light projected onto the subretinal chip.
The first interference issue, that results in a current dispersion, becomes more critical when
simultaneously stimulating neighboring pixels [13,14]. To suppress the current dispersion,
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various methods, such as a wall structure between pixels [15] and a sequential stimulation
pattern [5,6,16], were applied to the subretinal implant. The second ambient light induces
saturation of all stimulation pixels, especially under an outdoor bright environment. As
a result, this results in low contrast sensitivity. To solve this issue, an image processing
technique was presented in [17–20]. However, it is challenging to increase the contrast
sensitivity from fully statured images. In addition, this processing unit leads to high power
consumption and high area occupation, on a limited retinal silicon chip. Another method
is to manually adjust the contrast control knob, which is related to the integration time for
the photodiode [21,22]. This can cause inconvenience to patients and is tiresome in daily
life. Therefore, it is necessary to autonomously cancel out ambient light in the first stage of
the retinal implant system.

The ambient-light cancellation system must meet the following three design require-
ments. Firstly, the system architecture should be realized as small as possible on the limited
silicon chip area. An independent imaging processing unit to compensate for the ambient
light occupy a big footprint, which can result in the big retinal chip size too. It would be
more critical if the number of stimulation pixels increase more than 1000. The large-area
retinal chip requires a large incision to insert the chip inside the eyeball. It can cause a side
effect, i.e., an infection around the suture site [23]. Secondly, the cancellation circuit must
be operated in low-power dissipation. The image processing unit demands to precisely
acquire raw data from all the pixels, quickly analyze them, and properly compensate for
saturated pixels due to an ambient light. For an image processing, an analog-to-digital data
converter is required. In the worst case, one stimulation pixel needs one data converter,
which can consume high power in the high-density stimulation retinal chip. Finally, the
ambient light must automatically be removed. In reality, an ambient light surrounding
patients who have the retinal implant varies with their location. So far, the patients have
controlled the knob to avoid a pixel saturation that arises from a bright ambient light.
However, many of them feel inconvenienced by the manual compensation method [24].
Accordingly, a low-power and autonomous compensation circuit to get rid of the ambient
light must be realized along with high-density stimulation pixels on the retinal chip.

Motivated by this, we propose a novel ambient light rejection (ALR) circuit to au-
tonomously enhance contrast sensitivity. To cancel out the ambient light, we developed
a control circuit to adjust the integration time used for 3-Tr complementary metal-oxide-
semiconductor (CMOS) image sensors, where the integration time facilitates sensing the
light intensity. The procedure of the control circuit is divided into the detection of pixel
saturation and modulation of the integration time. In the case of a bright environment,
the 3-tr CMOS image sensor is operated on for a short integration time, while a long
integration time is required for a dim environment. This ALR circuit was designed and
fabricated using a DongBu Hi-tek 0.35 µm CMOS process and integrated with stimulator
pixels, tested on a benchtop environment.

The remainder of this paper is organized as follows. First, a circuit optimization
is operated (as an image-sensor-based stimulator (ISNS) pixel) to obtain the contrast
sensitivity depending on the integration time. In addition, an autonomous adaptation
optimization takes place to confirm the modulation procedure for the integration time
through the ALR circuit. Second, the ALR circuit implementation is presented with the
simulated results. Third, the results measured from the ALR circuit with a modulated
integration time corresponding to the incident light intensity, are presented. Finally, the
design constraints of the proposed ALR circuit are discussed.

2. Materials and Methods
2.1. ISNS Pixel Design

Figure 1a,b shows the schematic and simulation of the ISNS pixel scheme. In Figure 1b,
the photodiode is replaced with an electrical model with a current source of 6 nA and a
parasitic capacitor of 8 pF, which are in parallel. When the reset signal, RST is switched to
logic “1”, the integration time starts to accumulate a photocurrent until the RST is switched
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off again. During the integration time, the voltage node of VPD is proportionally decreased,
as shown in Equation (1).

VPD = VDD −
IPD

CPD + C1
·Tint (1)

where CPD and IPD indicate the photodiode parasitic capacitor and the photocurrent,
respectively. In the reference generator (Figure 1a), C1 and C2 capture the final values of
VPD at the end of the integration time and maintain the voltages until the next integration
time begins. The restored voltages on C1 and C2 generate a cathodic current, CATH, and
anodic stimulation current, ANO, due to the current pulse shaper described in Figure 1a.
The M14 transistor functions as a switch to remove the residual charge after stimulation,
which can lead to harmful effects such as electrode erosion [25] and tissue absorption [16,22].
Figure 1c depicts the results of the stimulation current amplitudes corresponding to the
variable integration time.
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Figure 1. A PBStim pixel circuit with simulation results. (a) An image sensor based neural stimulator pixel; (b) A simula-

tion results of the ISNS; (c) The measured results of ISNS with variable integration time. 
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Figure 1. A PBStim pixel circuit with simulation results. (a) An image sensor based neural stimulator pixel; (b) A simulation
results of the ISNS; (c) The measured results of ISNS with variable integration time.

Figure 2 shows the sensing dynamic range (SDR) of the ISNS versus the integration
time, expressed in Equation (2).

1
Tint
·
C1 + Cp

K
·

√√√√ 2·Imax

µpCox

(
W
L

)
p

− (VDD −VTH.P)

 (2)

where Tint, K, Imax, and VTH.P denote the integration time, coefficient for quantum efficiency,
maximum current amplitude from the ISNS, and threshold voltage for the M2 transistor,
respectively. Equation (2) shows that the SDR is inversely proportional to the integration
time. If an integration time of 16 ms is applied to the ISNS pixel, the SDR would be
approximately 300 to 1000 lux. This implies that the sensing dynamic range can be changed
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by adjusting the integration time. Therefore, it is important to design a circuit that can
autonomously vary with the integration time, according to the ambient light intensity.
This could prevent the stimulation current saturation. The next section presents a detailed
circuit description of the proposed ALR circuit.
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2.2. Autonomous Adaptation Optimization

Figure 3a presents the ALR algorithm for adjusting the length of the integration
time. Here, the integration time controlled by the ALR algorithm varies in accordance
with the pixel saturation denoted as “yes” or “no.” If there is a saturated sensor in the
accumulated image data, the integration time of the next sequence is shorter or longer.
TREF is the reference integration time, and TLSB is the time variance when changing the
least significant bit (LSB) for the integration time control. Therefore, the addition (or
subtraction) of TLSB to (or from) TREF results in the integration time affecting the indicator.
This simple, yet effective algorithm, autonomously provides an adequate integration time
for the ISNS pixel.

Figure 3b shows an example implementation of the ALR algorithm with differential
VPD decrements during the integration period. We employed 12 individual VPD decrements,
referring to incident light, and tagged each VPD to express light intensity. For instance, the
VPD tagged on 12 is the brightest condition, whereas VPD tagged on 1 indicates the dimmest
condition. To show the integration time variation for both dim and bright conditions, we
set the reference integration time at the middle of the x-axis. First, assuming that the retina
implant is exposed to bright conditions, the ISNS pixel on tag 12 is saturated because the
integration time is initially set as the reference integration time. Second, the ALR algorithm
can detect the pixel saturation from tag 12 and then control the integration time. The ALR
algorithm continues to reduce the integration time until the indicator for pixel saturation
changes to “no.” Finally, when the integration time generated through the ALR algorithm
becomes shorter than the reference integration time, saturated pixels with tags 8–12 operate
in the SDR again. This procedure is similar to the light adaptation observed in the human
eye. In contrast, dark adaptation is conducted where the retina implant operates under dim
conditions, which means that the integration time extension is longer than the reference
integration time. To model the dark adaptation, we assumed that the retina implant was
exposed to the dim conditions, and the brightest light at that time was tag 5. The indicator for
pixel saturation turns to “no” when the ISNS pixel is driven on the reference integration time;
thus, the ALR algorithm extends the integration time until the indicator for pixel saturation is
converted to “yes.” The brightest light is tag 5 because the ISNS pixel on tag 5 is first saturated.
Subsequently, the indicator for pixel saturation becomes “yes,” ceasing the integration time.
By increasing the integration time, other pixels on tags 1–4 have precise visual information.
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The ALR algorithm shown on Figure 4 is verified with computational simulation.
The simulation was performed using MATLAB (MathWorks Inc., Natick, MA, USA). The
obtained images had a single dimension of 64 × 64 pixels. We created a brightening image
by increasing the brightness of the original image; thus, it partially shows loosened image
data caused by pixel saturation. The interpolated images were reconstructed from the
brightening images, using the ALR algorithm. These are visually similar to the original
images; therefore, we can quantify the similarity between the original and interpolated
images. In this study, we prepared three image sets (as shown in Figure 4a) to verify the
proposed ALR algorithm on different images. Figure 4b shows the similarity in the number
of pixels. Here, the x-axis represents the number of pixels employed in the interpolation,
as shown in Figure 3a. As shown in Figure 4b, the image similarity increases up to 100%
after 42 pixels. Accordingly, the ALR algorithm achieved the best performance, employing
more than 1% of the entire pixel. However, we selected 16 pixels for the ALR algorithm
implementation, although employing more pixels ensured high image similarity. This is
because the image similarities, calculated on three different images, were over 90% when
employing 16 pixels. In addition, the interpolated image in Figure 4a is actually the result
of the ALR interpolation performed with 16 employed pixels. Moreover, the increments
of the image similarity versus the number of pixels are decreased with an increasing
number of pixels. This is related to the power consumption and area occupation because
an additional circuit is required to capture the image data from the ISNS. We could not allot
sufficient power and area to the ALR circuit to enable the retina chip to be integrated with
over 1000 ISNS pixels. Consequently, we decided to design an ALR circuit, with 16 pixels,
taking into account the image similarity, power consumption, and area consumption. In
the next section, we present the ALR circuit to autonomously manage the integration time
for high-contrast sensitivity.
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Figure 5a shows a block diagram of the ALR circuit comprising an N-channel sensor
pixel (SP), N-input pseudo OR gate, and D-flop flop sequential buffer. We composed 16-pixel
SPs with the same structure as the ISNS pixel to compare the results. The SP consists of an
APS, a common-source amplifier, and a comparator. We implemented an nMOS-input folded
cascode amplifier for the comparator and a common reference bias generator to supply bias
voltages to the comparator. VREF, the saturation voltage, is externally controlled to consider
the variation of Imax in Equation (2), caused by an impedance variation of the output stage. The
image data through the SP are gathered on the N-input pseudo OR gate to inform the pixel
saturation. We employed a pseudo OR gate, instead of a conventional logic gate, to efficiently
process multichannel input and reduce power and area occupation. Therefore, we realized the
indicator presented in Figure 3 using the SP and pseudo OR gates. In the algorithm, shown
in Figure 3a, if the indicator detects pixel saturation, it decreases the integration time of the
next sequence, and conversely increases the integration time of the next sequence if the pixel
saturation is not detected. If the integration time is adjusted with the above mechanism when
the pixel operates in a bright environment, a small integration time is applied to have SDR at
high illuminance. On the contrary, the SDR at low illuminance is applied when operating in a
dark environment. The correlation between integration time and SDR is shown in Figure 1c,
which has the inverse relationship as described in Equation (2). In Figure 5, the output of the
d-flipflop acts as an indicator and the local processor controls the integration time.

Figure 5b shows the simulation results of the ALR circuit with a single SP. During the
integration time, the VOUT gradually increases proportionally to the photocurrent, such as
the ISNS pixel in Figure 1a. When the VOUT voltage is higher than the VREF, the VCO rises
to logic “1” state, so SP is saturated. A VCTO via the pseudo OR gate indicates that there is
one or more increased VCO in the SP array. The results of VCTO are stored at the end of the
integration time and utilized for the ALR interpolation. At each end of the integration time,
the VCTO is refreshed and delivered to a local processor. The stored VCTO is used to process the
ALR interpolation, through a local processor, using the same procedure as in Figure 3a. For
instance, based on the simulation result, the VCO shows logic ‘1′ at the end of the integration
time. It means that the integration time on next sequence will be shorter than this sequence.
More detail results about the ALR circuit will be presented on next section.
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3. Results

Figure 6 shows the micrograph of the proposed ALR circuit, where we integrated a
16-pixel ISNS and SP, as described. Each 4-pixel ISNS and SP are comprised of the ISNS,
SP, bias generator, and compensation capacitor. We composed each 4-pixel ISNS and SPs
separately to illuminate different light intensities. In the experiment, the ALR chip was
tested to determine the VOUT difference between neighboring SPs.

Figure 7 presents the measured results of the ALR circuit for each light intensity. We
used custom-made LED light sources and a commercialized LED light source (66088-LED,
Newport, Irvine, CA, USA) to project uniform light to the ALR circuit. Continuous light
was irradiated to prevent distortion of the SP from a line scan camera [26,27] and the
incident light intensity was measured using a commercialized illuminometer (TES 1336A,
TES Corp., Taipe, Taiwan). The local processor was implemented with an FPGA board
(Basys 3 Artix-7, Digilent Inc., Pullan, WA, USA).
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Figure 7a displays the captured oscilloscopic images with an increase in the light
intensity. VOUT,1-3 show the time-dependent increments to incident light during the inte-
gration time. The integration time was inversely proportional to the incident light after
VOUT was higher than saturation voltage, VREF as 2.2 V. Figure 7b shows the integration
time for each light intensity. The ALR interpolation occurs after the time-to-saturation is
inversely proportional to the light intensity, as described in Equation (2). The increment
of the incident light intensity reduces the integration time, corresponding to the time that
VOUT exceeds VREF (VOUT2 in this study). From the measured results as shown in Figure 7a,
it can be observed that the integration time is reduced to 16.25 ms to have an SDR near
800 lux where pixel saturation is detected. When operating at higher illuminance, the
integration time keeps getting shorter so data are obtained from SDR at each illuminance.
However, if VOUT does not reach VREF, the integration time increases until VOUT reaches
VREF. We set the modulated integration time as 10 ms divided into four bits (0.625 ms as
TLSB). Therefore, the maximum integration time is 20 ms with TREF as 10 ms. After the
maximum integration time is achieved, the integration time cannot be longer even if the en-
tire pixel is not saturated. In Figure 7b, the measured result shows that the integration time
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cannot be longer when the ALR circuit is exposed to 600 lux. The estimated result shows
the required integration time for under 600 lux to induce VOUT saturation. The solution
which makes the ALR circuit operate in dim condition will be described in the next section.
As shown in Figure 7a, the modulated integration time followed the time-to-saturation
of VOUT2. Accordingly, the middle point of the SDR was also changed corresponding
to the incident light. Assuming that the SDR is proportional to the integration time in
Equation (2), the middle of SDR is determined between 560 lux to 18200 lux, converted
as 30 dB. It means that the ALR circuit offers additional 30 dB sensing dynamic range.
Considering the SDR in Figure 1a is about 10 dB, the ALR circuit offers significant benefits,
which makes it possible to sense high dynamic range on the ISNS pixel.

Table 1 presents the power and area consumption of the ALR circuit. From the results
of the simulation and the layout, we estimated that the power and area consumption of
the ALR circuit comprised 16-SP, the pseudo OR gate, and the bias generator. The power
consumption and area occupation are dominated by the SP owing to the presence of not
just the 16-pixel SP on the ALR circuit. In the ALR circuit, shown in Figure 5a, the SP was
constructed with the folded cascode amplifier to achieve sufficient gain of the comparator.
If we change the folded cascode amplifier as the self-bias amplifier [28,29] and design the
SP without the diode-connected APS (by directly connecting the comparator with the ISNS),
we can compromise the area and power consumption. In the next section, we present the
summary of the ALR circuit, comparison with relevant research, and future work.

Table 1. The power consumption and area occupation for the ALR circuit.

Power Consumption (µW) Area Occupation (µm2)

ALR circuit 1748.88 (100%) 189,744.9 (100%)
Sensor pixel 93.68 (85.71%) 97 × 114 (93.24%)
ISNS pixel 56.4 97 × 114

16:1 OR gate - 42.4 × 38.21 (0.85%)
Reference generator 250 (14.77%) 156.6 × 71.5 (5.9%)

* The period and duty cycle of the integration time for the ISNS and SP pixels are 50 ms and 40%, respectively, when
considering the flicker-free vision. This result was calculated without power consumption on a simulated current.

4. Conclusions and Discussion

In this paper, we present a novel ALR circuit that autonomously enhances contrast
sensitivity to provide convenience and assistance to blind people suffering from retinal
diseases such as retinitis pigmentosa and age-related macular degeneration. First, we intro-
duced the ALR algorithm and verified the efficacy of the algorithm in through MATLAB
simulations. Here, the main constraints are power consumption, area occupation, and
interpolation efficacy. By optimizing the trade-off between these constraints, we designed
an ALR circuit with 16 pixels. Although the 16 pixels are only 0.3% of all pixels, the image
similarity is over 90%, and the interpolated image is visually similar to the original image.
This is an optimization procedure for the ALR interpolation, which provides a guideline
to determine the trade-off between the interpolation efficacy, and power and area occupa-
tion. In addition, by performing the optimization procedure, we could reduce the power
consumption and area occupation compared to the conventional image-processing unit.

In the experimental results, shown in Figure 1, we used a 3-kΩ resistor as the elec-
trode impedance. However, a tissue-electrode interference (ETI), modeled as an elec-
trode impedance, should be changed with the size, geometry, and material of the elec-
trode [30–32]. To compensate for the variation from the electrode, we decided to design
an ALR circuit with adjustable VREF. As mentioned previously, the purpose of the ALR
circuit is to keep the ISNS pixel operating in the SDR by preventing pixel saturation. Thus,
if the VREF is to be lower than that obtained when the ISNS pixel generates the stimulation
current, under Imax, the ALR circuit autonomously makes the entire ISNS pixels continu-
ously operate, without pixel saturation. The proposed ALR circuit was implemented on
a silicon chip using a DongBu Hi-tek 0.35 µm CMOS process, which occupies an active
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area of ~190 µm2. When 16 reference pixels to reject the ambient light operate, it dissipates
of 3.3 mW that is low enough to work with high-density stimulation pixels on a single
chip. In addition, a maximum ALR feedback response time of 1.6 s was measured at a light
intensity of 20,000 lux that in the worst case destroys a human retina. Therefore, a response
time less than 1.6 s will be fine for the blind who implant the retinal chip to move around
in their daily life.

The ALR algorithm implemented by the ASIC is experimented in a customized test
bench. As shown in Figure 7a, different light intensities were irradiated on each pixel,
and the results of this are clearly shown in Figure 7b. Theoretically, the ALR circuit
offers the additional sensing dynamics for the ISNS pixel and will be autonomously
worked. As a result, the integration time is autonomously regulated depending on the
incident light intensity. However, the integration time could not be sufficiently stretched
to operate under dim condition, such as under 400 lux. This implies that the ALR circuit
provides a significant assistance to view an image under bright conditions, while it is
ineffective under dim conditions. Two possible solutions can be considered: decreasing the
accumulation capacitor and increasing the reference integration time TREF. Even though
these have advantages as well as disadvantages, we will use both solutions, which is
helpful in designing high-density retinal implants. Consequently, the proposed ALR circuit
autonomously adapts the ISNS pixel to the incident light. In addition, we present the
simulation results to ensure the ALR interpolation efficacy, considering the power and
area consumption.

Electrical performance of the proposed work is summarized on Table 2 along with
other previous works for comparison. The prior literature presented in [8,9,21,33] only
has stimulation pixels. Although Park et al. [7] developed an edge stimulation method
to increase contrast sensitivity, it cannot compensate for pixel saturation caused by the
ambient light. Rothermel et al. [34,35] proposed an ambient light rejection technique that
operates with 3025 stimulation pixels. The scheme shows a possibility that the ambient-
light compensation can be applied for high-density stimulation pixels more than 3000.
However, it requires 100 reference pixels to measure a saturation status, which can induce
high-power consumption and a large area on the silicon chip. Our compensation technique
proposed in this work requires few reference pixels due to the similarity optimization as
shown in Figure 4b. According to the simulation result presented previously, 16 reference
pixels among 64 × 64 stimulation pixels are enough to cancel out the deleterious effect
of the ambient light. Therefore, our compensation work, which requires a pixel loss rate
of 0.4% (=16 reference pixels/4096 stimulation pixels), is more efficient than the previous
research [35] that demands the rate of 3.3% (=100 reference pixels/3025 stimulation pixels).
In future work, we will design a retina implant integrated with over 2000 ISNSs on a single
chip and will apply this refined chip for clinical trial.

Table 2. Specification comparison of retina prosthesis ASICs.

TBioCAS’20 [7] TED’20 [9] TBioCAS’14 [21] EMBC’20 [34] Ophthalmol’20 [8,33] This Work

Technology 0.18 µm Custom 0.35 µm BCD 0.18 µm HV Custom 0.35 µm
Supply power Wireless coil Wireless coil Wireless coil Wireless coil Photovoltaic Wireless coil

Electrode location Sub-retina Sub-retina Sub-retina Sub-retina Sub-retina Sub-retina
Stimulus approach Simultaneous Simultaneous Sequential Sequential Simultaneous Sequential

Pixel number 1225 100 128 3025 378 256
Pixel size (µm2) 84.3 × 86.6 400 × 400 50 × 55 51.5 × 51.7 7500 97 × 114
Chip size (mm2) 5 × 3.45 4 × 4 2.5 × 1.2 3.14 × 3.94 2 × 2 5 × 4
Stimulus current

[loading parameter]
≤3 mA

(10 kΩ resistor)
≤3 µA

(PBS solution)
≤300 µA

(10 kΩ resistor)
≤18 µA

(PBS solution) N/A ≤150 µA
(10 kΩ resistor)

Supply voltage ± 1.6 V 5 V 12 V ± 1.6 V N/A ±1.6 V

Application

- Edge only
stimulation

- Temperature
sensor

N/A N/A
- Ambient light

rejection
- High-pass filter

N/A
- Ambient

light
rejection

Power consumption 2.7 mW 320 µW N/A N/A N/A 3.2 mW

* Power consumption is calculated excluding stimulation current.
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