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In‑hospital risk stratification 
algorithm of Asian elderly patients
Sazzli Kasim1,3,4,9*, Sorayya Malek2*, Song Cheen2, Muhammad Shahreeza Safiruz6, 
Wan Azman Wan Ahmad4,5, Khairul Shafiq Ibrahim1,3,4, Firdaus Aziz2, Kazuaki Negishi7,8 & 
Nurulain Ibrahim9

Limited research has been conducted in Asian elderly patients (aged 65 years and above) for 
in‑hospital mortality prediction after an ST‑segment elevation myocardial infarction (STEMI) 
using Deep Learning (DL) and Machine Learning (ML). We used DL and ML to predict in‑hospital 
mortality in Asian elderly STEMI patients and compared it to a conventional risk score for myocardial 
infraction outcomes. Malaysia’s National Cardiovascular Disease Registry comprises an ethnically 
diverse Asian elderly population (3991 patients). 50 variables helped in establishing the in‑hospital 
death prediction model. The TIMI score was used to predict mortality using DL and feature selection 
methods from ML algorithms. The main performance metric was the area under the receiver 
operating characteristic curve (AUC). The DL and ML model constructed using ML feature selection 
outperforms the conventional risk scoring score, TIMI (AUC 0.75). DL built from ML features 
(AUC ranging from 0.93 to 0.95) outscored DL built from all features (AUC 0.93). The TIMI score 
underestimates mortality in the elderly. TIMI predicts 18.4% higher mortality than the DL algorithm 
(44.7%). All ML feature selection algorithms identify age, fasting blood glucose, heart rate, Killip 
class, oral hypoglycemic agent, systolic blood pressure, and total cholesterol as common predictors of 
mortality in the elderly. In a multi‑ethnic population, DL outperformed the TIMI risk score in classifying 
elderly STEMI patients. ML improves death prediction by identifying separate characteristics in 
older Asian populations. Continuous testing and validation will improve future risk classification, 
management, and results.

Acute coronary syndrome (ACS) is the world’s leading cause of death and the leading cause of morbidity and 
mortality in the  elderly1–3. In the majority of developing countries, the elderly are defined as individuals over 
the age of  654. Age is a significant risk factor for ACS, and the prevalence of elderly patients presenting with ST-
elevation myocardial infarction (STEMI) is increasing in developing countries due to an ageing  population5,6. 
Elderly patients have a higher mortality rate, due to more comorbidities and were less likely to get evidence-based 
 treatments7–9. With the advancement of general healthcare, elderly are likely to account for a significant propor-
tion of all ACS patients in the  future6. However, limited data are available on the delivery of health care and clini-
cal outcomes of elderly patients with cardiovascular disease in the South-East Asia region. Elderly patients with 
Acute Coronary Syndrome (ACS) are also poorly analyzed and underrepresented in modern-day ACS  trials10.

Common scoring systems such as Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of 
Acute Coronary Events (GRACE) risk scores are often used to predict mortality for elderly  patients11,12. TIMI 
and GRACE scores were developed to predict short-term prognoses based on patients mainly from countries in 
North America, South America, and Europe, with only Australia and New Zealand providing data from Asian 
countries to the GRACE registry, despite Asia hosting 60% of the world’s  population13.

With the current advances and success of deep learning (DL) and machine learning (ML) algorithms such 
as random forest (RF), extreme gradient boosting (XGB), logistic regression (LR), and Support Vector Machine 
(SVM) in ACS mortality prediction over conventional risk scores, these algorithms have been adopted for clinical 
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 predictions13–18. In comparison to DL, ML algorithms require feature selection to attain higher performance 
 accuracy19,20. DL algorithms allow automatic learning of the feature and relationship from a dataset minus 
the necessity for feature selection and attained higher accuracy than ML for mortality prediction. However, 
unlike ML algorithms, the interpretation of the significant factors for determining risk scores in DL models is 
 unknown13.

There has been no research reported on integrating DL with ML feature selection to better understand DL’s 
"black box" feature selection characteristic. Identifying features associated with mortality in the Asian elderly is 
essential for better patient management in clinical practice. We hypothesize that integrating DL with ML feature 
selection algorithms will improve in-hospital mortality prediction in Asian elderly STEMI patients. This is an 
objective, should also clarify that it is a first in world study!

As a result, we propose to integrate ML feature selection with a DL classification algorithm for the prediction 
and identification of factors associated with in-hospital mortality in multiethnic elderly Asian patients admitted 
with STEMI. Apart from that, we aim to evaluate the performance of ML with that of DL developed using both 
complete and selected features from the ML feature selection technique. Additionally, the developed ML and 
DL prediction models will be compared to the TIMI risk score, which is calculated from multi-ethnic registry 
data on Asian elderly STEMI patients.

Materials and methods
Study population. We examined data from the Malaysian National Cardiovascular Disease Acute Coro-
nary Syndrome (NCVD-ACS) registry from 2006 to 2017 on 17, 227 in-hospital STEMI patients, 3991 of whom 
were elderly (65 years and above). The raw data used in this study was approved and granted permission to access 
study data from the National Heart Association of Malaysia (NHAM).

NCVD informed patient consent was waived where for each patient treated at one of the participating hos-
pitals, the registry collects data on a defined set of clinical, demographic, and procedural  information21,22. The 
UiTM ethics committee (Reference number: 600-TNCPI (5/1/6)) and the National Heart Association of Malaysia 
(NHAM) also authorized the study. The ethic approval for NCVD ACS have been applied by the principal investi-
gator of each participating institution and have been approved by Malaysian Research Ethic Committee (NMRR: 
07-38-164). The data utilised in this study were anonymized prior to usage, as our study data are interested in 
the values and parameters without accessing patient personal information.

All patients aged 65 years and above from the registry without exclusion were used including patients who 
received reperfusion (fibrinolysis, primary PCI (PPCI), angiography demonstrating spontaneous reperfusion, or 
urgent coronary artery bypass grafting (CABG)) for STEMI. STEMI was characterized as persistent ST-segment 
elevation ≥ 1 mm in two contiguous electrocardiographic leads, or the presence of a new left bundle branch block 
in the setting of positive cardiac markers. Input variables are features that are used as input in the development 
of a model to predict the outcome (in-hospital mortality). To develop the initial model in this study, 50 input 
variables (9 continuous, 41 categorical) representing columns of patient data from the NCVD data registry were 
used. The fifty variables used in this study are listed in Table 1. Variables used for model development are vari-
ables in the emergency department as first contact as well as variables in the hospital. Follow-up variables were 
excluded from the analysis. Supplementary table 1 shows the missing rates for each variable used in this study.

Categories of variables used are; sociodemographic characteristics, CVD diagnosis and severity, CVD risk fac-
tors, CVD comorbidities, non-CVD comorbidities, clinical presentation, baseline investigation, electrocardiog-
raphy, treatments, and pharmacological therapy. The National Cardiovascular Disease Database (NCVD)—Acute 
Coronary Syndrome (ACS) registry, which is documented by the National Heart Association of Malaysia, defines 
the criteria for variables such as hypertension, diabetes, history of heart failure, and chronic renal  disease23.

For in-hospital mortality, the time frame was calculated from the first hospital admission. Deaths were 
confirmed yearly through record linkages with the Malaysian National Registration Department. The registry’s 
data does not include information on short-term complications such as heart failure. The follow-up data points 
are intended to collect these variables, but due to the high number of missing values, we omitted them from the 
study. To increase the impact of the study, we focused our algorithm on policy-changing hard endpoints such as 
death. This was done in other publications as  well13,15,24.

Complete cases. We have used a complete set of data for primary analysis to ensure the validity of the find-
ings for model development. The primary analysis was performed on complete cases, and the secondary analysis 
was performed on the top-performing algorithm using missing cases after data imputation.

A total of 3991 in-hospital elderly STEMI patients aged 65 and above were collected from the registry. The 
final dataset of complete cases of elderly patients of 1345 datasets was identified as complete cases used for 
primary analysis (with no missing values on predictors). This rendered patients with a full predictor set of 50 
variables (9 continuous, 41 categorical) for the study as shown in Table 1.

Missing cases. Secondary analyses were conducted on the top-performing algorithm after adding 2646 
missing cases for a total of 3991 cases. We employed chained equations and predicted mean matching to perform 
multivariable  imputation25.

This method imputes missing values based on real values from other cases where predicted values are closest. 
We used multiple imputations, which means that missing data is typically imputed five  times25.

Our definition of an incomplete dataset includes variables that are missing up to 30%. There is no missing 
data for electrocardiography, but there is less than 2% to 10% missing data for demographics, pharmacological 
therapy, invasive therapeutic procedures, smoking status, smoking history, diabetes, hypertension, and clinical 
representation such as systolic and diastolic blood pressure. Missing variables are reported to be less than 15% 
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for chronic lung and renal disease, as well as a history of myocardial infarction, heart failure, and cerebrovascular 
disease. There is 20% missing data for baseline invention variables, and up to 30% missing data for Killip class 
and heart rate.

The referenced missing dataset is for patient characteristics, not outcome data. Due to the prospective nature 
of our dataset and the retroactive administration of data, the level of missing values across all variables was com-
pletely unpredictable and beyond our control. In our dataset, the likelihood of missing values is independent of 
both the observed values in any variable and the unseen portion of the dataset.

As a result, the dataset is classed as missing completely at random (MCAR), which indicates that the pattern 
of missing values is random and not dependent on any variable that may or may not is included in the study.

Development of risk models. A stratified random sampling of data was used from Kuhn and Johnson 
 study26. Data were split for model development (70%) and validation (30%) for all models. Multiple admissions 
are counted as one for each patient; the splits are based on patient identifiers rather than individual examples. 
The same pool dataset is assigned to patients with the same identifier. This means that if a patient is admitted 
three times, each of those three admissions will be assigned to the same set of either training or testing. The 
patient identifier was replaced with a randomly generated patient identifier to ensure the anonymity of the 
dataset used in this  study27.

We accessed the performance of DL and ML algorithms with TIMI using a validation set that accounts for 
30% of data that is not used for model development.

Prediction models for the elderly with STEMI were developed using the R package (Version 3.5.2) for DL and 
conventional ML algorithms such as LR, RF, XGboost, and SVM. These algorithms were selected due to their high 
performance in previous cardiovascular disease studies. The ML algorithms LR, RF, XGboost, and SVM feature 
selection methods are used to rank the variables listed in Table 1. Iterative feature selections were performed on 
the ranked variables in ascending order iteratively to generate the final  variables28. Cross-validation was used 
to avoid overfitting for model development on the training  set29. The ML prediction models were trained and 
tested for each iteration, and the models with the highest performance were selected. Predictive performances of 
the models were calculated using the validation dataset. DL models were then constructed with features selected 
from ML feature selection.

Random forest (RF). RF algorithm implemented in this study was based on Breiman  study30. Varying value of 
entry and number of trees ntree (500–4000) was used in this study to determine the optimum RF model that 
produced the best results. The RF variable importance method was used to generate ranked variables that were 
then reduced using sequential backward elimination iteratively. The final model for RF classifier parameters is 
ntree = 1000, and mtry = 6.

Support vector machine (SVM). SVM was implemented in this study using the RBF  kernel31. SVM in this study 
uses ROC curve variable importance to select and rank the most important variables. The final parameter after 
tuning used is sigma = 0.01 and c = 0.25 (cost tuning parameter, which regulates the margin width).

Logistic regression. The LR model was constructed using the generalized linear model function with family 
binomial. We used the original Akaike IC as the information criterion and backward directions for the LR model 
feature selection. LR in this study was constructed using default parameters.

XGB. XGB is an implementation of gradient boosting. XGB gives a more accurate result because it used a 
more regularised form of Gradient Boosting which improves model generalization capabilities that can control 
overfitting. Besides, it used parallel tree learning which makes the learning process faster. It is more capable of 
handling missing values compare to gradient  boosting32. Default parameters have been used for XGB model 
development in this study.

Deep learning. We used a multilayer perceptron (MLP) based on deep learning that integrates four hidden 
layers, 100–200 nodes, batch normalization, and dropout  layers33–35. Three hidden layers were used as there is 
no significant increase in performance when more layers were added. We used the R version of the Tensor Flow 
and Adam optimizer with the default parameters and binary-cross entropy as the loss  function36. Rectified linear 
unit (ReLU) as the activation  function37 was used after comparing with other activation functions predictive 
performance such as SoftMax, linear, Tanh, leaky ReLU, and exponential linear unit. The hyper-parameters used 
in the development of DL were tuned using grid search and manual tuning. Data for DL model development, 
categorical variable values were replaced with numeric values, and continuous variable values were normalised 
using z-scores38. Data preprocessing was performed in the training data and validation data, separately. Table 1 
also covered the hyperparameters that were used in all of the deep learning models.

Feature selection. The ML algorithms LR, RF, XGboost, and SVM feature selection methods are used to 
rank the variables listed in Table 1. Sequential Backward Elimination (SBE) algorithm was then applied to the 
ranked list of variables in ascending order to generate the final variables.

The sequential Backward elimination algorithm relies only on significance as a sufficient condition to 
remove insignificant variables from a  model39. Dependencies among variables are considered to obtain better 
 performance40. Variables are eliminated in ascending order of importance from RF, XGB, and SVM feature selec-
tion methods. The prediction model is retrained and tested each time a variable is eliminated. The variable that 
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causes a decrease in the AUC of the prediction model upon elimination based on the ranked variable list using RF, 
XGB and SVM feature selection is retained. The retained variables were ranked again using feature importance 
and the elimination process is repeated until the model with the least number of variables and the highest AUC 
value is achieved. LR feature selection was done using built feature selection using Akaike IC as the information 
criterion and backward directions. DL algorithm does not provide built-in feature importance. It has automatic 
learning of features and relationships from a given data, hence feature importance for the model is unknown. 
However, we have applied features selected from RF, XGB SVM, and LR to DL model development in this study.

Model evaluation, validation, and performance measures. The calibration of the models was com-
pared using standardized  measures41. The area under the curve (AUC) was used as a predictive performance 
metric. Additional performance metrics were accuracy, sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) for model calibration. Paired resampled t-test was used to compare the 
ML model’s predictive  performances26. The net reclassification index (NRI) was also assessed to evaluate the 
percentage improvement in identifying both positive and negative cases with the best model compared to the 
TIMI risk  score42.

Comparison with conventional method TIMI score. Calculated TIMI scores were used from the 
NCVD registry for the validation data performance. TIMI score performance (AUC) was compared with the 
developed DL and ML—models using the validation set that was not used for model development. A graph was 
also derived to compare performance with the TIMI score based on cutoff points applicable in clinical practice 
and  literature43. We define the high risk of death as a probability rate of > 8% similar to that reported  by43. The 
ML and DL high-risk population in this study is defined as a mortality probability of > 40% which is equivalent 
to the TIMI score of > 5.

Additional statistics. The results are expressed as mean and SD for continuous variables and as frequencies 
for categorical variables. Correlation analysis was carried out to identify a significant relationship between vari-
ables. Univariate analysis was performed using a Chi-Square test to identify significant variables and a two-sided 
independent student t-test (p < 0.05). The DL and ML performance was compared using a pair-wise corrected 
resampled t-test29,44. Statistical significance was considered if the p-value was less than 0.0001. Figure 1 summa-
rizes the workflow and methods used in this study.

Ethical declaration. This study was approved by the UiTM Research Ethics Committee (Reference: 600-
TNCPI (5/1/6)), with the approval code REC/673/19. The UiTM Ethics Committee operates in accordance to 
the ICH Good Clinical Practice Guidelines, Malaysia Good Clinical Practice Guidelines and Declaration of 
Helsinki.

Figure 1.  Research workflow and methodology applied in this study.
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Predictors (n = 51)

Complete dataset Imputed dataset

All cases (n = 1407) Survivors (n = 902)
Non-survivors 
(n = 505) p-value All cases (n = 4053) Survivors (n = 2262)

Non-survivors 
(n = 1791) p-value

Socio-demographic characteristics

Age (yrs)* 72.15 ± 5.91 71.17 ± 5.21 73.91 ± 6.63  < 0.0001 62.53 ± 23.43 71.89 ± 5.51 73.42 ± 5.94  < 0.0001

Gender

0.670Male 1051 (74.0%) 664 (73.6%) 377 (74.7%) 2739 (67.6%) 1625 (71.8%) 1145 (63.9%)

Female 366 (26.0%) 238 (26.4%) 128 (25.3%) 1314 (32.4%) 637 (28.2%) 646 (36.1%)

Ethnicity*

 < 0.0001 0.003

Malay 752 (53.4%) 426 (47.2%) 326 (64.6%) 2226 (54.9%) 1226 (54.2%) 1014 (56.6%)

Chinese 384 (27.3%) 261 (28.9%) 123 (24.4%) 959 (23.7%) 599 (26.5%) 401 (22.4%)

Indian 209 (14.9%) 163 (18.1%) 46 (9.1%) 665 (16.4%) 304 (13.4%) 287 (16.0%)

Others 62 (4.4%) 52 (5.8%) 10 (2.0%) 203 (5.0%) 133 (5.9%) 89 (5.0%)

Status before event

Smoking status

0.394 0.030
 No smoker 659 (46.8%) 425 (47.81%) 234 (46.3%) 1865 (46.0%) 1024 (45.3%) 864 (48.2%)

 Former smoker 346 (25.6%) 210 (23.2%) 136 (26.9%) 1149 (28.3%) 531 (23.5%) 435 (24.3%)

 Current smoker 402 (28.6%) 267 (29.6%) 135 (26.7%) 1039 (25.6%) 707 (31.3%) 492 (27.5%)

Smoking status 
(male)

0.203 0.019 No smoker 325 (31.2%) 208 (31.3%) 117 (31.0%) 795 (29.0%) 526 (32.2%) 269 (24.3%)

 Former smoker 332 (31.9%) 200 (30.1%) 132 (35.0%) 974 (35.6%) 582 (35.7%) 392 (35.4%)

 Current smoker 384 (36.9%) 256 (38.6) 128 (33.9%) 970 (35.4%) 524 (32.1%) 446 (40.3%)

Smoking status 
(female)

0.829 0.027 No smoker 334 (91.3%) 217 (91.2%) 117 (91.4%) 1070 (81.4%) 499 (73.4%) 571 (90.1%)

 Former smoker 14 (3.8%) 10 (4.2%) 4 (3.1%) 175 (13.3%) 145 (21.3%) 30 (4.7%)

 Current smoker 18 (4.9%) 11 (4.6%) 7 (5.5%) 69 (5.3%) 36 (5.3%) 33 (5.2%)

Family history of 
cardiovascular 
disease

111 (7.9%) 83 (5.9%) 28 (5.5%) 0.015 327 (8.1%) 175 (7.7%) 126 (7.0%) 0.398

History of myocar-
dial infarction 142 (10.1%) 84 (9.2%) 49 (9.7%) 0.717 458 (11.3%) 262 (11.6%) 235 (13.1%) 0.138

Chronic angina 160 (11.4%) 93 (10.3%) 46 (9.1%) 0.045 388 (9.6%) 256 (11.3%) 183 (10.2%) 0.263

History of heart 
failure 43 (3.1%) 23 (2.5%) 20 (4.0%) 0.140 279 (6.9%) 101 (4.5%) 163 (9.1%)  < 0.0001

Chronic lung disease 40 (2.8%) 31 (3.4%) 9 (1.8%) 0.073 220 (5.4%) 107 (4.7%) 118 (6.6%) 0.010

Chronic renal 
disease* 107 (7.6%) 45 (5.0%) 62 (12.3%)  < 0.0001 338 (8.3%) 156 (6.9%) 211 (11.8%)  < 0.0001

Peripheral vascular 
disease 73 (5.2%) 45 (5.0%) 28 (5.5%) 0.652 225 (5.6%) 126 (5.6%) 112 (6.3%) 0.358

Clinical presentation and examination

Heartrate* 83.78 ± 25.27 80.54 ± 23.79 89.56 ± 26.78  < 0.0001 86.54 ± 25.66 81.84 ± 23.31 93.56 ± 28.39  < 0.0001

Systolic blood pres-
sure* 132.06 ± 31.25 137.70 ± 30.23 121.97 ± 30.52  < 0.0001 113.86 ± 50.27 135.08 ± 30.22 121.70 ± 32.70  < 0.0001

Diastolic blood 
pressure* 78.20 ± 42.91 81.25 ± 51.23 72.75 ± 20.00  < 0.0001 67.28 ± 32.66 77.30 ± 18.15 73.60 ± 30.54  < 0.0001

Killip classification*

 < 0.0001  < 0.0001

 Killip I 720 (51.2%) 570 (63.2%) 150 (29.7%) 1770 (43.7%) 1347 (59.5%) 424 (23.6%)

 Killip II 321 (22.8%) 213 (23.6%) 108 (21.3%) 983 (24.3%) 512 (22.6%) 471 (26.3%)

 Killip III 111 (7.9%) 47 (5.2%) 64 (12.7%) 315 (7.8%) 116 (5.1%) 199 (11.1%)

 Killip IV 255 (18.1%) 72 (8.0%) 183 (36.2%) 985 (24.3%) 287 (12.7%) 698 (39.0%)

Baseline investigation

Total cholesterol 
(TC) 4.89 ± 1.41 5.06 ± 1.31 4.58 ± 1.52 0.013 4.86 ± 8.75 5.25 ± 11.23 4.82 ± 3.60 0.086

HD-C* 1.15 ± 0.34 1.17 ± 0.34 1.10 ± 0.34  < 0.0001 1.25 ± 3.83 1.28 ± 5.10 1.10 ± 3.54 0.106

LD-C* 3.10 ± 1.39 3.23 ± 1.42 2.84 ± 1.30  < 0.0001 4.41 ± 25.14 3.24 ± 4.91 4.52 ± 37.39 0.150

Triglyceride 1.52 ± 0.89 1.56 ± 0.99 1.45 ± 0.68 0.026 1.65 ± 5.21 1.48 ± 0.87 1.87 ± 7.78 0.134

Fasting blood sugar* 9.59 ± 5.31 8.15 ± 3.97 12.02 ± 6.21  < 0.0001 8.87 ± 7.66 8.53 ± 5.50 11.1 ± 8.90  < 0.0001

ECG findings

 ST elevation ≥ 1 mm 630 (44.8%) 412 (45.7%) 218 (43.2%) 0.364 1628 (40.2%) 1047 (46.3%) 581 (32.43%) 0.003

 ST elevation ≥ 2 mm 807 (42,6%) 508 (56.3%) 299 (59.4%) 0.293 2102 (51.9%) 1258 (55.6%) 844 (47.12%) 0.019

Continued
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Results
Patient characteristics. Table 2 depicts the summary statistics for the complete set of cases used in the 
study. The in-hospital complete feature dataset of elderly STEMI patients has a mean age of 72 years. The major-
ity of patients in the dataset are male (74%), Malay (53.9%), non-smokers (46%), and had a history of chronic 
diseases such as hypertension (69.1%), diabetes (46%), chronic angina (11.1%), myocardial infarction (9.9%), 
cardiovascular disease (8%), chronic renal disease (7.4%), peripheral vascular disease (5.3%), heart failure 
(3.0%), and chronic lung disease (2.9%). Percutaneous coronary intervention (PCI) was used to treat approxi-
mately 29% of patients. The overall mortality rate of elderly patients is 37%. There was a significant difference 
between survival and non-survival in age, ethnicity, diabetes, chronic renal disease, heart rate, systolic blood 
pressure, diastolic blood pressure, Killip classification, total cholesterol, high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, fasting blood sugar, bundle branch block, cardiac catheterization, aspirin, 
beta-blockers, ACE inhibitor, diuretics where all variables have p-values < 0.0001.

Table 2 also demonstrates the imputed data’s summary statistics. The dataset was imputed using the predic-
tive mean matching method. The imputed datasets on elderly patients have an average age of 73 years. In the 

Predictors (n = 51)

Complete dataset Imputed dataset

All cases (n = 1407) Survivors (n = 902)
Non-survivors 
(n = 505) p-value All cases (n = 4053) Survivors (n = 2262)

Non-survivors 
(n = 1791) p-value

 ST depres-
sion ≥ 0.5 mm 145 (10.9%) 94 (10.4%) 60 (11.9%) 0.400 464 (11.4%) 268 (11.8%) 196 (10.94%) 0.243

 T-ware inver-
sion ≥ 1 mm 89 (6.3%) 71 (7.9%) 18 (3.6%) 0.001 261 (6.4%) 172 (7.6%) 89 (4.97%)  < 0.0001

 Bundle branch 
block 79 (5.6%) 30 (3.3%) 49 (9.7%)  < 0.0001 409 (10.1%) 73 (3.2%) 336 (18.76%)  < 0.0001

 Non-specific 46 (3.3%) 40 (4.4%) 6 (1.2%) 0.001 1869 (46.1%) 950 (42.0%) 919 (51.31%) 0.689

Infarct location

 Inferior leads 671 (47.7%) 459 (50.9%) 212 (42.0%) 0.001 2182 (53.8%) 1190 (52.6%) 992 (55.39%)  < 0.0001

 Anterior leads 722 (51.3%) 433 (48.0%) 289 (57.2%) 0.001 837 (20.7%) 562 (24.8%) 275 (15.35%) 0.596

 Lateral leads 355 (25.2%) 234 (25.9%) 121 (24.0%) 0.412 330 (8.1%) 296 (13.1%) 34 (1.90%) 0.0001

 True posterior 150 (10.7%) 86 (9.5%) 64 (12.7%) 0.067 320 (7.9%) 169 (7.5%) 151 (8.43%) 0.277

 Right ventricle 113 (8.0%) 72 (8.0%) 41 (8.1%) 0.798 343 (8.46%) 259 (11.6%) 84 (4.69%) 0.0001

 None 68 (4.8%) 65 (7.2%) 3 (0.6%) 0.205 203 (5.0%) 112 (4.9%) 91 (5.08%) 0.0001

Invasive therapeutic procedures

Cardiac catheteriza-
tion* 582 (41.4%) 421 (46.7%) 161 (31.9%)  < 0.0001 1306 (32.2%) 754 (33.3%) 552 (30.82%)  < 0.0001

PCI 412 (29.3%) 283 (31.4%) 129 (25.5%) 0.021 1197 (29.5%) 779 (34.4%) 418 (23.34%)  < 0.0001

FB status (expand) 947 (67.3%) 576 (63.9%) 371 (73.5%) 0.038 1897 (71.5%) 1381 (61.1%) 516 (28.81%)  < 0.0001

Pharmacological therapy

ASA* 1349 (95.9%) 883 (97.9%) 466 (92.3%)  < 0.0001 3482 (85.9%) 2204 (97.4%) 1278 (71.36%)  < 0.0001

GP receptor inhibi-
tor 27 (1.9%) 19 (2.1%) 8 (1.6%) 0.493 257 (6.3%) 62 (2.7%) 195 (10.89%)  < 0.0001

Unfractionated 
heparin 226 (16.1%) 147 (16.3%) 79 (15.6%) 0.749 789 (19.5%) 332 (14.7%) 457 (25.52%) 0.616

LMWH 396 (28.1%) 240 (26.6.%) 156 (30.9%) 0.087 1497 (36.9%) 659 (29.1%) 838 (46.79%)  < 0.0001

Beta blockers* 708 (50.3%) 577 (64.0%) 131 (25.9%)  < 0.0001 1546 (38.1%) 1291 (57.1%) 255 (14.24%)  < 0.0001

ACE inhibitor* 566 (40.2%) 453 (50.2%) 113 (22.4%)  < 0.0001 1844 (45.5%) 1141 (50.4%) 703 (39.25%)  < 0.0001

Angiotensin II 
receptor blocker 37 (2.6%) 31 (2.9%) 6 (1.2%) 0.011 149 (3.7%) 95 (4.2%) 54 (3.02%) 0.265

Statin 1322 (94.0%) 862 (95.6%) 460 (91.1%) 0.002 3236 (79.8%) 2120 (93.7%) 1116 (62.31%)  < 0.0001

Lipid 23 (1.6%) 20 (2.2%) 3 (0.6%) 0.021 132 (3.3%) 51 (2.3%) 81 (4.52%) 0.069

Diuretics* 505 (35.9%) 281 (31.2%) 224 (44.4%)  < 0.0001 1247 (30.8%) 652 (28.8%) 595 (33.22%)  < 0.0001

Calcium antagonist 95 (6.8%) 70 (7.8%) 25 (5.0%) 0.044 401 (9.9%) 187 (8.3%) 214 (11.95%) 0.127

Oral hypoglycaemic 
agent* 234 (16.6%) 199 (22.1%) 35 (6.9%)  < 0.0001 496 (12.2%) 412 (18.2%) 84 (4.69%)  < 0.0001

Insulin* 411 (29.2%) 212 (23.5%) 199 (39.4%)  < 0.0001 981 (24.2%) 540 (23.9%) 441 (24.62%)  < 0.0001

Anti-arrhythmic 
agent* 97 (6.9%) 43 (4.8%) 54 (10.7%)  < 0.0001 436 (10.8%) 159 (7.0%) 277 (15.47%)  < 0.0001

Table 2.  Summary statistic of complete and imputed dataset. CAD coronary artery disease, HDL high-density 
lipoprotein, LDL low-density lipoprotein, ECG electrocardiogram, PCI percutaneous coronary intervention, 
CABG coronary artery bypass graft, ASA acetylsalicylic acid (aspirin), GP glycoprotein, LMWH low molecular-
weight heparin, ACE Angiotensin-converting enzyme. The asterisk (*) with p-value < 0.0001 indicated that the 
variable difference between the alive and dead group is statistically significant. Significant values are given in 
bold.
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imputed dataset, the overall mortality rate is 44.83%. There was a significant difference between survival and 
non-survival in age, gender, hypertension, diabetes, history of heart failure, chronic renal disease, heart rate, sys-
tolic blood pressure, diastolic blood pressure, Killip classification, fasting blood sugar, t-wave inversion ≥ 1 mm, 
bundle branch block bundle, ECG abnormal in inferior leads and anterior leads, cardiac catheterization, PCI, 
aspirin, GPRI, LMWH, beta-blocker, ACE inhibitor, statin, diuretics, oral hypoglycaemic agent, insulin, and 
Anti-arrhythmic agent (all variables with p-value < 0.0001).

Algorithm performance on complete cases. Table 3 illustrates model performances developed in this 
study. ML models constructed using reduced sets of features demonstrated higher performance compared to ML 
models developed using a complete set of features LR (0.91 vs 0.83), RF (0.91 vs 0.89), XGB (0.89 vs 0.89) and 
SVM (0.91 vs 0.87). XGB automatically selects the most important  variable40 in prediction when using a com-
plete set of variables, a similar AUC of (0.89) was reported after using a reduced set of variables. ML models RF 
(varImp-SBE-RF) (0.91), SVM (varImp-SBE-SVM) (0.91) and LR (varImp-SBE-LR) (0.91) constructed using 
selected features performed similarly and comparison was non-significant. However as illustrated in Table 2, 
DL (all features) model (0.93) using a complete set of features performed slightly better than ML models con-
structed using a reduced set of features RF (varImp-SBE-RF) (vs. 0.91, p < 0.0001), LR (varImp-SBE-LR) (vs. 
0.91, p < 0.0001) and SVM (varImp-SBE-SVM) (vs. 0.91, p = 0.309).

Slightly lower AUC value were observed with DL (all features) model using complete set of features 
(AUC = 0.93) compared to DL models constructed using selected features from DL (RF selected var) (vs. 0.95, 
p < 0.0001) using 13 predictors, DL (XGB selected var) (vs. 0.94, p < 0.0001) using 6 predictors, DL (SVM selected 
var) (vs. 0.94, p < 0.0001) with 11 predictors and DL (LR selected var) (vs. 0.94, p < 0.0001) using 15 predictors. 
There was no statistical significance between all the DL models constructed using selected features from ML 
(p > 0.05).

Theoretically, by running a model to indicate survival for a new patient aged 65 years and above after STEMI, 
in the DL (XGB selected var) model with the reduced 6 features selected from XGB, the average mortality risk is 
reduced to 4% (NPV). While the model is to indicate non-survival, the average risk of a patient being decreased 
is increased to 37% (PPV). This corresponds to an average 9.25% risk ratio for the outcome in patients classified 
as non-survival versus survival. Meanwhile, for the DL (RF selected var) model with the reduced features from RF 
(13 features), the average mortality risk is reduced to 3.2% (NPV). While the model is to indicate non-survival, 
the average risk of a patient being deceased is increased to 43% (PPV). This corresponds to an average 13% risk 
ratio for the outcome in patients classified as non-survival versus survival.

Model prediction using the imputed dataset. The best DL models, DL (RF selected var) and DL (XGB 
selected var) were also trained on an imputed dataset and tested using a complete case validation dataset. This 
allows for a valid comparison of models built with imputed and complete case models. Best models trained on 
imputed datasets performed comparably to models trained on complete dataset on similar validation datasets 

Table 3.  The AUC DL and ML models with and without feature selection based on a 30% validation dataset.

Models AUC (95% CI)
Accuracy (95% 
CI) Sensitivity Specificity PPV NPV Kappa value

Mcnemar’s test 
(p-value)

LR (all) 0.831 (0.762–
0.901)

0.832 
(0.795,0.865) 0.640 0.855 0.348 0.952 0.362  < 0.001

LR (varImp-SBE-
LR)

0.907 (0.867–
0.946)

0.809 
(0.770,0.843) 0.820 0.807 0.339 0.974 0.386  < 0.001

RF (all) 0.892 (0.849–
0.935)

0.908 
(0.878,0.932) 0.560 0.949 0.571 0.947 0.514 1.000

RF (varImp-SBE-
RF)

0.914 (0.871–
0.956)

0.914 
(0.885,0.938) 0.640 0.947 0.593 0.956 0.567 0.635

SVM (all) 0.871 (0.814–
0.928)

0.901 (0.870, 
0.927) 0.600 0.937 0.536 0.951 0.510 0.4610

SVM (varImp-
SBE-SVM)

0.911 (0.877–
0.946)

0.819 
(0.781,0.853) 0.880 0.812 0.361 0.983 0.424  < 0.001

XGBoost (all) 0.894 (0.852–
0.936)

0.890 (0.858, 
0.917) 0.580 0.928 0.492 0.948 0.471 0.263

XGBoost 
(varImp-SBE-
XGBoost)

0.891 (0.849–
0.933)

0.871 
(0.837,0.900) 0.680 0.894 0.436 0.959 0.461  < 0.001

DL (all) 0.927 (0.907–
0.941)

0,871 
(0.837,0.900) 0.680 0.894 0.436 0.959 0.461  < 0.001

DL (LR selected 
var)

0.941 (0.927–
0.955)

0.839 (0.802, 
0.871) 0.680 0.857 0.366 0.957 0.390  < 0.001

DL (RF selected 
var)

0.954 (0.942–
0.966)

0.867 (0.832, 
0.896) 0.760 0.880 0.432 0.968 0.479  < 0.001

DL (SVM selected 
var)

0.939 (0.925–
0.952)

0.850 (0.814, 
0,881) 0.800 0.855 0.400 0.973 0.455  < 0.001

DL (XGBoost 
selected var)

0.937 (0.923–
0.951)

0.817 (0.779, 
0.851) 0.720 0.829 0.336 0.961 0.366  < 0.001
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Table 4.  Predictors of best ML models.

ML algorithm

TIMILR RF SVM XGB

Abnormal BBB in ECG * *

ACE inhibitors *

Age * * * * *

Anti-arrhythmic agent

ASA

Beta-blocker * * *

Cardiac catheterization * *

CRD

Diabetes mellitus * *

Diastolic blood pressure * * *

Diuretics

ECG abnormal at lateral leads *

Ethics

Family history of CVD *

Fasting blood glucose * * * *

HDLC *

Heart rate * * * *

History of chronic renal disease *

Insulin

Killip class * * * * *

LDLC

LMWH * *

Oral hypoglycemia agent * * *

PCI * *

Race *

Systolic blood pressure * * * * *

Total cholesterol * * *

Figure 2.  Mortality rate distribution on the validation set of TIMI risk scores.
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Figure 3.  Mortality rate distribution on the validation set of DL (using RF variables) model.

Figure 4.  Mortality rate distribution on the validation set of DL (using XGBoost variables) model.

Table 5.  Percentage of mortality of TIMI score (> 5) and DL-based on risk stratification (> 0.4).

Model High-risk patients mortality (%)

TIMI risk scores 18.4

DL (with RF selected variables) 44.71

DL (with XGBoost selected variables) 33.64
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of complete cases: DL (RF selected var) (AUC = 0.956 (0.944–0.968) vs AUC = 0.954 (0.942–0.966), p = 0.540) 
and DL (XGB selected var (AUC = 0.948 (0.935–0.960) vs AUC = 0.937 (0.923–0.951) p < 0.0001). There is no 
statistically significant difference between the DL model (RF selected var) using complete cases with the imputed 
model.

Feature selection. Table 4 displays the variables chosen by combining SBE and ML algorithm feature selec-
tion methods, which resulted in the ML model with the best predictive performance while using the minimum 
varaibles. Patient age, fasting blood glucose, heart rate, Killip class, oral hypoglycemic agent, systolic blood pres-
sure, and total cholesterol are all common predictors across best ML models. These predictors were also identi-
fied as significant predictors in univariate analysis. The XGB model chose the fewest predictors (six): patient age, 
fasting blood glucose, heart rate, Killip class, and beta-blocker. Age, Killip Class, and Systolic Blood Pressure are 
similar features selected by ML feature selection with TIMI risk score.

Table 6.  NRI analysis for TIMI vs DL (with RF selected variables).

In-hospital elderly

Number of individuals Reclassification

Net correctly reclassified (%)

Deep learning

Increased risk Decreased riskLow risk High risk

Individuals with events (died) (n = 50)

TIMI score 6 9 − 3/50 = − 6.00%

Low risk 5 6

High risk 9 30

Individuals without events (alive (n = 415)

TIMI score 14 116 102/415 = 24.58%

Low risk 228 14

High risk 116 57

Net Reclassification Index 
(NRI) − 6.00 + 24.58 = 18.58

Z, p-value
Z =  18.58

√

6+9

502
+

14+116

4152

  = 226.07

226.07, p < 0.00001

Conclusion
It was statistically significant. The predictive power of the DL model was improved as compared to the TIMI 
Risk Scores Model in predicting the mortality rate of elderly STEMI patients, and the proportion of correct 
classification increased by 18.58%

Table 7.  NRI analysis TIMI vs DL (with XGB selected variables).

In-hospital elderly

Number of individuals Reclassification

Net correctly reclassified (%)

Deep learning

Increased risk Decreased riskLow risk High risk

Individuals with events (died) (n = 50)

TIMI score 6 9 − 3/50 = − 6.00%

Low risk 5 6

High risk 9 30

Individuals without events (alive) (n = 415)

TIMI score 14 116 102/415 = 24.58%

Low Risk 228 14

High Risk 116 57

Net Reclassificaton Index 
(NRI) − 6.00 + 24.58 = 18.58

Z, p-value
Z =  18.58

√

6+9

502
+

14+116

4152

 = 226.07

226.07, p < 0.00001

Conclusion
It was statistically significant. The predictive power of the DL model was improved as compared to the TIMI 
Risk Scores Model in predicting the mortality rate of elderly STEMI patients, and the proportion of correct 
classification increased by 18.58%
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Comparison with TIMI conventional risk score. Using the same validation set, TIMI achieved a lower 
AUC of 0.750 (95% CI 0.669,0.810) compared to all ML and DL models. Figures 2, 3, and 4 illustrate the graph 
plotted from the TIMI risk score, DL (RF selected var), and DL (XGB selected variables) in predicting the mor-
tality risk of the elderly STEMI patients respectively. For the elderly patients, the ML score categorized patients 
as low risk with the probability of < 40% and high-risk stratum as ≥ 40%. This is equivalent to a TIMI low-risk of 
score ≤ 5 and a high-risk score of >  543.

Table 5 tabulates the percentage of mortality in the patients with predicted low risk (TIMI score: < 5; ML 
probabilities < 0.4) and high risk (TIMI score: > 5; ML probabilities: ≥ 0.4). In the high-risk group, ML and DL 
predicted mortality better in comparison to TIMI for in-hospital death in elderly patients.

NRI analysis. NRI for the in-hospital model, the net reclassification of elderly STEMI patients using the DL 
(SVM selected var) (Table 6) and DL (XGB selected var) (Table 7) produced a net reclassification improvement 
of 18.14% with p < 0.00001 over the original TIMI risk score.

Discussion
This study aimed to construct and validate conventional ML and DL models in Asian elderly admitted with 
STEMI. We also compared the predictive performance of these models against conventional risk score models 
such as TIMI. This is the first study to include DL and conventional ML models in the risk prediction of in-hospi-
tal mortality in Asian elderly with STEMI resulting in a higher predictive ability than the conventional statistical 
method (TIMI). DL and ML risk stratification models were developed based on the Asian elderly on relatively 
recent data, which can better predict mortality for STEMI patients in the current practice compared to TIMI.

We observed from the results obtained in this study that (i) DL model (AUC = 0.93) outperform all ML models 
(AUC ranging from 0.83 to 0.89) on a complete set of features (p < 0.0001) (ii) DL models constructed using ML 
feature selection (AUC ranging from 0.93 to 0.95) performed better than ML constructed using selected features 
(AUC ranging from 0.89 to 0.91) (p < 0.0001) (iii) Both DL and ML model constructed using all and selected 
features (AUC ranging from 0.83 to 0.95) outperformed conventional risk scoring score TIMI (AUC = 0.75) (iv). 
DL constructed using selected features (AUC ranging from 0.93 to 0.95) were observed to perform better than 
DL constructed using all features (AUC = 0.93). DL is composed of multiple feature processing layers obtained 
by composing simple but nonlinear modules, each of which transforms a feature at one level into a feature at a 
higher, slightly more abstract  level13,45. As a result, when compared to ML and the conventional method TIMI 
score, the higher accuracy obtained with DL in this study is due to the algorithm discrimination power and 
features used. This is supported by Kwon’s  findings13, which show that DL outperforms ML and conventional 
risk scores in predicting mortality in Korean ACS patients.

These risk-scoring models are developed using logistic regression with the limitation of predetermined expec-
tations on data behaviour, and preselected parameters in the development  phase13. Further limitations include 
a lack of bedside convenience and some data only being available following a biochemical test. Since age is a 
component of risk stratification in-hospital mortality is significantly higher in older adults. As age is incorporated 
into most conventional risk score algorithms older adults will be scored as higher risk based on their age  alone46. 
Several previous studies on mortality prediction also have reported on the use of feature selection techniques to 
enhance the performance of machine learning algorithms by reducing the predictor’s dimensionality in Asian 
patients. This study also demonstrated that ML-based models outperformed conventional risk score  TIMI18,30,47,48.

Additionally, previous research has also shown that models based on DL perform better in classification tasks 
than models based on classical ML algorithms and conventional risk  scores13. Similar findings were reported 
in our study as well.

Even though the TIMI risk score has been widely used in the Asian population, this score was developed from 
the Western Caucasian cohort with limited data from an Asian population. In our study, when DL and ML models 
were validated against TIMI, we observed a modest AUC value of 0.75 for TIMI score validated on elderly Asian 
patients which were lower than the TIMI risk score reported on in a fibrinolytic eligible STEMI population AUC 
of 0.7849. Modest performance AUC of 0.709 (95% CI 0.591–0.827; p < 0.001) have also been reported on TIMI 
risk score for in-hospital mortality of older women age > 70 who underwent PPCI in a South Asian  country50.

We also conducted an accuracy test using data that were not used for the model derivation for comparison 
with TIMI. We used two DL models as there was no significant difference between DL models constructed 
using selected variables. Hence, the two DL models used were; the DL (RF selected var) model with the highest 
performance (AUC = 0.95) with 13 predictors and the DL (XGB selected variable) (AUC = 0.93) with the least 
number of  predictors6. Both algorithms make use of decision trees, while XGB makes use of boosting rather 
than bagging. This approach reduces variance and  bias32. Numerous recent investigations have demonstrated the 
generalizability and robustness of both methods in clinical practice. Both models managed to identify high-risk 
patients that reported higher mortality in those classified as high risk in TIMI. The mortality rate, however, was 
no different suggesting an inherent inaccuracy within the algorithm. The mortality for high-risk patients for 
TIMI in this study is 18% vs 44% for DL (RF selected variable) model.

The TIMI risk score lacks risk factors relevant to older adults and fails to account for the overall complexity 
of the older adult with  ACS13,51. The Asian cohort was found to be carrying an overall higher disease burden and 
risk compared to the TIMI cohort. The lack of weighting for the risk factors, while improving usability, decreased 
TIMI risk score discriminatory  performance52,53. Not only that, TIMI is known to underestimate mortality risk 
in the high-risk group as seen in this study. This may delay proper treatment and sufficient resource allocation 
to high-risk elderly patients incurring excess avoidable deaths.

It is essential that the risk prediction model be interpretable. To this end, it is true that one of the significant 
advantages of a deep learning algorithm is its intrinsic hierarchical feature selection along with successive levels 
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of increasing abstraction for pattern detection. While the newly extracted features are largely meaningless from 
the perspective of the deep learning method, their extraction can be beneficial for driving the learning process 
in certain circumstances. This was likewise the case in our instance where the DL model with selected features 
performed similarly or better than DL constructed using all features. Not only that, but a new genre of literature 
is forming that recounts similar circumstances, such as those found  in54,55.

Exploring the feasibility of DL and ML on the predictors of mortality among Asian elderly provides clinicians 
with a tool that allows the identification of higher-risk populations in the emergency department that could 
influence effective management based on their prognostic characteristics as described by their risk scores. ML 
methods discussed in this study are needed to rank and select significant risk factors associated with in-hospital 
mortality of the elderly. Feature selection allows better interpretation of the models by restricting the scope of 
predictors used, selecting only those clinically relevant, and ease of implementation of the model for bedside 
risk assessment usage.

Hence, our data-driven model for risk prediction and identification of factors associated with in-hospital 
mortality was developed using a nationwide registry of a multiethnic Asian elderly population. We identified 
age, fasting blood glucose, heart rate, Killip class, oral hypoglycemic medication, systolic blood pressure, and 
total cholesterol to be common predictors of in-hospital mortality in Asian elderly patients following STEMI. 
Additionally, invasive procedures such as heart catheterization were also selected in our study. These factors are 
consistent with the findings of this study’s univariate analysis. These factors have also been chosen by machine 
learning and deep learning studies aimed at predicting mortality post STEMI in the Asian  population13,30. We 
discovered that STEMI-related treatments have no effect on outcomes in different groups. In the main dataset of 
STEMI in-hospital patients, 97.3% (16,829) received ASA, while 6176 (35.7%) underwent  PCI18. In the elderly 
patient dataset, 3482 patients were given ASA, accounting for 85.9%, and 1197 patients were given PCI, account-
ing for 29.5%. In terms of significant analysis performed on raw datasets in both studies, both datasets exhibit 
similar characteristics and yield similar results.

Additionally, we identified common predictive variables between the conventional risk score TIMI and 
feature-selected by ml algorithms. These variables include age, Killip class, systolic blood pressure, and fast-
ing blood sugar, which is an indicator of diabetes. These factors also corroborate the findings of the univariate 
analysis in this study.

Older age and higher Killip class were significant predictors of mortality in Asian  patients12,56. The elderly, 
especially those aged equal or greater than 65 years old represents a subgroup of high-risk ACS patients due 
to the fact that they commonly have other  comorbidities57. Killip class is also noted to be among the factors 
that are associated with increased mortality in the elderly. Generally, older patients have a higher incidence of 
heart-related complications (Killip class II-IV) than younger  patients58. Killip class selected by ML and univari-
ate analysis conforms with the study  by15 where Killip class is selected as main predictors by ML algorithm. As 
the most significant determinant of myocardial oxygen and cardiac workload, heart rate plays a vital role in 
in-hospital mortality and was also  selected59.

Diabetes in individuals aged ≥ 65 years has globally become a growing public health burden. The prevalence of 
diabetes and diabetes-related complications, such as myocardial infarction (MI) and ischemic stroke, is increas-
ing in the older age group. Fasting glucose level is a fundamental element in managing diabetes and both high 
and low fasting glucose levels are associated with a higher risk of  mortality60,61. Fasting blood glucose has been 
selected in our study by all ML features selection methods and our previous published  study18. Pharmacological 
treatments such as beta-blockers post-STEMI are also often associated with improved outcomes and significant 
predictors of STEMI  patients3,62–64. Oral hypoglycemic agent indicates the presence of diabetes and its use by 
patients during an ACS event may reflect pre-existing diabetes. Knowing the duration of illness with diabetes may 
have helped risk prediction better as it has been associated with a higher risk of death in other  studies65. Nonethe-
less, oral hypoglycaemic agents were selected as the main predictors of mortality of the elderly in our  study66,67.

Older age has been found to be predictive of lower use of cardiac catheterization, with significant variation 
 internationally68. We have noted a significant difference in survival vs non-survival (p < 0.0001) in our study 
between older patients that underwent cardiac catheterization procedures. However, we identified only 29% of 
Asian elderly STEMI patients who have undergone PCI and 44% cardiac catheterization. This is despite the data 
showing that in‐hospital mortality after percutaneous coronary intervention (PCI) has fallen for all age groups 
over the past several years. Elderly patients with ACS tend to be undertreated, both invasively and pharmacologi-
cally. Invasive treatment seems to yield better outcomes for this group of  patients57. This is an area that needs 
improvement to raise the level of care.

Data imputation was performed to ensure the validity of the findings. We tested the results of data imputation 
on model with the highest AUC in this study DL (RF selected var) and model high AUC and least number of 
predictors DL (XGB selected var). We used multivariable imputation using chained equations and the predic-
tive mean matching method for data imputation. The multivariable imputation using chained equations and 
predictive mean matching method used in this study was selected as recommended in a similar study conducted 
on the Swedish heart registry dataset that resulted in high model  performance20. Additionally,  Solaro69 studies 
observed that miss forests a machine learning data imputation method relative performance varied according 
to the MCAR data patterns and did not provide a clear advantage. In general, miss forests imputation accuracy 
and applicability remain unknown.

Data imputation techniques produced models with comparable prediction performance to those developed 
using complete cases. We first excluded patients with more than 50% missing data because this would necessi-
tate data imputation, which could alter our conclusion. We do not believe this is a constraint on the population, 
given the dataset is still quite large. Due to the fact that the dataset contained complete data for all follow-up 
time points, risk calculators for both the DL and TIMI calculators could be generated. However, identifying 
characteristics associated with the use of complete cases for in-hospital elderly mortality prediction would 
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result in more reliable conclusions. We repeated the experiment using an incomplete dataset and imputed data 
and obtained comparable findings. However, the imputed model for DL (XGB chosen var) performed slightly 
better, as the DL technique performs better when datasets with lower feature dimensions and a larger number 
of datasets are utilized.

The cross-validation and hyperparameter tuning approach used in this study increases the efficacy of the DL 
and ML algorithms during model construction as it reduces the risk of model over-fitting. Also, the classification 
performance is highly influenced by data pre-processing and tuning of  algorithms70.

To ensure the study’s reliability, all models were validated using untouched validation data. The DL model 
performed similarly to models with feature selection when using complete sets of variables collected. This refutes 
the claim that feature selection leads to the loss of important prognostic information as claimed by  Kwon13.

Study limitations. Despite the excluded patient, the number of elderly people over the age of 65 (3991 
patients) was large enough to allow for analysis; however, we regard this as a limitation of the study. Several 
other limitations also exist in this study. Firstly, we could only validate DL and ML models for in-hospital, with a 
clinical prognostic model TIMI score that was designed for 30 days’ mortality. TIMI score was adopted due to its 
simplicity and it was developed for short term risk stratification. Parameters to calculate GRACE score were not 
acquired during patient admission compared to TIMI score. Furthermore, studies by Aragam and  Correia43,71 
reported that both scores show similar discriminatory capacity for STEMI in-hospital death, and the TIMI score 
had better calibration than GRACE. Hence comparing performance for two risk scores appears redundant. In-
hospital bleeding was not captured in the NCVD registry, which is a limitation of the study despite the fact that 
it is an important factor affecting in-hospital mortality, particularly in the elderly. Both GP receptor inhibitors 
and ASA are relevant in-hospital antiplatelet drug  therapy72 that were present in the initial complete variable 
set used for model development but were not selected by the ML feature selection algorithm. The ML feature 
selection algorithm selects variables that are significant to the  outcome73. In this study, we discovered that GP 
receptor inhibitor is not a significant factor using both the univariate and machine learning methods. The major-
ity of elderly patients are given ASA, but it is not chosen as a significant variable affecting mortality by the all 
ML feature selection method used in this study. As shown in Table 2, smoking is significantly associated with 
mortality in elderly patients, and similar findings in STEMI patients indicated that smoking affects  mortality18,74. 
However, smoking and gender predominance have no effect on mortality in this cohort. In this cohort, which 
includes 50% of patients aged 65 and above, former and current smokers are men. Meanwhile, female smokers 
account for only about 0.022% of current and former smokers of all patients.

Future studies using interpretable DL will be our next area of study. Both DL and ML models rely on repre-
sentability as opposed to medical knowledge which can lead to bias due to the representativeness of training data. 
It is still unclear whether DL and ML will consistently perform on real live data sets. Hence, the model needs to 
be continuously evaluated with real-time patient data which can be easily acquired due to the implementation 
of the Electronic Health Record System in hospitals. These risk scores could be implemented into the hospital 
electronic systems for physicians’ use. This might be the scope for future studies, as well as validating this risk 
score in a registry rather than an administrative database. The study’s generalizability is relevant to Asians in 
general, given the NCVD registry’s ethnic make-up of Malay, Chinese, and Indian descendants. It is particularly 
relevant for Malaysia, Brunei, and Singapore, as well as other Asian countries such as China and  India75.

Conclusion
We demonstrated that DL with ML feature selection can be applied in conjunction with conventional risk score 
methods to improve mortality prediction in Asian elderly patients presenting with STEMI. This knowledge 
could be used to improve communication and awareness among elderly patients, allowing physicians to make 
management changes and better manage limited resources.

Data availability
The data that support the findings of this study are available from the National Heart Association of Malaysia 
(NHAM) but restrictions apply to the availability of these data, and so are not publicly available. The data belongs 
to the individual ministry of health universities hospitals and private hospitals that require multiple institutional 
agreements for data release to third parties hence ethical approval is needed for analysis. Data are however avail-
able from NHAM upon request using https:// www. malay sianh eart. org/?p= conta ct or email them at secretariat@
malaysianheart.org. Any findings from the data need to be reported and permission needs to be obtained from 
the NHAM committee before publication.
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