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Abstract
Background

Corrected carotid flow time (CFTc) and carotid blood flow (CBF) are sonographic measurements used to
assess fluid responsiveness in hypotension. We investigated the impacts of mechanical ventilation on CFTc
and CBF.

Materials and methods

Normotensive patients undergoing cardiac surgery were prospectively enrolled. Carotid ultrasound (US) was
performed pre and post-intubation. Post-intubation measurements took place after the initiation of
mechanical ventilation. To measure CFTc and CBF, a sagittal carotid view was obtained with pulse wave-
Doppler (maximum angle 60°). CFTc was calculated with the Bazett formula (CFTc = systolic time/Vcycle

time). CBF was calculated using CBF (mL/min) = area (cm 2y x time average mean velocity (TAMEAN)
(cm/sec) x 60 (sec/min). The maximum carotid diameter was measured at the level of the thyroid.

Results

Twenty patients were enrolled. Mean CFTc pre-intubation was 328 ms (SD 43.9 ms) compared to CFTc post-
intubation 336 ms (SD 36 ms). There was no significant difference between pre and post-intubation CFTc
(mean differences=-0.008; t(19)=-0.71, p=.49). Mean CBF pre-intubation was 487 mL/min (SD 176 mL/min)
compared to CBF post-intubation 447 mL/min (SD 187 mL/min). There was no significant difference
between pre and post-intubation CBF (mean differences= 40; t(19)=1.24, p=.23).

Conclusions

In this study of normotensive patients, there were no detected differences in CFTc or CBF pre and post-
intubation with mechanical ventilation.

Categories: Anesthesiology, Cardiology, Emergency Medicine
Keywords: critical care ultrasound, carotid ultrasound, mechanical ventilation, carotid blood flow, carotid flow time

Introduction

Hypotension and respiratory failure characterize some of the most critically ill conditions treated

in emergency departments and intensive care units. There has been much research focused on
differentiating which hypotensive patients will respond to fluid boluses and which will not [1-4]. Both
invasive and non-invasive means of predicting fluid responsiveness have been investigated [5-6]. There
exist some publications on corrected carotid flow time (CFTc) and carotid blood flow (CBF) that suggest their
usefulness in determining fluid status and responsiveness in non-ventilated patients [5,7-8]. A systematic
review including studies of ventilated and non-ventilated patients supports the integration of carotid artery
ultrasound (US) in hypotensive patients in order to predict fluid responsiveness [9]. However, there have not
been studies focused on the effects of mechanical ventilation on CFTc and CBF.

While we know that mechanical ventilation can alter overall hemodynamics by increasing intrathoracic
pressure and subsequently decreasing preload, we do not know if mechanical ventilation has important
effects on carotid blood flow parameters. If mechanical ventilation does affect CFTc or CBF, this would be
very relevant for critically ill patients who may be simultaneously hypotensive and require mechanical
ventilation. In this study, we aimed to evaluate the impact of mechanical ventilation on carotid artery flow
parameters in patients undergoing planned intubation in the operating room.
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Materials And Methods
Study design and setting

This was a prospective observational study of a convenience sample of patients undergoing planned surgery
in the cardiac operating room. The study was conducted between August 2019 and October 2019. The
hospital institutional review board approved the study. Informed consent was obtained from all patients.

The pre-intubation US was performed with the spontaneously breathing patient in a supine position. After
intubation but before the beginning of surgery, once a stable ventilator setting was in place, the post-
intubation US was performed. Ventilator settings, including positive end-expiration pressure (PEEP),
maximum pressure (Pmax), tidal volume, and respiratory rate, were recorded. Vital signs were measured at
the time of US measurements. All data were collected and recorded using a standardized method. Our
predictor variables were the change in CFTc and CBF pre and post-intubation.

Selection of participants

We enrolled a convenience sample of adult (>18 years) patients scheduled for planned surgery with general
anesthesia in the cardiac operating rooms. Enrollment was limited to those patients in whom US of the neck
would not interfere with the planned surgery. Patients were excluded if they were <18 years of age, pregnant,
did not have a regular cardiac rhythm, or had a history of advanced carotid artery disease, severe aortic
stenosis, or aortic insufficiency.

All study staff were trained to assess CFTc and CBF using a standardized technique. Two emergency
medicine US fellows experienced in the carotid US obtained all images.

Ultrasound measurements

A standardized scanning protocol was followed. The carotid artery was scanned in transverse and
longitudinal orientations from the carotid bulb proximally toward the chest distally. Images were acquired
with a portable US system (Mindray M9) using the linear-array (12-4 MHz) transducer with the “Carotid”
preset (Mindray Medical Systems, Shenzhen, China).

PW Doppler was used in a long-axis view of the vessel below the carotid bulb at the level of the thyroid or 3
cm below the carotid bulb if no thyroid was visualized. Transducer position, steering, and correction angle
were optimized to the given anatomy to create an insonation angle <60°. The gate size was adjusted to cover
the whole carotid artery, and the center of the gate was placed in the center of the vessel. The cross-
sectional area of the vessel was calculated using the transverse maximal diameter at the height of the
thyroid gland or 3 cm below the carotid bulb if no thyroid were present (Figure ).
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FIGURE 1: Carotid Artery Diameter

The carotid artery vessel diameter was measured in transverse at the height of the thyroid gland or 3 cm below
the carotid bulb if no thyroid gland were present. Pulse wave Doppler measurements were obtained at this same
location. The diameter was transferred to the longitudinal image to allow the ultrasound machine to calculate the
area and flow volume.
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For CFTc parameters, systolic time was measured from the beginning of the upstroke of the Doppler signal
to the dicrotic notch (Figure 2).

,mindray

4 #47—-7

PRE ',mue ION

[

FIGURE 2: Flow Time and Cycle Time

Pulse wave Doppler with measurement of flow time and cycle time over three cycles

Cycle time was measured from one upstroke to the next. CFTc was then corrected for HR using Bazett’s
formula: CFTc = systolic time/Vcycle time, with all times expressed in seconds. Three cycles were measured
whenever possible, and the mean was used for calculations to improve precision.

CBF was measured with the formula: CBF (mL/min) = Area (cm ) x time average mean velocity (TAMEAN)
(cm/sec) x 60 (sec/min), where TAMEAN was the time average mean velocity obtained by an automatic pulse
wave (PW) Doppler tracing (Figure 3).
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FIGURE 3: Flow Volume

Pulse wave Doppler with measurement of flow volume, Time Average Mean Velocity (TAMEAN). The vascular
diameter was measured in transverse at the same location as the doppler image. The diameter result was
transferred to the longitudinal image so the ultrasound machine could calculate the area and the flow volume.
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Images were saved and measurements were made in real-time. All data were entered into REDCap (Research

Electronic Data Capture), a secure Health Insurance Portability and Accountability Act-compliant web-

based application hosted by our institution [10-11].

Statistical analysis

Cohort demographic and clinical data are reported in means with standard deviations for continuous

variables and percentages for categorical variables. Paired sample t-tests were conducted to compare pre and
post-intubation CFTc and CBF. Analysis of influencing factors on CBF and CFTc including PEEP, maximum
pressure (Pmax), heart rate pre and post-intubation (HR-pre and -post), and mean arterial pressure pre and

post-intubation (MAP-pre and -post) were conducted using Pearson’s product-moment correlations. The

association between the previously described features and the pre and post-intubation differences were also

conducted using Pearson’s product-moment correlations. All statistical analyses were performed in the R

statistical programming environment [12].

Results
Characteristics of study subjects

A convenience sample of 24 patients was enrolled; 20 patients completed the study and were used in the
analysis. Patient characteristics are displayed in Table 1.

Age (years)

American Society of Anesthesiologists (ASA) score
HR pre-intubation (bpm)

Diastolic blood pressure pre-intubation (mmHg)
Systolic blood pressure pre-intubation (mmHg)
MAP pre-intubation (mmHg)

Intravenous fluids volume by time of second US (mL)
Tidal volume (mL)

PEEP (cm H20)

Maximum pressure (cm H20)

HR post-intubation (bpm)

Diastolic blood pressure post-intubation (mmHg)
Systolic blood pressure post-intubation (mmHg)

MAP post-intubation (mmHg)

TABLE 1: Patient Characteristics (n=20)

MAP: mean arterial pressure; PEEP: positive end-expiration pressure; HR: heart rate

Mean

60

3.3

72

77

148

101

305

446

65

69

125

86

Standard Deviation (SD)
18

0.7

Pre and post-intubation carotid parameters

Mean CFTc pre-intubation was 328 ms (SD 43.9 ms) compared to CFTc post-intubation 336 ms (SD 36 ms).

There was no significant difference between pre and post-intubation CFTc with mean differences = -0.008;

t(19) = -0.71, p = .49. Based on our sample size, with a power of 80%, we were able to detect a difference in
CFTc of 35 msec. Figure 4 visually depicts CFTc pre and post-intubation results for the group of patients,
demonstrating overall similar measurements, aside from one outlier, before and after intubation.
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Corrected Carotid Flow Time
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FIGURE 4: Corrected Carotid Flow Time

Pre and post-intubation corrected carotid flow time (CFTc) is depicted for each subject with individual subjects
represented by each red line and mean values represented by the blue line.

Mean CBF pre-intubation was 487 mL/min (SD 176 mL/min) compared to CBF post-intubation 447 mL/min
(SD 187 mL/min). There was no significant difference between pre and post-intubation CBF with mean
differences = 40; t(19) = 1.24, p = .23. Based on our sample size, with a power of 80%, we were able to detect
a difference in CBF of 159.6 ml/min. Figure 5 visually depicts CBF pre and post-intubation results, depicting
comparable pre and post-intubation CBF measurements for the group of patients.
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FIGURE 5: Carotid Blood Flow

Pre and post-intubation carotid blood flow (CBF) is depicted for each subject with individual subjects represented
by each red line and mean values represented by the blue line.

Correlations with influencing factors

There was no correlation identified between the CBF or CFTc and PEEP, maximum pressure (Pmax), heart
rate pre- and post-intubation (HR-pre and -post), and mean arterial pressure pre- and post-intubation
(MAP-pre and -post). There was no correlation identified between the pre or post-intubation or the
difference between the CBF or CFTc and PEEP, Pmax, HR-pre and -post, and MAP-pre and -post.

Discussion

While we predicted that mechanical ventilation would have effects on carotid flow parameters, our results
did not demonstrate this. Given known decreases in preload after initiation of mechanical ventilation and
subsequent lowering of blood pressure, and known changes in carotid flow time with volume status changes,
we anticipated both a decreased stroke volume and carotid blood flow [7,13-14].

In this cohort analysis, we did not find statistically significant changes in CFTc or CBF in response to
mechanical ventilation as measured by US. Influencing factors of PEEP, Pmax, HR-post, and MAP-post did
not show correlations with either CFTc or CBF. This suggests that for this group of patients, these
parameters either do not affect CFTc and CBF, the sonographic signals were too noisy to detect differences if
they do exist, or the sample was too small.

These results are reassuring, as they support the idea that mechanical ventilation does not have adverse
effects on carotid artery flow for stable patients undergoing elective procedures in the operating room.
However, as these were stable patients not requiring emergent intubation for respiratory failure or patients
with hypotension, generalization of these findings to either hypotensive patients or those with respiratory
failure may be limited. There have been small studies performed in critical care settings aimed to explore
the relationship between a patient's internal jugular vein to common carotid artery diameter ratio (IJV/CCA)
with the patient's central venous pressure (CVP) as a means to predict volume status through non-invasive
means. While correlations were found between IJV/CCA and CVP in non-ventilated patients, there were no
correlations found for ventilated patients [15-16]. Additional research is needed to better understand the
effects of mechanical ventilation on carotid parameters for critically ill patients.
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This study is limited primarily due to the single-center nature, small sample size, and convenience sample
methodology. As this study was performed in a controlled setting in the operating room, the results have
limited generalizability to other settings, including critically ill patients in the emergency department or
intensive care unit. Preoperative patients are closely monitored by anesthesiologists and certified registered
nurse anesthetics who respond nearly immediately to hemodynamic changes with vasoactive medications
that could, in this study, dull the effects of mechanical ventilation on carotid artery flow parameters.

Conclusions

In this study of normotensive patients undergoing mechanical ventilation, there were no detected
differences in CFTc or CBF between pre and post-intubation with mechanical ventilation. Further research
would be needed to investigate the generalizability of these findings. The impact of mechanical ventilation
on critically ill patients remains unknown.
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