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Abstract. Cultured mouse mammary (NMuMG) cells 
produce heparan sulfate-rich proteoglycans that are 
found at the cell surface, in the culture medium, and 
beneath the monolayer. The celt surface proteoglycan 
consists of a lipophilic membrane-associated domain 
and an extracellular domain, or ectodomain, that con- 
tains both heparan and chondroitin sulfate chains. 
During culture, the cells release into the medium a 
soluble proteoglycan that is indistinguishable from the 
ectodomain released from the cells by trypsin treat- 
ment. This medium ectodomain was isolated, purified, 
and used as an antigen to prepare an aftinity-purified 
serum antibody from rabbits. The antibody recognizes 
polypeptide determinants on the core protein of the ec- 
todomain of the cell surface proteoglycan. The reactiv- 
ity of this antibody was compared with that of a se- 
rum antibody (BM-1) directed against the low density 
basement membrane proteoglycan of the Englebarth- 
Holm-Swarm tumor (Hassell, J. R., W. C. Leyshon, 
S. R. Ledbetter, B. Tyree, S. Suzuki, M. Kato, K. Ki- 
mata, and H. Kleinman. 1985. J. Biol. Chem. 
250:8098-8105). The BM-1 antibody recognized a 
large, low density heparan sulfate-rich proteoglycan in 
the cells and in the basal extracellular materials be- 

neath the monolayer where it accumulated in patchy 
deposits. The affinity-purified anti-ectodomain anti- 
body recognized the cell surface proteogtycan on the 
cells, where it is seen on apical cell surfaces in sub- 
confluent cultures and in fine filamentous arrays at the 
basal cell surface in confluent cultures, but detected no 
proteoglycan in the basal extracellular materials be- 
neath the monolayer. The amino acid composition of 
the purified medium ectodomain was substantially 
different from that reported for the basement mem- 
brane proteoglycan. Thus, NMuMG cells produce at 
least two heparan sulfate-rich proteoglycans that con- 
tain distinct core proteins, a cell surface proteoglycan, 
and a basement membrane proteoglycan. In newborn 
mouse skin, these proteoglycans localize to distinct 
sites; the basement membrane proteoglycan is seen 
solely at the dermal-epidermal boundary and the cell 
surface proteoglycan is seen solely at the surfaces of 
keratinocytes in the basal, spinous, and granular cell 
layers. These results suggest that although heparan sul- 
fate-rich proteoglycans may have similar 
glycosaminoglycan chains, they are sorted by the epi- 
thelial cells to different sites on the basis of differences 
in their core proteins. 

H 
EPARAN sulfate proteoglycans (PGs) ~ are found in 
several locations in animal cells: extracellularly, in 
the pericellular matrix of fibroblasts and in the base- 

ment membrane of various parenchymal cells, at the surface 
of mesenchymal, epithelial, and neural cells; and intracellu- 
lady, within secretory vesicles and the endoplasmic reticu- 
lure (see references in Gallagher et al., 1986). PGs with dis- 
tinct molecular sizes or substituents may be at each location. 
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For example, the cell surface PGs of hepatic (Kjellen et al., 
1981) and mammary (Rapraeger and Bernfield, 1983) epithe- 
lial ceils are apparently distinct in molecular mass, as are the 
basement membrane PGs of the glomerulus (Stow et al., 
1983; Kobayashi et al., 1983) and the Englebarth-Holm- 
Swarm (EHS) tumor (Hassell et al., 1980) (see additional 
references in Hassell et al., 1986). Thus, although heparan 
sulfate PGs may contain virtually indistinguishable glycos- 
aminoglycan (GAG) chains, they may differ in other charac- 
teristics, indicating that relationships between these PGs are 
best established by characterizing their core proteins (Has- 
sell et al., 1986). 

The cell surface PG of mouse mammary epithelial 
(NMuMG) cells consists of a membrane-associated lipo- 
philic domain (Rapraeger and Bernfield, 1983; 1985) and a 
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GAG-bearing ectodomain that contains both heparan and 
chondroitin sulfate chains (Rapraeger et al., 1985). The PG 
behaves as an integral membrane protein, and the ectodo- 
main can be shed intact into the extracellular space by cleav- 
age from the membrane-associated domain (Jalkanen et al., 
1987). NMuMG cells also synthesize a basement membrane 
PG (David and Bernfield, 1979, 1981; David et al., 1981) 
that contains the identical type and size of GAG chains as 
the cell surface PG (David and Van den Berghe, 1985) and 
is deposited beneath monolayers of cultured cells. The 
degradation of this PG is reduced when the cells are grown 
on a type I collagen gel (David and Bernfield, 1979). 

Several lines of evidence suggest that other cell types also 
produce both cell surface and basement membrane PGs. But 
because these molecules may have similar GAG chains, dif- 
ferences in their size, buoyant density, and charge do not ade- 
quately distinguish them. Consequently, as has been recently 
emphasized, the molecules must be distinguished on the ba- 
sis of their core proteins (Hassell et al., 1986). Here we have 
distinguished between the cell surface and basement mem- 
brane PGs produced by NMuMG cells by separating the 
molecules and identifying their core proteins with mono- 
specific serum antibodies. Using these reagents, we show 
that NMuMG cells in vitro and mouse epidermal cells in 
vivo localize these PGs to distinct sites; the cell surface PG 
at the cell surface and the basement membrane PG beneath 
the cells. Because their GAG chains are similar, the accumu- 
lation of these PGs at distinct sites appears to result from 
differences in their core proteins. A part of these data has 
been published in abstract form (Jalkanen et al., 1985b). 

Materials and Methods 

Cell Culture 

Early passages (12-20) of mouse mammary epithelial (NMuMG) cells were 
maintained in bicarbonate-buffered DME (Gibco, Grand Island, NY) con- 
taining 10% FBS (Tissue Culture Biological, Tulare, CA) as described pre- 
viously (David and Bernfield, 1979). Cells were plated at one-quarter or less 
confluent density for routine use (t00-mm dishes; Falcon Labware, Oxnard, 
CA), and fresh medium was replaced every 2-3 d. Medium conditioned by 
subconfluent cells was the source of a purified PG that is indistinguishable 
from the ectodomain of the cell surface PG, called here the medium ecto- 
domain (Jalkanen et al., 1987). This PG was purified to homogeneity by 
sequential DEAE-cellulose chromatography, CsCl-density centrifugation, 
and monoclonal antibody (281-2) affinity chromatography. These proce- 
dures are described in detail elsewhere (Jalkanen et al., 1987). 

Production of Agffinity-purified Immunoglobulins 
Directed against the Medium Ectodomain 

The purified medium ectodomain (25 txg protein) was mixed with Freund's 
complete adjuvant and injected into several intracutaneous sites on the back 
of a rabbit. After three to four boosters at 2-3-wk intervals in Freund's in- 
complete adjuvant, rabbit serum showed a positive reaction at dilutions up 
to 1:800 on DEAE-cellulose paper dot assay using the medium ectodomain 
as antigen. Affinity purification of a specific IgG fraction from the immune 
serum was performed at room temperature on columns of DEAE-cellulose 
containing the medium ectodomain. The affinity column was prepared by 
mixing the PG (50 ~g) with a slurry of 1 ml of DEAE-ceUulose (Pharmacia 
Fine Chemicals, Piscataway, NJ) in Tris-buffered saline (TBS; 10 mM Tris- 
HCI, pH 7.4, 100 mM NaCI), which was poured into a column and rinsed 
with TBS. 5 ml of immune serum was passed through a similarly washed 
DEAE-cellulose column (1 • 10 cm) but not containing PG to remove 
materials that bind to DEAE-cellulose. This serum eluate was placed on the 
affinity column which was washed with 20 ml of TBS to remove unbound 
material. Bound material was released from the column using 8 M urea 
buffered to pH 7.4 (I0 mM Tris-HCl, pH 7.4) and collected on ice. This cycle 

was repeated with the unbound material five to six times until the dot assay 
demonstrated that all immunoglobulins recognizing the medium ectodo- 
main were removed. The immunogtobulins in urea were dialyzed against 
TBS, concentrated, when necessary, to 2.5 mg/ml by dialyzing against 30% 
polyethylene glycol 20,000 (J. T. Baker Chemical Co., Phillipsburg, NJ) in 
TBS, and aliquoted for -80~  storage. 

Antibodies against the low density basement membrane heparan sulfate 
PG derived from the EHS tumor (Hassell et al., 1985) were kindly provided 
by Dr. J. Hassell (National Institute of Dental Research, National Institutes 
of Health) and used with dilutions indicated in the figure legends, mAb 
281-2, the monoclonal antibody specific for the core protein of the cell sur- 
face PG, has been described previously (Jalkanen et al., 1985a) and was 
used in concentrations indicated in figure legends. 

Dot Immunoassay for PGs 

We have recently described the use of DEAE-cellulose paper as a solid 
phase for immunodetection of PGs (Jalkanen et al., 1985a). Briefly, wet 
DEAE-cellulose paper is placed into an immuno-dot apparatus (V&P 
Scientific, San Diego, CA), and samples in 8 M urea (buffered to pH 4.5 
with 50 mM Na acetate) are loaded onto the paper using mild vacuum. Sam- 
ples containing high salt concentrations (e.g., from CsCI gradients) were 
diluted with 8 M urea to a concentration of less than 0.2 M CI- ion to al- 
low binding of the PG to the DEAE paper. After the loading, the paper was 
transferred to a solution of TBS supplemented with 1% FBS and washed 
several times to remove urea. The paper was exposed overnight at 4~ to 
the first antibody, washed five to six times with TBS, and then incubated 
with a peroxidase-conjugated second antibody in TBS containing 1% FBS 
for 30 min at room temperature. After five to six washes with TBS, the 
immobilized peroxidase conjugate was visualized using 0.05% (wt/vol) of 
4-chloro-l-naphthol containing 0.03% (vol/vol) hydrogen peroxide in TBS 
(Esen et al., 1983). 

Harvest of Radioactive PGs from NMuMG 
Cell Cultures 

PGs deposited beneath the cell monolayer (basal extracellular PG), the in- 
tact cell surface PG, or its trypsin-released ectodomain were harvested from 
NMuMG monolayers labeled with radiosulfate (100 I.tCi/ml) for 24 h as de- 
scribed (David and Bernfield, 1981; Rapraeger and Bernfield, 1983). Mono- 
layers were washed twice with cold TBS supplemented with 1.25 mM 
CaCI2 and 0.9 mM MgSO4. The monolayers were then scraped with a rub- 
ber policeman into cold TBS supplemented with 0.5 mM EDTA, 0.5 mM 
phenylmethylsulfonyt fluoride, 5 mM benzamidine, and 5 mM N-ethyl- 
maleimide. The cells were centrifuged (200 g) and the supernatant, contain- 
ing the basal extracellular PG, was mixed with an equal volume of 8 M 
GdnHCI buffered to pH 4.5 with 50 mM Na acetate and boiled. The cell 
pellet was washed once in the scraping solution and then extracted with the 
scraping solution containing 1% Triton X-100 and 0~5 M KCL This suspen- 
sion was centrifuged at 600 g to pellet nuclei and insoluble cytoskeletal 
materials, leaving the intact cell surface PG in the supernatant (Rapraeger 
et al., 1986). The superantant was mixed with an equal volume of 8 M 
GdnHC1 and boiled. 

For preparation of the ectodomain that is released from the cell surface 
by trypsin, cells that had been harvested by scraping and centrifuging were 
washed three times in 0.5 mM EDTA-PBS and incubated with cold trypsin 
(20 I.tg/ml) for 10 min on ice. After incubation, soybean trypsin inhibitor 
was added (100 I.tg/ml) and cells were pelleted again, leaving the cell surface 
ectodomain in the supernatant. The supernatant was mixed with an equal 
volume of 8 M guanidine HCI, boiled, and subjected to isopycnic centrifu- 
gation in CsCI. 

Analysis of PGs 
lsopycnic Centrifugation. Cellular, basal extracellular, and medium PGs 
were analyzed by isopycnic centrifugation in 50 mM Na acetate (pH 4.5) 
containing 4 M GdnHCI and 1% Triton X-t00. Samples were brought to 1.4 
g/ml with crystalline CsCI and centrifuged at 15~ for 72 h at 46,000 rpm 
in an SW 65 rotor (Beckman Instruments, Inc., Palo Alto, CA). Fractions 
were collected and analyzed for density by weighing. Total PG radioactivity 
was assessed by a modification of Stephens et al. (1978) procedure (Rap- 
raeger et al., 1985). Briefly, cetylpyridinium chloride (CPC)-impregnated 
3-mm filter discs (Whatman Inc., Clifton, NJ) were prepared by soaking 
in 2.5% CPC followed by drying. Aliquots were spotted on the dry discs 
which were washed five times in distilled water, soaked for 1 h in 25 mM 
Na sulfate, and rinsed several times in distilled water. Finally, the discs were 
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soaked for 30 min in 10% TCA followed by washes in distilled water and 
95 % ethanol and dried for scintillation counting. 

Sizing Chromatography. The hydrodynamic volume of the PGs was as- 
sessed by Sepharose CL-4B chromatography in 4 M GdnHCI buffered to 
pH 5.5 by 50 mM Na acetate. Radioactivities in solutions were assayed by 
scintillation counting using 6 vol Aquamix for each sample volume. Sam- 
ples containing 4 M GdnHCI were diluted 1:10 with water before mixing 
with Aquamix. 

Western Blotting. For the measurement of the relative mass of the im- 
munoreactive PG, selected fractions from CsC1 gradients were dialyzed 
(against distilled water and then 0.1% SDS), then fractionated in a gradient 
(3.8-20%) polyacrylamide gel using PAGE buffer composed of 40 mM 
Tris, 60 mM boric acid (pH 8.0), 0.8 mM EDTA, 1 mM Na2$O4, and 0.1% 
SDS (Jalkanen et al., 1985a). The gel was run overnight to completion at 
125 V and was transferred onto a pad of a model TE 52 transfer apparatus 
(Hoefer Scientific Instruments, San Francisco, CA) and covered with 
DEAE-cellulose paper (Jalkanen et al., 1985a) or with Zeta-Probe (BioRad 
Laboratories, Richmond, CA), a cationic nylon membrane (Rapraeger et 
al., 1985). Transfer was performed according to Towbin et al. (1979) at 
100 V for 6 h. The antigen was localized by indirect enzyme immunostain- 
ing using the affinity-purified immunoglobulins as described above for the 
dot assay, except that the nylon membrane was treated with 0.1% Tween-20- 
TBS for 1 h after the transfer to block the nonspecific binding of proteins 
to the membrane. The immobilized rabbit IgG was detected with affinity- 
purified goat anti-rabbit (alkaline phosphatase conjugated) and nitro blue 
tetrazaline/5-bromo-4-chtoro-5 indoyl phosphate as substrate (ProtoBlot; 
Promega Biotec, Madison, WI). 

Enzyme Digestions ofPGs. Papain digestions (100 ~tg/rnl; type II; Sigma 
Chemical Co,, St. Louis, MO) were in 5 mM cysteine-EDTA pH 7.5 for 
20 h at 60~ For removal of GAG chains, PGs were digested with 0.1 U/ml 
Flavobacterium heparinium heparitin sulfate lyase (heparitinase; Miles 
Laboratories Inc., Naperville, IL) and with 0.05 U/ml chondroitin sulfate 
ABC lyase (chondroitinase ABC; Miles Laboratories) using conditions de- 
scribed in detail earlier (Rapraeger et al., 1985). 

Amino Acid and Hexosamine Analyses. The composition of the isolated 
medium ectodomain Oalkanen et al., 1987) was analyzed on Durrum D-500 
and Beckman 6300 analyzers by the service operated by the University of 
California at Davis. For amino acid analysis, samples were hydrolyzed at 
U0~ in 6 M HC1 for 24 and 72 h and for cysteine and methionine in 6 M 
performic acid for 24 h. The data presented are the means of values obtained 
by analysis of two separate ectodomain preparations, corrected for degrada- 
tion, and incomplete hydrolysis using alanine as an internal standard. 

lmmunostaining of Cell Cultures and Tissue Sections 

Competition with NMuMG Cell Surface Staining. Intact and enzyme- 
treated (papain or heparitinase plus chondroitinase ABC) medium ecto- 
domain (1.25 ttg; quantitated using a radioimmunoassay for the medium 
ectodomain (Jalkanen et al., 1987) were incubated with a 1:5 dilution of im- 
mune serum in PBS, then centrifuged at 10,000 rpm (Eppendorf microfuge) 
for 10 rain, and the supernatants used to stain NMuMG cells. Subconfluent 
monolayers were rinsed three times with cold PBS and then incubated on 
ice for 30 min with a 1:10 dilution of these supernatants. After washing five 
times with cold PBS, the monolayers were fixed with 3.7% formaldehyde 
for 30 min followed by incubation in 50 mM ammonium chloride in PBS 
for 30 min on ice. The monolayers were rinsed with PBS and exposed to 
FITC-conjugated swine anti-rabbit, IgG (1:100 dilution in 1% FBS-PBS; 
Dako Corp., Santa Barbara, CA), washed five times with PBS, mounted in 
Eukitt (Calibrated Instruments, Ardsley, N J), and viewed with epifluores- 
cence 

1)'iron-extracted Monolayers. NMuMG monolayers on coverslips were 
washed three times with cold TBS, incubated for 10 min with 1% Triton 
X-100 in TBS on ice, and then washed three times with TBS. Monolayers 
were then fixed in 3.7% formaldehyde for 30 rain on ice followed by incuba- 
tion in 50 mM NI-LCI solution for 30 min on ice. Monolayers were treated 
sequentially with ice cold 50, 100, and 50% acetone for 5 min each. After 
a 15-min incubation in TBS, the monolayers were exposed to the first anti- 
body for 30 min (when double staining, the first incubation was followed 
immediately by incubation with the other first antibody), then washed with 
TBS, and incubated for another 30 min with the second antibody (FITC- 
or TRITC-conjugated; in the case of double staining, incubation with both 
second antibodies was performed simultaneously). Finally, coverslips were 
washed five times in TBS and mounted in Aquamount for viewing with 
epifluorescence. 

Mouse Skin. Fresh pieces of newborn mouse skin were mounted in Tis- 
sue Tek (American Scientific, Sunnydale, CA) on a dry ice/ethanol bath. 
Cryo-sections of 5-6 ~tm were cut, fixed in ice cold acetone for 10 min, and 

air-dried at room temperature. After rehydration in modified PBS (120 mM 
NaCI, 10 mM NaH2PO4, 4 mM K2-HPO4, and 0.05 mM thimerosal, pH 
7.3), endogenous peroxidase was inhibited by incubating with 0.3% H202 
in 99% methanol for 1 h at room temperature. All subsequent washes were 
done in modified PBS. After washing, the sections were incubated for 
20 rain with IgG (3 mg/ml) from the type of animal that produced the sec- 
ond antibody. The sections were washed again and incubated with the first 
antibody for 30 min at room temperature in a humidity chamber. The first 
antibody was removed by washing as above and sections were incubated, 
as in the previous step, with the second antibody. Before use, the antibody 
preparations and the horseradish peroxidase--conjugated lgG were incu- 
bated with 10% serum of the animal type of the first antibody for 30 min 
and then centrifuged for 5 min at 10,000 rpm. After at least five washings 
the sections were treated for 5 min with diaminobenzidine (0.5 mg/ml) in 
0.03 % 1-1202 in modified PBS and the reaction stopped by rinsing with dis- 
tilled water. The color intensity was enhanced by placing the sections in 
0.5 % copper sulfate for 5 min, after which the sections were dried in graded 
ethanol, transferred to xylene, and mounted in Permount. 

Results 

Production of an A~nity-Purified Serum Antibody 
against the Cell Surface PG 
NMuMG cells shed their cell surface PG into the culture 
medium by cleaving the GAG-bearing ectodomain from the 
membrane-associated domain (Jalkanen et al., 1987). This 
shedding provides the ectodomain of the cell surface PG in 
the culture medium as a readily soluble PG. This "medium 
ectodomain; purified to homogenity from conditioned medi- 
um of NMuMG cell cultures and characterized as described 
(Jalkanen et al., 1987), was used to induce serum antibodies 
in rabbits. The medium ectodomain was a satisfactory im- 
munogen because reactivity with the PG was obtained with 
the rabbit immune serum at dilutions as high as 1:800 in a 
DEAE-paper immunodot assay (not shown). The resultant 
antibody was characterized using NMuMG cells or the ec- 
todomain released from the cells by trypsin. 

To evaluate its specificity, the serum antibody was used to 
stain subconfluent NMuMG cell monolayers. Preimmune 
serum showed no fluorescent stain (Fig. 1 B), but the im- 
mune serum showed staining of the apical cell surfaces, espe- 
cially at the lateral cell boundaries and occasionally in a 
punctate distribution (Fig. 1 C). This staining is identical 
with that shown by monoclonal antibody 281-2 (Hayashi et 
al., 1987), which is known to react with the core protein of 
the cell surface PG (Jalkanen et al., 1985a). Adding the in- 
tact medium ectodomain or its core protein, prepared by en- 
zymatic removal of the GAG chains, completely prevented 
staining (Fig. 1, D and E). This inhibition was abolished 
when the medium ectodomain was pretreated with papain 
(Fig. 1 F). Thus, most, if not all epitopes recognized by the 
immune serum, are polypeptide determinants o~a the core 
protein of the cell surface PG. 

Monospecific antibodies directed against the medium ec- 
todomain were purified by antigen-based affinity chromatog- 
raphy. The affinity column contained the purified medium 
ectodomain bound to DEAE-cellulose, taking advantage of 
both the high affinity of the GAG chains and the low affinity 
of immunoglobulins for this resin at neutral pH and physio- 
logical salt concentration. Immune serum was initially passed 
through a DEAE column and the flow-through was slowly 
loaded onto a DEAE column containing bound medium ec- 
todomain. After thorough washing, the retained antibody 
was eluted with 8 M urea. This procedure was repeated three 
to five cycles (Fig. 2). Comparison by immunodot assay of 
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Figure 2. lmmunoaffinity isolation of antibodies against the medi- 
um ectodomain. Varying amounts of purified medium ectodomain 
were applied to DEAE-paper strips (round dots). The paper strips 
were incubated with preimmune serum (A), immune serum (B), the 
flow-through from passing immune serum through a DEAE-cel- 
lulose column containing the medium ectodomain (C) (see text) 
and the urea eluate from the same column (D) (see text). A-Cwere 
used at 1:100 dilution and D at 10 gg/ml. The presence of immobi- 
lized rabbit IgG was detected with swine anti-rabbit peroxidase 
conjugate as described in the text. 

Figure 1. Immune serum against the medium ectodomain detects 
the core protein of the cell surface PG. Subconfluent NMuMG 
monolayers (A; phase contrast) were stained with preimmune se- 
rum (B) and the medium ectodomain immune serum (C) at 1:50 
dilution. For the experiments in D-F, the immune serum was in- 
cubated for 30 min at room temperature with purified medium ec- 
todomain (1.2 Ixg/40 gl of immune serum) either previously un- 
treated (D), digested with heparan sulfate lyase (heparitinase) and 
chondroitin sulfate ABC lyase (chondroitinase ABC) (E), or di- 
gested with papain (F), as decribed in the text. These mixtures were 
centrifuged (10,000 g), diluted to 2 ml with TBS (1:50 final dilution 
of serum), and used to stain cells as in B and C. 

Figure 3. Affinity-purified anti- 
body detects the trypsin-re- 
leased ectodomain and its core 
protein in Western blots. Tryp- 
sin-released ectodomain (0.1 
pg/6,500 cpm) (lanes A and 
C) and its heparitinase/chon- 
droitinase ABC digest (0.3 I.tg/ 
20,000 cpm) (lanes B and D) 
were subjected to electropho- 
resis in a 3.8-20% polyacryl- 
amide gel and transferred to a 
cationic nylon membrane for 
antibody probing as described 
in the text. Lanes A and B are 
after l-d autoradiographic ex- 
posure and lanes C and D are 
after irnmunostaining. The 
affinity-purified antibody was 
used at 5 I~g/ml and goat anti- 
rabbit alkaline phosphatase 
conjugate at 1:7,500 dilution. 
Indicated molecular mass mark- 
ers were ~4C-labeled myosin 
(200 kD), phosphorylase b 
(92.5 kD), BSA (69 kD), oval- 
bumin (46 kD), carbonic an- 
hydrase (30 kD), and lysozyme 
(14.3 kD). 

preimmune and immune serum with the flow-through and 
eluates from the affinity column showed that this procedure 
yields an antibody preparation that retains the PG reactivity 
of the original serum while markedly reducing other com- 
ponents that produce background staining (Fig. 2). The ma- 
terial eluated by urea showed a single band detectable by 
anti-rabbit IgG (alkaline phosphatase-conjugated) after SDS- 
PAGE and transfer to nitrocellulose (not shown). 

The afffinity-purified antibody was shown to react with the 
core protein of  the cell surface PG. The ectodomain released 
by trypsin from cells labeled with 35SO4 was partially 
purified by isopycnic centrifugation. Autoradiography after 
gradient SDS-PAGE with and without prior enzyme treat- 
ment to remove GAG chains showed that the trypsin-released 
ectodomain migrates as a smear (lane A) and that the enzyme 
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Figure 4. Separation of 35S04- 
PGs produced by NMuMG 
cells. Cellular (left) and ba- 
sal extracellular proteoglycans 
(right) were harvested and 
centrifuged in a CsC1 density 
gradient as described in the 
text. Fractions from the gra- 
dients were analyzed for den- 
sity (dotted line) and for PG- 
bound radiosulfate (open cir- 
cles). Aliquots (20 Ixl out of 
250 Ixl) were diluted 100-fold 
with 8 M urea buffered to pH 
4.5 with 50 mM Na acetate 
and loaded onto DEAE-paper 
as described in the text. These 
were then incubated with (A) 
afffinity-purified antibody (20 
I.tg/ml) and (B) with the BM-1 
antibody (1:50 serum dilution). 
Antibodies were stained using 
1:200 diluted peroxidase-con- 
jugated second antibodies as 
described in the text. 

treatments remove all the GAG (lane B) (Fig. 3). The affin- 
ity-purified antibody recognizes both the ectodomain (lane 
C) and a "~53-kD protein, representing the enzyme-digested 
core protein (lane D), as previously shown for mAb 281-2 
(Rapraeger et al., 1985). By antibody detection, the core 
protein region (lane D) appears faint and as a doublet. Al- 
though the core protein may be heterogeneous, it is more 
likely that the cationic nylon membrane is blocked at sites 
where contaminating proteins, added as carrier or present in 
the enzyme preparation, are transferred, resulting in non- 
uniform retention of the core protein in these regions 
(Rapraeger et al., 1985). These data indicate that an affinity- 
purified antibody directed against the medium ectodomain 
reacts with the core protein of the cell surface PG. 

Analysis of  PGs Produced by NMuMG Cells 

Cultured NMuMG cells produce PGs that are shed into the 
culture medium, deposited beneath the cells, and retained by 
the cells. Their distinct location in the cultures and response 
to the culture substratum suggest that they may differ in their 
core proteins. To assess this possibility, the cellular and basal 
extracellular PGs were fractionated and evaluated immuno- 
logically using antibodies specific for the cell surface and 
basement membrane heparan sulfate-rich PGs. Newly con- 
fluent monolayers were labeled to the steady state with 35SO4 
and harvested by scraping on ice. The materials released 
from beneath the monolayer, the basal extracellular PG, and the 
cellular materials extracted in 1% Triton X-100 0.5 M KC1 were 
subjected to isopycnic centrifugation in CsC1 (Fig. 4). The 
cells showed a single major PG peak at a buoyant density of 
~1.55 g/ml, the value previously reported for the cell surface 
PG (Rapraeger and Bernfield, 1985). This peak was recog- 
nized by the affinity-purified antibody (Fig. 4 A), confirming 
it as the cell surface PG. With the BM-1 antibody (Fig. 4 B), 
some stain at lower buoyant densities was seen, presumably 
representing intracellular basement membrane PG or its 
precursors (Ledbetter et al., 1985). 

The basal extracellular materials showed three fractions 
with peaks at ~ >1.60, 1.38, and 1.25 g/ml. None of these 
was recognized by the afffinity-purified antibody and only 
fraction III, density of 1.2-1.3 g/ml, was recognized by the 
BM-1 antibody (Fig. 4). The hydrodynamic volume of this 
latter fraction was compared with that of the trypsin-released 
ectodomain by chromatography on Sepharose 4B and gra- 
dient PAGE. On Sepharose 4B, the basal extracellular PG 
reacting with BM-1 antibody and the trypsin-released ec- 
todomain eluted at Kav of 0.12 and 0.30, respectively (not 
shown). On gradient SDS-PAGE, the basal extracellular PG 
reacting with the BM-1 antibody had an appreciably larger 
molecular mass than the ectodomain (Fig. 5, E and F). 
Transfer of the PGs to cationic nylon membranes and reac- 
tivity with the BM-1 and the affinity-purified antibodies 
confirmed that the BM-1 reactive PG is appreciably larger 
than the ectodomain (Fig. 5). Antibody reactivity on the 
transfers confirmed that these PGs do not contain shared epi- 
topes recognized by these antibody preparations (Fig. 5, 
A-D). 

The amino acid and amino sugar composition of the iso- 
lated medium ectodomain differs substantially from that 
reported for the low density basement membrane PG of the 
EHS tumor (Table I), which was used as the antigen to in- 
duce the BM-1 antibodies (Hassel et al., 1985). These data, 
together with those previously obtained, indicate that the 
core proteins for the cell surface and the basement mem- 
brane PGs are encoded by different genes. 

Distinct Cellular and 1~ssue Location of  the 
Cell Surface and Basement Membrane PGs 

mAb 281-2, the affinity-purified antibody against the cell sur- 
face PG, and the BM-1 antibody were used to localize PGs 
in NMuMG cell cultures and in sections of newborn mouse 
skin. To study the distribution of antigens in the NMuMG 
cultures, newly confluent monolayers were first treated with 
Triton X-100 to allow penetration of the antibodies, then in- 
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Table L Amino Acid Composition of Proteoglycans 

Medium 
Ectodomain Basement membrane 

Residue residues/l,000 low density PG* 

Asx 82 81 
Thr  116 64 
Set 74 102 
Glx 148 127 
Pro 102 78 
Gly 102 111 
Ala 86 73 
Cys 0 9 
Val 76 76 
Met 4 10 
Ileu 12 31 
Leu 46 88 
Tyr 36 25 
Phe 30 25 
Lys 24 16 
His 26 75 
Arg 36 36 

* Data from the paper by Hassell et al. (1985). 

Figure 5. Comparison of the trypsin-released ectodomain and 
basement membrane PGs on Western blots. Radiosulfate-labeled 
trypsin-released ectodomain (lanes B, D, and F) and BM-I positive 
PG (lanes A, C, and E) were isolated from CsC1 gradients, sub- 
jected to electrophoresis in 3.8-20% PAGE, and transferred onto 
cationic nylon membranes. The PGs were detected by immuno- 
staining (A-D) or by autoradiography (E, F). Lanes A and B were 
stained with the affinity-purified antibody (20 ~tg/ml), and lanes C 
and D with BM-1 antiserum (1:50 dilution), as described in the text. 
Molecular mass markers (collagen type I beta-chains, 260 kD; 
mouse IgG, 160 kD; collagen type I alpha chains, 130 kD; BSA, 
67 kD; ovalbumin, 45 kD; and chymotrypsinogen, 24 kD) are indi- 
cated on the right. 

cubated with the antibodies and finally processed for double 
immunostaining (Fig. 6). Observations were made through- 
out the cell, but the photomicrographs show only a focal 
plane at the basal cell surface. Neither nonimmune pooled 
rat (or rabbit) IgG (Fig. 6 A) showed specific staining. Both 
mAb 281-2 (Fig. 6 C) and the affinity-purified antibody (Fig. 
6 D) stained a fine filamentous network near the basal cell 
surface and surrounding the nucleus. These antibodies 
showed extensive co-localization (Fig. 6, C and D). In con- 
trast, mAb 281-2 and the BM-1 antibody showed quite dis- 
tinct staining patterns (Fig. 6, E and F); the BM-1 antibody 
showed patchy deposits that were especially prominent 
where cells were closely packed. 

The affinity purified and BM-1 antibodies also showed dis- 
tinct localizations in sections of newborn mouse epidermis. 
Using peroxidase-conjugated second antibody, neither non- 
immune pooled rat (Fig. 7 A) or rabbit (Fig. 7 B) IgG showed 

specific stain. The mAb 281-2 (Fig. 7 C) and the afffinity- 
purified antibody (Fig. 7 D) stained the epidermis similarly; 
stain was intense and surrounded the keratinocytes in the stra- 
tum germinatirum and spinosum. Stain was reduced in the stra- 
tum granulosum and absent from the stratum corneum. Nei- 
ther antibody stained the dermis or the dermal-epidermal 
border. Interestingly, the surface of the cells in the stratum 
basale that abuts on the dermis showed more consistent 
staining with the affinity-purified antibody than with the 
monoclonal antibody, suggesting that the binding site for the 
monoclonal antibody on the PG may be partially masked at 
the basal cell surfaces. In contrast with these stainings, the 
BM-1 antibody did not stain cell surfaces and showed a con- 
tinuous layer of stain at the dermal-epidermal border (Fig. 
7 E), presumably representing the basement membrane, as 
previously reported (Hassell et al., 1980). 

Discussion 

The heparan sulfate PGs are grouped together by their simi- 
lar GAG chains, but these molecules can differ in cellular lo- 
cation, tissue distribution, and presumed function. Antibod- 
ies directed against the core proteins of these PGs, however, 
can distinguish among them. Here we describe an afffinity- 
purified serum antibody against the core protein of the cell 
surface PG of NMuMG mouse mammary epithelial cells. 
Using this reagent, an antibody against basement membrane 
PG and chemical separation procedures, we show that 
NMuMG cells produce at least two distinct heparan sul- 
fate-rich PGs: a cell surface PG and a basement membrane 
PG. These PGs are at distinct sites in NMuMG cell cultures 
and in newborn mouse skin. In culture, the cell surface PG 
is present at the cell surface and is shed into the culture 
medium, whereas the basement membrane PG accumulates 
beneath the cells. In the skin, the cell surface PG is at ker- 
atinocyte cell surfaces, but is absent from the cells in the 
more superficial layers. The basement membrane PG is at 
the dermal-epidermal junction, the site of the basement 
membrane. Although the cell surface PG is readily shed in 
cultures, it does not appear to accumulate extracellularly in 
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Figure 6. Immunolocalization of cell surface and basement membrane PGs in NMuMG cell cultures. Newly confluent NMuMG cells on 
coverslips were extracted with Triton X-100 and analyzed by double-immunostaining as described in the text. (A) Nonimmune pooled rat 
IgG (200 p.g/ml), (B) phase micrograph of the same field as in A. (C and E) mAb 281-2 (20 I.tg/ml), (D) afffinity-purified antibody (20 
txg/ml) against the cell surface PG, (F) affinity-purified BM-1 antibody 0:5 dilution). TRITC-conjugated second antibody was used for 
mAb 281-2 and FITC-conjugated second antibody for the rabbit antibodies. Photos were taken at the focal plane of the basal cell surface. 
Nonimmune IgG stained nuclei slightly (A, B). mAb 281-2 (C) and the affinity-purified antibody (D) against the cell surface PG stained 
filamentous materials at the basal cell surface, showing extensive co-localization. However, the filamentous staining with mAb 281-2 (E) 
does not co-localize with the patchy deposits detected by the BM-1 antibody (F). Bar, 10 p.m. 

the skin. These results indicate that the core proteins of the 
cell surface and basement membrane heparan sulfate-rich 
proteoglycans are distinct gene products and suggest that 
their different cell and tissue localization results from their 
sorting by the cell on the basis of these distinct proteins. 

N M u M G  Cells Produce at Least  Two Distinct 
Heparan Sulfate-rich Proteoglycans 

The conditioned medium of NMuMG cell cultures contains 
a PG, the "medium ectodomain," that is indistinguishable by 
several criteria from the trypsin-released ectodomain of the 
cell surface PG (Jalkanen et al., 1987). We have taken advan- 
tage of this source of the ectodomain to prepare a serum anti- 
body. This serum antibody was affinity-purified on columns 

containing the medium ectodomain, providing a monospe- 
cific reagent that recognizes a considerably larger number of 
epitopes than mAb 281-2, a monoclonal antibody that recog- 
nizes a polypeptide epitope on the core protein of the cell 
surface PG. The afffinity-purified serum antibody also recog- 
nizes polypeptide determinants on the ectodomain core pro- 
tein and thus can be used to define the core protein. The reac- 
tivity of this serum antibody confirms that the ectodomain 
of the cell surface PG is shed into the medium by cleavage 
from its membrane-associated domain (Jalkanen et al., 
1987). 

Serum antibodies against the cell surface PG and against 
the low density basement membrane PG (BM-1; Hassell et 
al., 1985) were used to identify the PGs associated with the 
NMuMG cells and deposited beneath the monolayer into the 
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Figure 7. Immunolocalization of cell sur- 
face and basement membrane PGs in mouse 
skin. Frozen sections (5 l.tm) of newborn 
mouse skin were incubated with (A) nonim- 
mune pooled rat IgG (25 lig/mt), (B) non- 
immune pooled rabbit IgG (25 Ixg/ml), (C) 
mAb 281-2 (20 lag/ml), (D) afffinity-purified 
antibody against the cell surface PG (20 
I.tg/ml), and (E) afffinity-purified BM-1 anti- 
body (1:5 dilution). The bound antibodies 
were detected with peroxidase-conjugated 
second antibodies (1:50 dilution) as de- 
scribed in the text. The nonimmune IgG 
showed little stain (A, B). mAb 281-2 stains 
the surfaces of the cells in the stratum ger- 
minatirum and spinosum intensely; cells in 
the stratum granulosum stain less well and 
there is no stain in the stratum corneum. 
(C). There is poor or no staining of the 
basement membrane (arrows in C). The 
affinity-purified antibody against the celt 
surface PG stains nearly identically as mAb 
281-2 except that the serum antibody stains 
the basal surface of the cells abutting the 
basement membrane (arrows in D). The 
BM-1 antibody stains only the basement 
membrane (E). Bar, 20 jim. 

basal extracellular space. Cells labeled with radiosulfate to 
the steady state showed predominantly cell surface PG on 
isopycnic centrifugation and this PG had a buoyant density of 
"~1.55 g/ml. It was at the apical surfaces of subconfluent cells 
and, in confluent monolayers extracted with detergent to al- 
low access to antibody, was in filamentous arrays at basal cell 
surfaces. This latter localization is presumably in association 
with actin filaments, as previously described (Rapraeger et 
al., 1986). The cells also contained basement membrane PG 
in a broad range of buoyant densities, from "~1.25 to 1.45 
g/ml. This wide distribution could represent the conversion 
of the low density PGs into higher density PGs, as described 
in the EHS tumor (Hassel et al., 1985; Ledbetter et al., 
1985). 

The basal extracellular PGs showed three major labeled 
fractions. The least dense, at ',,1.25 g/ml, was the basement 
membrane PG, confirming previous work (Hassell et al., 
1980, 1985; Fujiwara et al., 1985). The other fractions, which 
constituted the bulk of the labeled GAG, were not identifiable 
immunologically, suggesting that these cells may produce 
additional PGs. In NMuMG cell cultures, the basement mem- 
brane PG was seen in patchy deposits beneath the monolayer 
in a distinct distribution from that of the cell surface PG. The 
extent of these patchy deposits increased with time in culture. 

The cell surface and basement membrane PGs described 
here are rich in heparan sulfate and may contain variable 
amounts of chondroitin sulfate. For example, although the 
cell surface PG can contain both types of GAG, a substantial 
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proportion of this PG contains solely heparan sulfate chains 
(Rapraeger et al., 1985). The 35SO4 label on the isolated 
basement membrane PG was susceptible to heparan sulfate 
lyase (unpublished), however, a PG thought to be a basement 
membrane PG produced by NMuMG cells is clearly a hy- 
brid, bearing both heparan and chondroitin sulfate chains 
(David and Van den Berghe, 1985). Thus, the PGs produced 
by NMuMG cells appear to contain identical classes of GAG 
chains. 

The serum antibody directed against the membrane- 
associated heparan sulfate PG from NMuMG cells did not 
react with the basement membrane PG. Other work, how- 
ever, suggests that membrane-associated PGs may share anti- 
genic determinants with other heparan sulfate PGs. The se- 
rum antibody directed against the rat hepatic cell surface PG 
recognizes a PG that is released from cell surfaces with hepa- 
rin as well as a PG that is apparently intercalated into the 
hepatic plasma membrane (Stow and Farquhar, 1987). The 
heparan sulfate PG at the surface of human colon carcinoma 
cells is apparently intercalated into the plasma membrane 
(Iozzo et al., 1986), but reacts immunologically with the 
BM-1 antibody (Iozzo, 1984). The serum antibody described 
here should be useful in exploring immunological relation- 
ships among PGs. 

The Cell Surface and Basement Membrane PGs 
Accumulate Independently 
Although both the cell surface and basement membrane PG 
were detected on or near the basal cell surfaces of NMuMG 
cells, we were not able to detect the ectodomain of the cell 
surface PG in the basal extracellular space (Fig. 4). We also 
could not detect basement membrane PG in conditioned cul- 
ture medium (unpublished). These results could be due to 
the insensitivity of our methods or could reflect distinct 
handling of the PGs by these cells. Therefore, we inves- 
tigated the distribution of these PGs in mouse skin. Here, as 
previously noted (Hassell et al., 1980), the basement mem- 
brane PG was seen solely at the epidermal-dermal junction. 
The cell surface PG, detected by either the afffinity-purified 
or monoclonal antibody, was solely at cell surfaces, and al- 
though the most superficial cells did not stain, the entire sur- 
face of the cells in the more basal layers stained. Interest- 
ingly, the cell surfaces facing the basement membrane 
stained with the affinity-purified serum antibody, but only 
poorly with the monoclonal antibody, suggesting that the 
epitope recognized by mAb 281-2 is masked at this site. No 
cell surface PG was detected in the interstitial spaces or on 
the cells in the dermis, consistent with the epithelial localiza- 
tion of this PG (Hayashi et al., 1987). These results suggest 
that the cell surface and basement membrane PGs are han- 
dled distinctly by the epidermal cells. 

The function of the cell surface PG on the surface of the 
epidermal keratinocytes is unclear. Its presence on the basal 
cell surfaces is consistent with its postulated role as a matrix 
receptor, but its location over the entire surfaces of these 
cells suggests a potential role in cell-cell adhesion, possibly 
by self-association of the heparan sulfate chains (Fransson et 
al., 1983) or interactions with other cell surface proteins 
(Cole et al., 1986). Its loss from the most superficial cells 
is consistent with its known absence from terminally dif- 
ferentiated cells (Hayashi et al., 1987). 

Multiplicity of Heparan Sulfate PGs 

Most cells likely produce distinct PG core proteins contain- 
ing similar GAG chains. Indeed, analogous results with cul- 
tured liver, kidney, and Chinese hamster ovary cells have re- 
cently been described by Stow and Farquahar (1987). These 
findings indicate that cells must distinguish between these 
PG molecules, in terms of synthesis, secretion, and possibly 
other parameters, by means of the structure of their core pro- 
teins. Unique core protein sequences undoubtedly direct the 
glycosylation of specific types of GAG chains (Bourdon et 
al., 1987). There are also PG core proteins that bear distinct 
types of GAG chains depending on the cell type (Tantravahi 
et al., 1986). Thus, the nature of core protein and the cell 
of origin rather than the presence of a specific type (or types) 
of GAG chain should be used to designate these molecules. 
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