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b3-Adrenergically induced glucose uptake in
brown adipose tissue is independent of UCP1
presence or activity: Mediation through the
mTOR pathway
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Jan Nedergaard 1, Sharon Stone-Elander 3,4, Tore Bengtsson 1,*
ABSTRACT

Objective: Today, the presence and activity of brown adipose tissue (BAT) in adult humans is generally equated with the induced accumulation of
[2-18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) in adipose tissues, as investigated by positron emission tomography (PET) scanning. In reality, PET-
FDG is currently the only method available for in vivo quantification of BAT activity in adult humans. The underlying assumption is that the glucose
uptake reflects the thermogenic activity of the tissue.
Methods: To examine this basic assumption, we here followed [18F]FDG uptake by PET and by tissue [3H]-2-deoxy-D-glucose uptake in wildtype
and UCP1(�/�) mice, i.e. in mice that do or do not possess the unique thermogenic and calorie-consuming ability of BAT.
Results: Unexpectedly, we found that b3-adrenergically induced (by CL-316,243) glucose uptake was UCP1-independent. Thus, whereas PET-
FDG scans adequately reflect glucose uptake, this acute glucose uptake is not secondary to thermogenesis but is governed by an independent
cellular signalling, here demonstrated to be mediated via the previously described KU-0063794-sensitive mTOR pathway.
Conclusions: Thus, PET-FDG scans do not exclusively reveal active BAT deposits but rather any tissue possessing an adrenergically-mediated
glucose uptake pathway. In contrast, we found that the marked glucose uptake-ameliorating effect of prolonged b3-adrenergic treatment was
UCP1 dependent. Thus, therapeutically, UCP1 activity is required for any anti-diabetic effect of BAT activation.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Brown adipose tissue (BAT) can combust (surplus) energy through
uncoupled respiration mediated by uncoupling protein 1 (UCP1). The
possibility to use this ability to ameliorate obesity and diabetes has long
been discussed [1e3]. However, as BAT was thought not to be present
in adult humans, this strategy was largely disregarded. The realization
that [2-18F]-2-fluoro-2-deoxy-D-glucose positron emission scanning
tomography (PET-FDG) data, from a series of clinical investigations
indicated the presence of active BAT in adult humans [4], and the
subsequent confirmations of this new paradigm [5e9] have suggested
new avenues for ameliorating obesity and diabetes, through BAT
activity.
The PET-FDG technique has been applied clinically to detect cancer,
based on the tenet that many cancer cells display a high metabolism,
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mainly fueled by glucose. Thus, the metabolism of the cells functions
to clear glucose from the blood, and the accumulation of [18F]FDG in
the cells is interpreted to indicate a high rate of metabolism.
Accordingly, the uptake of [18F]FDG in BAT has generally been equated
with thermogenic activity [4], as this activity would result in uptake of
glucose, driven by the catabolic thermogenesis. In practice, no other
methods for examining BAT activity, location, and amount in humans
are currently routinely in use. However, the assumption that glucose
uptake directly mirrors thermogenic activity [10] may not be correct.
BAT thermogenesis is activated by adrenergic stimulation [2]. Appar-
ently, a large increase in BAT glucose uptake (as monitored by PET-
FDG scans) is observed after treatment of humans with sympatho-
mimetics [11] and in pheochromocytoma patients [12e14]. Particu-
larly, a strong pattern of BAT glucose uptake is seen in PET scans after
activation of b3-adrenergic receptors [15]. The aim of the present
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Figure 1: Adrenergically induced glucose uptake in BAT is independent of thermogenic competence. (AeB) Representative figures of wildtype and UCP1(�/�) adult lean
mice that were anesthetized with isoflurane and in which the uptake of [18F]FDG was followed for 60 min in a MicroPET scanner. (A) Sagittal and axial PET images of the [18F]FDG
uptake in two representative mice treated with saline (control) and CL-316,243 (1 mg/kg) on separate days. The images are sums of the last 25 min of the measurements. (B) Time
activity curves of the [18F]FDG uptake in BAT in the mouse in A (SUVmax ¼ maximum Standardized Uptake Values) over the entire 60 min scan. (CeD) CL-316,243-stimulated
(1 mg/kg per body weight) oxygen consumption in (C) wildtype (n ¼ 3e4) and (D) UCP1(�/�) (n ¼ 3e4) mice housed at thermoneutrality (30 �C) for 3 weeks. The mice were
anesthetized with pentobarbital (55 mg/kg i.p.). The arrow indicates i.p. injection of saline or of CL-316,243 at a dose of 1 mg per kg body weight.
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study was to investigate whether such adrenergically induced glucose
uptake adequately reflects thermogenesis. We found, unexpectedly,
that acute b3-adrenergic stimulation induces glucose uptake in BAT
independently of the presence and activation of UCP1 and thus inde-
pendently of thermogenesis. Our results thus demonstrate that acute
glucose uptake is a mechanism separate from thermogenesis.
612 MOLECULAR METABOLISM 6 (2017) 611e619 � 2017 The Authors. Published by Else
2. RESULTS

2.1. UCP1 is not essential for the glucose uptake into BAT as
visualized by PET-FDG
To verify the relationship between thermogenesis and b3-adrenergically
induced glucose uptake, we used mice possessing UCP1 (wildtype), that
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is, mice with a capacity for nonshivering thermogenesis, or mice without
(UCP1(�/�)), that is, mice without the capacity for nonshivering ther-
mogenesis. UCP1 is essential for adrenergically induced thermogenesis
in brown adipocytes [16]. Adult humans, through housing and clothing,
are generally exposed only to thermoneutral conditions. Therefore, to
approach human conditions in our in vivo rodent studies, we used
wildtype and UCP1(�/�) mice adapted to thermoneutrality. Even though
the demand for thermogenesis for protection against cold is eliminated in
such mice, these mice still possess UCP1 in their BAT (see below). We
used these mice to follow glucose uptake into BAT. To stimulate
adrenergically induced glucose uptake, the b3-adrenergic agonist CL-
316,243 was used [17]. We chose this agent instead of a physiologi-
cally induced adrenergic stimulation, such as exposure of the mice to
cold, because acute cold stimulation not only activates BAT but also
leads to shivering, and the shivering muscles would compete for glucose
uptake. Similarly, we chose a selective b3-agonist, as norepinephrine
itself would affect many other cell types in the body through different
adrenergic receptors. In contrast, practically only adipose tissues
possess b3-adrenergic receptors [18].
In Figure 1A, the leftmost PET-FDG scan shows the last 25 min of the
measurement of glucose uptake in wildtype mice anesthetized with
isoflurane and treated only with saline. The scan clearly shows an uptake
of glucose in the heart, with no visible uptake in the suspected BAT
areas. However, when these wildtype mice were treated with the b3-
adrenergic agonist CL-316,243 (next scan), there was a very marked
uptake in the areas corresponding to BAT. The time activity curve for the
BAT area (Figure 1B, left) shows howe after initial distribution during the
first minutes after the i.v. injection e the uptake continuously increases
during the 1 h scan in the CL-316,243-treated mice, whereas no further
net uptake occurs after z20 min in the control mice.
As thermogenesis in BAT is b3-adrenergically induced [2], this result
would be expected if the glucose uptake simply reflected thermo-
genesis. However, these mice were isoflurane-anesthetized according
to laboratory routines, and isoflurane abolishes BAT-derived thermo-
genesis [19e22]. Thus, the implication of these experiments would
unexpectedly be that the observed glucose uptake is thermogenesis-
independent.
The unexpected conclusion from the above experiments was verified
when we performed the experiments in UCP1(�/�) mice. As ther-
mogenesis in BAT is fully UCP1-dependent [16], any CL-316,243-
induced glucose uptake in the BAT of the UCP1(�/�) mice must
occur independently of thermogenesis. As seen in the two right-side
scans (Figure 1A), the results in the UCP1(�/�) mice were qualita-
tively identical to those in wildtype mice, confirming that b3-adren-
ergically induced glucose uptake into BAT is UCP1- (and thus
thermogenesis-) independent. Similarly, Figure 1B (right panel) shows
the time activity curve for the [18F]FDG uptake in the area that cor-
responds to the BAT area in the UCP1(�/�) mice. Comparison of the
time activity curves in Figure 1B demonstrates that the glucose uptake
during the conditions used here is temporally very similar whether the
tissue contains UCP1 or not. The same trend is demonstrated for all
wildtype and UCP1(�/�) mice (S1).
A possible explanation for the uptake of [18F]FDG even in the mice not
possessing UCP1 could be that the CL-316,243 stimulates some kind
of UCP1-independent thermogenesis in BAT that would also utilize
glucose and thus lead to glucose uptake. Indeed, there have been
studies published that have been interpreted to indicate a potential for
UCP1-independent thermogenesis [23e26] (although not as such
located to BAT). To address whether UCP1-independent thermogen-
esis would occur during the experiments described here, oxygen
consumption in control and UCP1(�/�) mice stimulated with CL-
MOLECULAR METABOLISM 6 (2017) 611e619 � 2017 The Authors. Published by Elsevier GmbH. This is an
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316,243 was measured. These experiments (performed in
pentobarbital-anesthetized mice in which thermogenesis is not
inhibited [21]) clearly show (Figure 1C) that whereas CL-316,243 is a
potent thermogenesis stimulator in wildtype mice, there is no indica-
tion of any induction of any thermogenesis by CL-316,243 in mice
without UCP1. Thus, principally in agreement with the conclusion from
other studies [27,28], no alternative UCP1-independent thermogenic
pathway exists that could explain the glucose uptake in BAT.

2.2. UCP1 is not essential for glucose uptake into BAT as examined
with [3H]-2-deoxy-D-glucose ([3H]-2DG)
The above PET-FDG experiments indicated that the b3-adrenergically
induced glucose uptake is thermogenesis-independent. Quantification
of a series of such experiments shows that the b-adrenergically
stimulated increase in [18F]FDG uptake is significant in both wildtype
and UCP1(�/�) mice (Figure 2A), i.e. the effect is UCP1-independent.
However, it is conceivable that a significant thermogenesis-dependent
glucose uptake does exist but it is not observable under the experi-
mental conditions used above, due to the isoflurane anesthesia. We
therefore attempted to measure glucose uptake by PET-FDG scans in
mice anesthetized with pentobarbital (that does not inhibit thermo-
genesis in BAT [20]), but many of these mice did not tolerate the
experimental conditions during imaging.
We therefore elected to examine glucose uptake in BAT by another
method. For this, pentobarbital-anesthetized mice were injected with
saline or CL-316,243 and then with [3H]-2DG. After 1 h, we measured
the total uptake of [3H]-2DG in the interscapular BAT. Also here, CL-
316,243 treatment increased glucose uptake in UCP1(�/�) mice to
essentially the same extent as in wildtype mice (Figure 2B). Thus, even
in the absence of isoflurane, the induced increase in glucose uptake
into BAT was independent of UCP1.

2.3. The UCP1-independent pathway for adrenergically induced
glucose uptake
The above experiments taken together clearly show that the acute
adrenergically induced increase in glucose uptake into BAT is not due
to UCP1 activity. Therefore, an alternative mechanism for regulation of
glucose uptake must exist. Studies in cultured mouse brown adipo-
cytes have shown that b-adrenergic stimulation leads to glucose up-
take via synthesis of the glucose transporter GLUT1 and subsequent
translocation of GLUT1 to the plasma membrane [29]. Such an
adrenergically induced glucose uptake has also been shown to occur in
human brown adipocytes [29]. The pathway (as detailed in [29])
regulating the translocation involves the mechanistic target of rapa-
mycin (mTOR), more specifically mTORC2 (see also [30]).
To examine whether the b3-induced glucose uptake observed above in
BAT could have been mediated via this mTOR pathway, we examined
the effect of the mTOR inhibitor KU-0063794 [31] on CL-316,243-
induced glucose uptake in vivo (Figure 2C, left part). In wildtype
mice, the increase in glucose uptake induced by CL-316,243 was
blocked by KU-0063794 (KU-0063794 in itself had no effect on glucose
uptake). This implies that practically all glucose uptake into BAT is
mediated via the mTOR pathway, most likely through mTORC2 [29,30].
When we repeated these experiments in UCP1(�/�) mice, the uptake
and KU-inhibition pattern was the same (Figure 2C, right part) as in the
wildtype mice.

2.4. Even in mice made prediabetic, acute b3-induced glucose
uptake is UCP1-independent
Since BAT has an extremely high capacity to import glucose [32e36],
activation of glucose uptake in BAT has been suggested as a possible
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 613

http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


Figure 2: b-Adrenergic stimulation of glucose uptake in BAT is dependent on mTOR activity. (A) [18F]FDG uptake over the last 25 min of the PET scans (maximum
Standardized Uptake Value, SUVmax) expressed as % of saline-injected mice in BAT in wildtype and UCP1(�/�) mice treated with CL-316,243 (n ¼ 5). For each mouse, the values
obtained after saline injection (control) were set to 100%. Error bars represent SEM; **p < 0.01; ***p < 0.001 indicate significant effects of CL-316,243 (Student’s paired t-test).
Absolute mean of SUVmax for WT saline-control 0.42 � 0.04 SUV/body weight and UCP1(�/�) control 0.46 � 0.06. (B) Glucose uptake in BAT measured with [3H]-2DG in mice.
Wildtype and UCP1(�/�) mice were treated with saline or CL-316,243 (1 mg/kg) 20 min prior to [3H]-2DG injection. The experiment was terminated 1 h after [3H]-2DG injection,
and the amount of [3H]-2DG uptake was analyzed by liquid scintillation counting (n ¼ 7). The mean control uptake was set to 100 in both genotypes. Absolute mean WT control
values were 38104 � 4824 CPM/g w.w. and UCP1(�/�) control 45782 � 6601 CPM. Error bars represent SEM; *p < 0.05: significant effect of CL-316,243 (Student’s unpaired t-
test). Western blot shows the lack of UCP1 in BAT from UCP1(�/�) mice. (C) Wildtype and UCP1(�/�) mice were injected (i.p.) with KU-0063794 (10 mg/kg) or with DMSO 10 min
prior to acute treatment with CL-316,243 (1 mg/kg). After 20 min, the mice were injected with [3H]-2DG. The experiment was terminated after 1 h, after which BAT was dissected
out and the uptake was measured as in Figure 1B. Western blot below shows that UCP1 protein levels were not altered by the acute KU-0063794 and/or CL-316,243 treatment.
Absolute mean values for WT control were 20934 � 2474 CPM/g w.w. and for UCP1(�/�) control 6535 � 695. Error bars represent SEM; *p < 0.05; **p < 0.01 for effect of KU-
0063794, Student’s unpaired t-test (n ¼ 5). The experiment was performed in 5 cohorts of 4 animals (one for each treatment and genotype). In each experiment and genotype, the
uptake in control (DMSO- plus saline-treated) mice was set to 100%.
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Figure 3: In mice made prediabetic, acute b3-adrenergic agonist induces UCP1-
independent glucose uptake. Wildtype and UCP1(�/�) mice were kept on a high-fat
diet for 6 months and examined for b3-adrenergically induced glucose uptake. The
mice were injected with CL-316,243 (1 mg/kg, i.p injection) 20 min prior to injection of
[3H]-2DG (n ¼ 4 in each group). The mean control uptake was set to 100 in both
genotypes. Absolute mean values for WT control glucose uptake were 19733 � 1337
CPM/g w.w. and for UCP1(�/�) control 36159 � 5524. Error bars represent SEM;
**p < 0.01 (Student’s unpaired t-test).
approach to ameliorate diseases with impaired glucose tolerance, such
as type 2 diabetes. Accordingly, treatment of animals with the b3-
adrenoceptor agonist CL-316,243 used above has demonstrated anti-
diabetic effects [37e40]. This may be implied to occur due to CL-
316,243-induced UCP1 activation, leading to highly increased com-
bustion of glucose in the cells, leading to a high glucose uptake.
However, based on the studies above, it may be questioned whether
this glucose disposal effect is dependent of thermogenesise or simply
is due to stimulated glucose uptake.
Therefore, to examine the significance of UCP1 activity for the diabetes-
ameliorating effect of b3-agonist treatment, the effect of CL-316,243
treatment was investigated in mice made prediabetic. For this, wild-
type and UCP1(�/�) mice were kept on a high-fat diet for more than six
months. The wildtype and the UCP1(�/�) mice weighed approximately
the same after this extensive period of high-fat feeding (wildtype,
45� 1 g; UCP1(�/�) mice, 43� 6 g). Both wildtype and UCP1(�/�)
mice showed elevated fasting glucose levels at around 10 mM (see
below), i.e. were pre-diabetic, compared to non-pre-diabetic mice with
a fasting glucose level between 5.5 and 8.3 mM [41].
To examine whether the b3-induced glucose uptake still occurred in
these mice and to examine whether this uptake was UCP1-dependent,
glucose uptake measurements were performed as above with [3H]-
2DG and CL-316,243. As seen in Figure 3, acute b3-treatment
increased glucose uptake to the same extent in both wildtype and
UCP1(�/�) BAT, even in these prediabetic mice. Thus, UCP1 was not
necessary for the induced increase in glucose uptake.

2.5. UCP1 is essential for the ameliorating effects of prolonged b3-
agonist treatment on glucose levels in prediabetic mice
To examine the effects of prolonged b3-adrenergic treatment on
glucose homeostasis, the prediabetic wildtype and UCP1(�/�) mice
(as above) were injected with CL-316,243 twice a day for four days.
This led to a minor decrease in body weight for both genotypes (3.6 g
for wildtype, 1.7 g for UCP1(�/�)).
During a standard glucose tolerance test (2 g glucose/kg body weight
injected intraperitonally), both untreated wildtype and UCP1(�/�) mice
(Figure 4A) responded with an increase in blood glucose leading to
values that exceeded 25 mM. After the prolonged treatment of both
wildtype and UCP1(�/�) mice with CL-316,243, the glucose values
observed during the glucose tolerance test were significantly lower. This
was mainly because the CL-316,243 treatment resulted in remarkably
decreased fasting blood glucose levels in UCP1-expressing mice, from
the diabetic 11 mM down to euglycemic levels of about 4 mM
(Figure 4B). The decrease was also observed but was less pronounced in
UCP1(�/�) mice: from 9 mM down to 7 mM. Analyzing the area under
the curves from the GTT of both genotypes (Figure 4C) demonstrated that
there was also an effect of CL-316,243 on the GTT in wildtype mice but
not in the UCP1(�/�) mice. Thus, UCP1 is essential to achieve the full
capacity for amelioration of fasting blood glucose levels and for
enhanced glucose clearance after prolonged b3-treatment.

3. DISCUSSION

In this study, we demonstrate that acute adrenergic stimulation of BAT
in vivo can induce glucose uptake through the previously described
mTOR pathway [29] and that the activity of this acute pathway can
occur independently of the presence or function of UCP1. These data
have implications for several issues: understanding mechanisms
regulating glucose uptake in BAT, interpretation of activity in BAT in
PET-FDG scans, and the possibility of utilizing BAT as an anti-diabetic
tissue.
MOLECULAR METABOLISM 6 (2017) 611e619 � 2017 The Authors. Published by Elsevier GmbH. This is an
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3.1. PET-FDG scans of BAT do not necessarily reflect thermogenic
activity
PET imaging with [18F]FDG is currently the only method used for in vivo
detection of metabolic activity of BAT and for quantifying metabolism in
BAT in humans [4]. The studies presented here clearly demonstrate
that acute glucose uptake cannot unreflectingly be considered to be a
measure of BAT thermogenesis, to be an indicator of the localization of
BAT depots or be used for quantifying BAT amounts. Most of the areas
in humans early observed to become highly visible in PET-FDG scans
have been demonstrated to also possess UCP1. However, our study
indicates that there nevertheless may not be a proportionality between
glucose uptake and thermogenesis, and a parallelism between
increased [18F]FDG uptake and brown-fat thermogenesis should not
necessarily be expected. Thus, some reports indicating increased BAT
after e.g. b3-treatment [11,15] may not necessarily reflect such an
increase but merely an increased glucose uptake.

3.2. UCP1-dependent and UCP1-independent adrenergic effects in
BAT
The present studies are paralleled by others pointing to the risk of
considering events in BAT secondary to thermogenesis/UCP1 activity.
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 615
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Figure 4: Prolonged b3-adrenergic agonist treatment ameliorates blood glucose levels in prediabetic mice. Wild-type and UCP1(�/�) mice were kept on a high-fat diet for
6 months and examined for fasting blood glucose levels and exposed to a glucose tolerance test before and after prolonged CL-316,243 treatment. (A) Glucose tolerance test in
wildtype and UCP1(�/�) mice before and after the prolonged treatment with CL-316,243 (n ¼ 6). Repeated measures ANOVA analysis yielded significant interaction between
treatment and time in both wildtype and UCP1 (P < 0.05). Error bars represent SEM; *p < 0.05; **p < 0.01; ***p < 0.001 versus pretreatment (repeated measurements ANOVA).
(B) Blood glucose levels in wildtype and UCP1(�/�) mice before and after prolonged treatment with CL-316,243 (1 mg/kg twice a day for four days, no CL-316,243 treatment on
the experimental day (n ¼ 6) (Student’s paired t-test between genotypes, unpaired between genotypes #). (C) Area under the curve (AUC) (delta area above initial values) from the
glucose tolerance test for wildtype and UCP1(�/�) mice before and after the prolonged treatment with CL-316,243 (n ¼ 6). Error bars represent SEM; *p < 0.05; **p < 0.01;
***p < 0.001 versus pretreatment (Student’s paired t-test).
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Thus, blood flow through the tissue cannot be read out as a simple
thermogenesis indicator [42], and even VEGF gene expression [43,44]
and the vascularization of the tissue [45] are not caused by UCP1
activity and, thereof, lowered oxygen pressure. Activation of the
sympathetic nervous system stimulates parallel processes, such as
616 MOLECULAR METABOLISM 6 (2017) 611e619 � 2017 The Authors. Published by Else
thermogenesis and, for instance, glucose uptake, which do therefore
not necessarily need to be functionally connected. In all these cases,
the reason is that the processes followed are regulated via the sym-
pathetic nervous system, independently of the activation of thermo-
genesis as such. Thus, generally, measures of glucose uptake (and
vier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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e.g. blood flow) will coincide with thermogenesis, but neither increased
glucose uptake nor blood flow needs to be a consequence of ther-
mogenesis. Similarly, the localization of BAT may not fully follow that of
adrenergically (or physiologically) induced glucose uptake, which, at
least theoretically, could occur in adipocytes lacking (or having only
low amounts of) UCP1 and mitochondria.

3.3. Regulation of glucose uptake in BAT
The present study demonstrates that glucose uptake, at least acutely,
is an independently regulated, sympathetically driven process. In this
respect, the present studies are also an in vivo extension of earlier
studies showing that UCP1 is not a prerequisite for adrenergically
induced glucose uptake in cultured brown adipocytes [46] or in intact
mice [47]. In contrast, Inokuma et al. [48] showed indications that in
UCP1(�/�) mice, norepinephrine lost its ability to enhance glucose
uptake rate into BAT, but this was mainly due to an unexpected in-
crease in the basal uptake rate. Jeanguillaume et al. [49] observed
intriguing differences between the effect of the absence of UCP1 on
glucose uptake in male and female mice; however, we have not
observed such a difference (data not shown). Therefore, our results
provide evidence that acute, adrenergically-induced glucose uptake
and thermogenesis are two separately regulated processes in BAT and
that the induced acute glucose uptake can occur via mTOR mediation,
independently of thermogenic activity in the brown-fat cells.

3.4. Utilizing BAT as an anti-diabetic tissue
The present studies point clearly to a possibility of utilizing glucose
uptake into BAT to ameliorate diabetes. Notably, we found that even in
mice made prediabetic, a few days’ treatment with a b3-agonist led to
near normalization of fasting glucose levels and a significant decrease
in AUC of the GTTs for the wildtype mice, principally in accordance
with earlier results [37e39]. We additionally show here that this
effect is only fully active in mice that possess UCP1. In mice without
UCP1, the acute glucose uptake is still present but the capacity of the
cells to maintain the glucose uptake will possibly deteriorate due to
the large amount of excess energy the cells have to store, likely in the
form of glycogen [50]. In brown-fat cells with UCP1, this storage
limitation will not be relevant, as the glucose will be oxidized [51].
Thus, it is evident that both glucose uptake and thermogenesis are
needed to fully utilize the capacity of the cell to influence glucose
homeostasis and that both should be stimulated to reach maximum
glucose uptake capacity. Only then can BAT fully be exploited [52] in
fighting the metabolic syndrome.

4. EXPERIMENTAL PROCEDURES

4.1. Animals
UCP1(�/�) mice (on a C57Bl/6 background for more than 10 gen-
erations), originally derived from those described by Enerbäck et al.
[53], and UCP1-wildtype mice (C57Bl/6), were bred at the Stockholm
University Experimental Core Facility. Wildtype and UCP1(�/�) mice
were kept as separated lines with regular backcrosses. Mice (4e7
months old) of both genders were housed at 30 �C for at least 3 weeks
prior to the experiments, with a 12:12-h lightedark cycle, and with
free access to food and water during the whole study. The mice were
single-caged 1 day prior to the experiment.
For the study of the effect in mice made prediabetic, mice were fed a
high-fat diet (45% kcal energy by fat, Research Diets D12451, New
Jersey, USA) for at least 6 months at 30 �C.
All studies were approved by the Animal Ethics Committee of the North
Stockholm Region.
MOLECULAR METABOLISM 6 (2017) 611e619 � 2017 The Authors. Published by Elsevier GmbH. This is an
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4.2. MicroPET studies
UCP1(�/�) mice and UCP1-wildtype mice (C57Bl/6) as above were
fasted for 5 h prior to microPET imaging (Focus 120, CTI Concorde
Microsystems Inc.). The mice were weighed and anesthetized with
isoflurane (5% initially and then 1.5% to maintain anesthesia, mixed
with 6:4 air/O2). Then the blood glucose levels were measured. The
mice were placed prone on a heating pad (37 �C) on the microPET
camera bed, with most of the body in the field-of-view. Either CL-
316,243 (1 mg/kg) or saline (on the same mice on another occa-
sion) was injected intraperitoneally 20 min prior to [18F]FDG (obtained
from daily clinical production at Karolinska University Hospital, 7e8
MBq per mouse, maximum volume 200 ml), which was administered
by bolus injection via the tail vein. Emission data were collected for
60 min in list mode. Data were processed using MicroPET Manager
(CTI Concorde Microsystems). PET data were acquired in fully three-
dimensional (3D) mode, and images were reconstructed by standard
2D filtered back projection using a ramp filter. Data were corrected for
randoms, dead time and decay. BAT regions of interest (ROIs) were
drawn manually on the images. First a ROI was drawn in the activated
BAT location and then the same volume was drawn on the saline
treatment image and images were compared to acquire the same
approximate position. The ROI counts were normalized to the injected
dose and mouse body weight and calculated as mean, maximum and
minimum standard uptake values (SUV) using Inveon Research
Workplace software (Siemens Medical Solutions). SUVmax values were
used to reduce influences of spill-in and spill-over effects from adja-
cent tissues on the quantifications.

4.3. Metabolic studies
Mice housed at housed at thermoneutrality (30 �C) for 3 weeks were
anaesthetized with pentobarbital (55 mg/kg i.p.) and were transferred
to metabolic chambers as previously described [54]. The mice were
measured at 33 �C to obtain basal values during 10 min. After these
basal readings, the mice were removed from the metabolic chambers
for a short time (6 min) and injected intraperitoneally with CL-316,243
(1 mg/kg) or saline before being returned to the metabolic chambers
for 60 min.

4.4. [3H]-2DG uptake in mice
For measurement of glucose uptake in mice with and without UCP1,
the mice were fasted for 5 h at 30 �C prior to the study. All mice were
anesthetized with an intraperitoneal (i.p.) injection of pentobarbital
(55 mg/kg body weight). Where indicated, mice were injected i.p. with
KU-0063794 (10 mg/kg) or with DMSO 10 min before injection with
CL-316,243 (1 mg/kg body weight, Sigma Aldrich) or saline. Twenty
min later, [3H]-2DG (130 mCi/kg body weight) was injected. Mice were
sacrificed after 1 h, interscapular BAT was dissected out, weighed, and
a piece of the tissue digested with 0.5 M NaOH overnight. 10% of the
cell lysate was mixed with scintillation cocktail (Emulsifier-Safe, Perkin
Elmer), and the amount of [3H]-2DG in the tissues was detected with a
liquid scintillation analyzer (Tri-Carb 2800 TR, Perkin Elmer, Waltham,
MA, USA) with a scintillation measuring time of 3 min. CPM values
obtained were in the range 70e4000.

4.5. Prolonged treatment with CL-316,243
Groups of wildtype and UCP1(�/�) mice, fed a high fat diet (at least 6
months), were weighed and injected i.p. with 1 mg/kg body weight CL-
316,243 twice a day, for 4 days in a 30 �C room, or with saline. On day
0 and 5, the mice were starved for 5 h at 30 �C and weighed before a
glucose tolerance test was performed (2 g glucose i.p. per kg body
weight, at 30 �C). Blood from the tail vein was drawn to measure blood
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 617
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glucose values with a glucometer (AccuCheck, Biochemical systems
international Srl., Florence, Italy).

4.6. Immunoblotting
BAT was homogenized as previously described [54]. Immunoblotting
was performed as previously described [55]. The primary UCP1 antibody
was produced in rabbit against C-terminal decapeptide, diluted 1:5000.
The primary antibody was detected with a secondary antibody (horse-
radish peroxidase-linked anti-rabbit IgG, Cell Signaling) diluted 1:2000.

4.7. Statistics
All results are expressed as means � SEM. The statistical significance
of differences between groups was analyzed by Student’s two-tailed t-
test or with repeated measures ANOVA, as indicated.
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