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A Silylene Stabilized by a 6-Donating Nickel(0) Fragment

Maria Frutos, Nasrina Parvin, Antoine Baceiredo, David Madec, Nathalie Saffon-Merceron,

Vicen¢ Branchadell, and Tsuyoshi Kato*

Abstract: A donor-stabilized silylene 4 featuring a Ni’-
based donating ligand was synthesized. Complex 4
exhibits a pyramidalized and nucleophilic Si" center and
shows a peculiar behavior due to the cooperative
reactivity of Si and Ni centers. Calculations indicate that
the orientation of Ni-ligands with respect to the silylene
moiety is crucial in determining the role of the Ni-
fragment (Lewis acid or Lewis base) towards silylene.
Indeed, a simple 90° rotation of the Si—Ni bond, reverses
the role of Ni, and transforms a classical silylene—Ni’
complex into an unprecedented Ni’—silylene complex.

Transition metals basically act as Lewis acids and thus form
various complexes I interacting with Lewis base ligands
(Figure 1). Despite less common, transition metals also act
as Lewis bases!! to interact with Lewis acids (A) to form
non-classical M— A complexes II. This non-classical mode
of interaction (known as Z-ligands® or metal-only Lewis
pairs®!) leads to new methods to tune/improve properties of
transition metals.¥! Singlet divalent group-14 species III such
as carbenes and their heavier analogues (R,E, E=C, Si,
Ge...), featuring a divalent E center with a lone pair orbital
(n,) and a vacant orbital (p,), present an ambiphilic
character. Consequently, like in the case of transition metals,
there are potentially two coordination modes via c-electron
donation: i) either from R,E to metal [R,E:—M] IV or, ii)
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Figure 1. Classical and non-classical metallylene complexes.

from metal to ER, [M—ER,] V. Classical R,E°*—M com-
plexes IV, presenting a planar E atom, categorized as
Fischer- or Schrock-types complexes,””! are ubiquitous and
play an important role in synthetic chemistry. In contrast,
and not surprisingly, M—ER, complexes V, characterized
by a strongly pyramidalized E center as base-stabilized
metallylene VI, are less common and only a few examples
are known. How could the formation of such non-classical
complexes V be promoted? On descending a group in the
periodic table, the nucleophilicity of divalent atom (E)
decreases (increasing s-character of lone pair) and the
unoccupied p, orbital becomes more Lewis acidic. There-
fore, heavier divalent species (E=Ge, Sn, Pb) present
stronger tendency to form M—ER, complexes V. Indeed, to
date, the only known compounds of this type V are
germylene-, stannylene- and plumbylene-based complexes
(VIIX).**) DFT calculations predicted that, although
germylenes and stannylenes are able to form complexes of
type V, lighter analogues (silylenes and carbenes) tend to
form classical R,E:—M complexes IV,” although several
methanediide-TM complex, featuring a pyramidalized car-
bon centre, have been described.!"” To the best of our
knowledge, complexes V involving a silylene fragment M—
SiR, remain elusive, and no clear synthetic access has been
proposed, despite their potential usefulness as an extended
model of Lewis base-stabilized silylenes VI.

© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
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Here, we would like to report the synthesis of an unusual
16e-nickel(0)-silylene complex 4, presenting a strongly
pyramidalized and nucleophilic divalent silicon center, which
can be regarded as a silylene complex stabilized by
coordination of o-donating Ni’ ligand. DFT calculations
indicate that the orientation of Ni-ligands relative to silylene
fragment is crucial in determining the coordination mode of
R,Si-Ni’L, complexes, and a simple 90° rotation of Si—Ni
bond reverses the role of Ni-fragment which turns from
Lewis acid to Lewis base (IV—YV).

16e-Ni’ complexes featuring silylene ligands (XI, XII)
usually present a short Si=Ni double bond and two trigonal
planar Si and Ni centers which are perpendicular to each
other.™ We have computationally studied Ni’silylene
complexes by hypothesizing that the Si=Ni n-bond can be
broken through a rotational distortion around SiNi-bond
axis and thus changing the coordination mode. Calculations
predict that such a 90° SiNi-bond rotation in complex model
H,Si=Ni(PMe;), 1, affording rotamer 2, is only moderately
exergonic (AG;_,=6.6 kcalmol™) and leads to a dramatic
geometrical modification (Figure 2). Indeed, rotamer 2
exhibits a strongly pyramidalized Si center (X°g;=305.9°)
and a considerably elongated Si-Ni bond (2.249 A) com-
pared to that of 1 (2.118 A). This structural feature of 2 is in
agreement with a Si atom holding a lone pair of electrons
and a reduced Si—Ni multiple bonding character. Indeed, it
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Figure 2. Calculated free energy AG (kcal mol™) for the isomerization
of silylene-Ni® complex 1 to the corresponding rotamer 2 by a 90°
rotation of Si—Ni bond as well as the geometry and selected intrinsic
bond orbitals (IBOs) of each rotamer (1 and 2). Values in parenthesis
are the contributions of Si—Ni 0- and n-bonding electrons at Si and Ni

atoms.
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was found that the negative charge of H,Si fragment in 2
[—0.40 (H,Si)/+0.40 (Ni(PMes),] is increased from that in 1
[-0.17 (H,Si)/+0.17 (Ni(PMes),] and that the Wiberg and
Mayer bond orders of the Si—Ni bond of 2 (0.602 and 0.812)
are smaller than those calculated for 1 (0.820 and 1.163).
Furthermore, intrinsic bond orbital (IBO) analysis'? of 1
clearly indicates the presence of a Si=Ni double bond
constituted of R,Si:—Ni o-donation (Si—Ni ¢-bonding orbital
with a main occupancy at Si, Figure 2a) and n-back donation
from Ni to Si (n-bonding orbital with a main occupancy at
Ni, Figure 2b). In marked contrast, in the case of rotamer 2,
a large part of Si—Ni o-bonding electrons is localized at the
Ni atom (0.38 at Si and 1.60 at Ni, Figure 2c), in agreement
with a Ni—Si o-donation. Furthermore, the IBO analysis
also indicates the presence of a lone pair localized on the Si
atom in 2 with no contribution at Ni (1.90 at Si and 0.00 at
Ni, Figure 2d), instead of n-bonding orbital. These results
demonstrate that a 90° rotation of Si—Ni bond in 1 induces,
not only the SiNi-n-bond breaking but also the reversal of
the role of Ni’-fragment: from Lewis acid (coordination
center) to Lewis base (coordinating ligand).

Driess’ complex XII''® undergoes a similar isomer-
ization with a relatively small energy (AGxy_xmbis=
12.1 kcalmol™) affording rotamer XII-bis (Figure 1) with a
strongly pyramidalized Si center (X°5;=337.73°) and a single
Si-Ni bond (2.244 A). Of particular interest, such geo-
metrical and electronic modifications of silylene-nickel
complexes (1—2 and XII—XII-bis) induce a considerable
decrease of HOMO-LUMO energy gaps (AEuomo-Lumo:
3.49 eV for 1 vs 2.96 eV for 2 and 4.19 eV for XII vs 2.73 eV
for XII-bis), and therefore an increased reactivity of the
non-classical complexes (type V) compared to classical ones
(type IV). In contrast, in the case of the corresponding
carbene complexes [R,C—Ni(PMe;),, R=H, F], such a geo-
metrical change was not observed by the C-Ni bond
rotation and the classical carbene—Ni complex (with a
planar carbon center and a short C=Ni double bond) was
calculated to be the only stable isomer.

In order to verify the theoretical results, we have
considered the use of a rigid planar bridging system
connecting silylene- and metal-fragments which imposes
such a bond rotated geometry of silylene-Ni complex of
non-classical complexes of type V. For this purpose, we
employed the phosphine-stabilized (amino)(chloro)silylene
3081 as a precursor, in which the amino substituent and the
phosphine ligand are linked by a planar olefin bridge.
Similarly to the synthesis of complex XILI' the two
successive additions of equimolar amounts of Ni(COD),,
and N-heterocyclic carbene (NHC), to chlorosilylene 3, in
fluorobenzene at RT, afford silylene-Ni’ complex 4
(Scheme 1). The reaction probably proceeds via the inser-
tion of Ni into the Si"—P bond followed by the COD ligand
substitution by NHC at the Ni center. Complex 4 was
isolated as air-sensitive crystals from a THF solution at RT
(yield 70 %).

Even though silylene complex 4 slowly decomposes in
solution (THF, fluorobenzene) (f,,=2 days at RT, and ¢,,,=
2 h, at 80°C), it was characterized by NMR spectroscopy. In
the *SiNMR spectrum, a doublet signal appears at
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Scheme 1. Synthesis of Ni-stabilized silylene 4.

138.1 ppm (*/s;p="71.8 Hz) in the region of that of the related
acyclic  (chloro)aminosilylene-Ni® complex XII (5=
123.2 ppm)™™ but significantly downfield compared to the
starting phosphine-stabilized silylene 3 (—10.5 ppm).'*! The
P NMR spectrum displays a singlet signal at 91.4 ppm, also
downfield shifted compared to 3 (75.0 ppm). A doublet
signal observed at 186.7 ppm in “C NMR spectrum was
attributed to the divalent carbon of NHC ligand. The
relatively large carbon—phosphorus coupling constant (3/cp=
50.4 Hz) is in good agreement with the T-shaped geometry
around the Ni atom with the NHC ligand in a trans-position
relative to the phosphine.’*!

The molecular structure of 4" reveals a strongly
pyramidalized Sil center (X°g;=2321.58°) similarly to the case
of the phosphine-stabilized silylene 3 (£°5;=292.0)"" and an
elongated Si—Ni bond (2.178 A) compared to other Ni‘-
silylene complexes (2.075 - 2.133 A) (Figure 3)."” This value
is within the range of Ni-Si single bonds." These structural
data of 4 are in agreement with a non-classical complex V
(Ni—silylene) with a lone pair on the Si atom and a reduced
Si—Ni multiple bonding character. The Ni’ site presents a
planar and T-shaped geometry (X°;=359.91) with a large
P-Ni—Clyyc angle (164.51°), in contrast to the case of
silylene-Ni(NHC), complex XII with a trigonal planar Ni

Figure 3. Molecular structures of 4. Thermal ellipsoids represent 30%
probability. H and disordered atoms are omitted for clarity. Selected
bond lengths [A] and angles []: Si1—Ni 2.178(1), N1-Si1 1.840(2),
Si1—Cl 2.196(1), Ni—C1 1.934(2), Ni—P 2.126(1), P—C2 1.762(2), C2—C3
1.359(3), C3—N11.360(2); C-Si1—N1 95.35(6), C-Si1—Ni 110.94(4),
N1=Si1—Ni 115.29(6), Sil—Ni—C1 101.53(6), C1—Ni—P 164.51(6),
SiT-Ni—P 93.87(2), Ni—P—C2 117.05(7), P—C2—C3 129.90(16),
C2—C3—N1 129.62(18), C3—N1-Si1 117.17(13). Z°5;=321.58". Torsion
angles: C1-Ni-Si1—Cl=33.16(7)°, P-Ni—Si1—N1=38.21(7)°.
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site (Cnpc—Ni—Cypc=111.4°)."1 A similar geometry was
observed for other M’—metallylene complexes IX-X
(M=Ni, Pt)® as well as for L,Ni—Lewis acid complexes.!'"]

To gain more insight into the electronic structure of
Ni’—silylene complex 4, DFT calculations have been
performed at the MO06/Def2TZVP//M06/6-31G(d) level of
theory (Figure 4). The optimized structure of 4 agrees quite
well with the experimentally observed one (Si—Ni: 2.227 A,
Si-N: 1.831 A, Si-Cl: 219 A, CI-Ni-P: 169.47°, %°=
319.37°). The highest occupied molecular orbital (HOMO,
—4.418 ¢V) corresponds to the lone pair orbital mainly
localized on the Si atom and the lowest unoccupied bond
orbital (LUMO, —1.389 eV) corresponds to the anti-bonding
o*-orbital of Si—Ni bond with a large coefficient on the Ni
atom. Similar to the case of XII-bis, the HOMO-LUMO
energy gap of 4 (AEyomo.Lumo: 3.03 V) is calculated to be
small, suggesting an enhanced reactivity. As expected, IBO
analysis of 4 show the same pattern of Ni—Si o-bond and Si-
lone pair (ng;) orbitals as those calculated for 2 (Figure 1c,d)
(see the Supporting Information).

In agreement with the MO analysis, contrary to other
silylene-Ni complexes presenting an electrophilic character
at the Si atom,''"! silylene complex 4 presents a nucleo-
philic Si center, which has been demonstrated by the
immediate reaction with MeOTf, leading to Si-methylated
Ni" complex 5 (Scheme 2). In contrast, a Lewis base such as
iso-propyl isocyanide coordinates on the metal center to
form a tetra-coordinate Ni’ complex 6. A less pyramidalized
Si" center (Z°;=2349.69°) and a shorten Si—Ni bond [2.1108

HOMO (ns) : -4.418 eV

Figure 4. Frontier molecular orbitals [LUMO (a, b) and HOMO (c, d)]
of 4 (isosurface level = £-0.05 e/(a.u.)’) and their energy levels (eV)
calculated at the M06/Def2TZVP level.
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Scheme 2. Reactions of Ni-stabilized chlorosilylene complex 4.

(5) A] in 6 compared to those of 4 [£°g=321.58°, Si—Ni:
2.1780(7) A] suggest an enhanced Si—Ni n-back donation in
6 probably due to the geometrical modification at Ni’ center
(T-shape—distorted tetrahedral).

Silylene complex 4 also readily reacts with H, at RT to
afford a formal 1,2-dihydrogen adduct 7 which slowly
isomerizes to the corresponding isomer 8 by the substituent
exchange of H and Cl on the Si and Ni atoms respectively
(Scheme 2 and Figure 5). Although intermediate 7 could not
be isolated, the two "H NMR signals corresponding to the
Si—H (4.92 ppm, Jyy=6.5 Hz, Jp;=5.6 Hz, Jgy=176.5 Hz)
and Ni-H (—6.49 ppm, Jyu=6.5Hz, Jpyu=>56.5Hz, Jgy=
86.0 Hz) appearing in the characteristic regions indicate its
formation. Typically, the large trans coupling-constants
(Js.11=86.0 Hz, *J_cnuc)=82.8 Hz) suggest a square-planar
geometry around the Ni" atom in 7 with the Ni—H function
at the trans-position relative to the Si atom. The structure of
dihydrosilane-Ni" complex 8 was confirmed by X-ray
diffraction analysis."!

Silylene-Ni 4 complex also readily reacts with 2,3-
dimethyl-1,3-butadiene at RT to give a mixture of two Si¥'-
Ni" complexes (9 and 10) with a 1:1 ratio, which are
formally formed by either a C—H insertion or a [4+1]
cycloaddition at the Si center followed by a 1,2-migration of

AG (kcal/mol) H Cl ’NHC
Si--Ni
/\H/*
Ar—-N_ " PR,
(6.3)
(134) 435 ——
/ R : (25.9)
/ H_H NHC! — (19.5)
0.0 / Cl=&i<Ni 4 / (15.6)
[k !
NHC AN PR, | / \ / \ ’
Cl~§j<Ni+ H, 132 137/ \142/
Ar-N_ PR, 1" ¢l NHC G H NHC a
H—/Si—Ng—H H-Si—Ni H-gi—Ni~NHC ﬁuc
- / &
4 Ar—N_ PR, AN PRy pc N PR, H‘S‘ifl\’li*CI
/ %
Ar—N PR,
7 7-cis 8-cis 8

Figure 5. Calculated reaction pathways for the hydrogenation of 4 and
calculated relative Gibbs energies AG (kcalmol™) of each intermediate
and product 8 from that of 4+ H,. In parenthesis are calculated Gibbs
energy barriers AG™ (kcalmol™).
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energy barriers (AG"=21.3 and 20.7 kcalmol™', respec-
tively), which is consistent with the formation of 9 and 10 in
the same proportions. Calculations also indicate that the
isomerization of 9 to 10 proceeds via a tautomerization of 9
to generate a zwitterionic intermediate 12 that cyclizes to
give 10 (Figure 6). The experimental thermal activation
required for this isomerization (100°C) is in agreement with
a considerably high energy Dbarrier (AGTy_ =
37.9 kcalmol ™) and the endergonic nature of the tautomeri-
zation step (AGy_1,=30.3 kcalmol ™).

In order to check the substituent effect on the reactivity/
stability of the Ni—Si complexes, we have also tested the
substitution of chloride on the Si atom in 4 by PhLi. The
reaction of 4 with PhLi (1 equiv) proceeds smoothly at
—80°C to generate the corresponding phenyl-substituted
silylene complex 13 (Scheme 3). The formation of 13 was
indicated by the characteristic *?Si NMR chemical shift for
the Si" atom (8§=154.2 ppm, Jgp=85.6 Hz). However,
phenylsilylene complex 13 is less stable than its precursor 4

NHC
e . .
g— s+ |H SS—N-Cl | — s+ 10
AG¥ = 37.9 kcal/mol AG¥=0.7 kcalimol
AG = 30.3 keal/mol Ar-N PR, AG = -50.8 kealmol
12

Figure 6. Calculated reaction pathway for the isomerization of 9 to 10.

N_ _N—;
NHC \( ¢ iPr
w Yo ™M Y
Ph—Si=Ni Ph—%i—l\#i—H
PhLi
——— AN PR, ————— AN PR,
78°C 78°C > RT
6 hours
13 16
> -30°cl ty2 @y = 15 min. T -

\ =
™\ J iPr ™ ¥
T

H (
\
Ph_Si—Ni(n) Ph—Si N|(m
— Py
Ar—-N_ PR, RT. AN PR,
14 15

Scheme 3. Synthesis of phenyl-substituted silylene 13 and its isomer-
ization.
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and starts evolving above —30°C via a 1,2-addition of the
C—H moiety of NHC ligand across the Si—Ni fragment to
give the silyl hydride Si'V-Ni" complex 14 (isomerization
completed within 30 min at RT). The formation of 14 is
supported by the characteristic signals observed for the
Si—H group in the '"H NMR spectrum (8=15.36 ppm, *Jyp=
5.2 Hz, 'Jg;=153.1 Hz) and for the CH,-Ni moiety in the
BCNMR spectrum (8=45.0 ppm, *Jp=12.8 Hz).'¥! The
decreased HOMO-LUMO energy gap (2.72 eV) calculated
for 13 compared to 4 (3.03 eV) is in good agreement with its
lower stability. Furthermore, at RT, complex 14 isomerizes
further by exchange of ligands (H and CH,) on the Si and Ni
centers to give a stable pincer-type nickel(II) hydride
complex 16." Contrary to the related isomerization of 7 to
8, proceeding via two simultaneous 1,2-migrations of ligands
on the Si and Ni atoms (see Figure 5), in the case of 14, the
isomerization proceeds in two steps: i) reductive elimination
at the Ni center and formation of a Si—C bond to generate a
Si"V-Ni” complex 15 with the Si—H moiety interacting with
the Ni’ center, and then ii) oxidative addition of the Si—H
moiety to the Ni center to give the final nickel(IT)-hydride
complex 16. Although clean NMR spectra of 14 could not
be obtained due to the similar kinetics of the two isomer-
ization steps (14—15 and 15—16), careful NMR analysis of
the reaction mixture allowed to detect characteristic signals
for the Si—H-Ni moiety of 15 in the '"H NMR spectrum (5=
—348 ppm, Jpy=48Hz, Ugy=104.1Hz)"™ and in the
¥SiNMR spectrum (d=-—158ppm, */gp=28.6 Hz),™
strongly supporting the formation of 15 as an intermediate.

In conclusion, a donor-stabilized silylene complex 4 with
a Ni’-based donating ligand (Ni’—silylene complex) was
successfully synthesized. Complex 4, exhibiting a pyramidal-
ized and nucleophilic Si" center, shows a peculiar chemical
behavior due to the cooperative reactivity of the Si and Ni
centers. Of particular interest, calculations demonstrate that
the orientation of Ni-ligands with respect to the silylene
moiety is a crucial factor in determining the role of Ni-
fragment (Lewis acid or Lewis base) towards silylene, and a
simple 90° rotation of the Si—Ni bond reverses the role of
Ni, transforming a classical silylene—Ni’ complex into an
original Ni’—silylene complex. In addition, calculations also
predict that the energy difference between both complex
isomers is relatively small and, therefore, such a trans-
formation can occur in solution for models without struc-
tural restrictions to prevent the Si—Ni bond rotation and
alter their reactivity. More detailed studies on their proper-
ties and reactivity are under investigation.
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