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Research

AbstrACt
background and objectives Intermittent vital signs 
measurements are the current standard on hospital wards, 
typically recorded once every 8 hours. Early signs of 
deterioration may therefore be missed. Recent innovations 
have resulted in ‘wearable’ sensors, which may capture 
patient deterioration at an earlier stage. The objective of 
this study was to determine whether a wireless ‘patch’ 
sensor is able to reliably measure respiratory and heart 
rate continuously in high-risk surgical patients. The 
secondary objective was to explore the potential of the 
wireless sensor to serve as a safety monitor.
Design In an observational methods comparisons study, 
patients were measured with both the wireless sensor and 
bedside routine standard for at least 24 hours.
setting University teaching hospital, single centre.
Participants Twenty-five postoperative surgical patients 
admitted to a step-down unit.
Outcome measures Primary outcome measures were 
limits of agreement and bias of heart rate and respiratory 
rate. Secondary outcome measures were sensor reliability, 
defined as time until first occurrence of data loss.
results 1568 hours of vital signs data were analysed. 
Bias and 95% limits of agreement for heart rate were 
−1.1 (−8.8 to 6.5) beats per minute. For respiration 
rate, bias was −2.3 breaths per minute with wide 
limits of agreement (−15.8 to 11.2 breaths per minute). 
Median filtering over a 15 min period improved limits of 
agreement of both respiration and heart rate. 63% of the 
measurements were performed without data loss greater 
than 2 min. Overall data loss was limited (6% of time).
Conclusions The wireless sensor is capable of accurately 
measuring heart rate, but accuracy for respiratory rate 
was outside acceptable limits. Remote monitoring has the 
potential to contribute to early recognition of physiological 
decline in high-risk patients. Future studies should focus 
on the ability to detect patient deterioration on low care 
environments and at home after discharge.

IntrODuCtIOn
While technological advances have resulted 
in numerous new diagnostic tools and ther-
apeutic innovations, we are still not able 

to timely recognise patient deterioration 
on general hospital wards.1 2 This contrib-
utes to avoidable cardiopulmonary arrest, 
unplanned admission to the intensive care 
unit (ICU), an increase in hospitalisation 
costs and detrimental effects on quality of 
life.3–7 To timely detect patient deterioration, 
we may benefit from technical solutions that 
can track patients’ vital signs continuously.

Intermittent vital signs measurements, typi-
cally once every nurse shift of 8 hours, are 
the current routine monitoring practice on 
general hospital wards. As a result, patient 
deterioration in between measurements can 
be easily missed. In an attempt to improve 
the detection of patient deterioration, 
early warning scoring (EWS) protocols and 
medical emergency teams have been imple-
mented in most hospitals around the globe. 
However, failure-to-rescue events continue 
to occur even with these systems in place.8 9 
This phenomenon is also known as failure of 

strengths and limitations of this study

 ► We validated the accuracy of a wireless patch 
sensor to measure heart and respiratory rate in 
the intended target population for remote wireless 
monitoring: postsurgical patients at high risk for 
complications.

 ► Monitoring was continued for several days.
 ► The reference standard was an ‘intensive care unit-
grade’ patient monitoring system.

 ► Although used in clinical practice, the accuracy of 
the respiratory rate from the reference standard 
(thoracic impedance pneumography) has known 
limitations.

 ► The Bland and Altman methods comparison 
approach is not ideal for time series data; a test for 
‘trending ability’ is desirable.
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the ‘afferent limb’ of the EWS system.10–12 Alongside the 
attempts to improve detection of patient deterioration on 
the ward, there is a trend to reduce the duration of hospi-
talisation by discharging patients home early, for example, 
in ‘enhanced recovery after surgery’ programmes.13–15 
Once a patient is back home, EWS protocols and vital signs 
monitoring are no longer available. Recovery within the 
patient’s own home environment has many advantages, 
but unavoidably some surgical complications will now 
become first manifest in the home setting. This increases 
the risk that patient deterioration will be recognised too 
late.

The majority of adverse events are preceded by a signif-
icant period of change in vital signs.16–20 Early recogni-
tion of the deteriorating patient might be improved if 
continuous remote monitoring would become available 
for at-risk patients in ‘low care’ environments such as the 
regular hospital ward or in the first few ‘critical’ days at 
home after hospital discharge.21 22 Recent technological 
innovations have resulted in lightweight ‘wearable’ wire-
less sensors capable of recording and transmitting several 
vital signs such as heart rate (HR), respiration rate (RR), 
temperature and patient movement. While the majority 
of the wearable sensors is strictly ‘consumer-grade’, some 
manufacturers have obtained European Conformity (CE) 
and/or Food and Drug Administration (FDA) approval 
for use in clinical environments. However, validity and 
accuracy of these so called ‘medical-grade’ wearables has 
not been extensive assessed in real clinical environments. 
Two studies reported satisfactory agreement between 
HR, RR of a wearable patch sensor and their respective 
reference devices. However, these measurements were 
obtained from healthy participants in controlled condi-
tions. Another study showed reliable HRs and RRs with 
a wearable patch sensor in the majority of patients, but 
these data were limited to short periods of measurements 
in patients with comorbid conditions.23–25 As such, we 
cannot translate these findings accordingly to patients in 
a clinical environment at risk for complications.

The objective of this study was to determine whether a 
wireless adhesive ‘patch’ sensor is able to reliably measure 
RR and HR continuously in patients after high-risk 
surgery. We aimed to verify whether wireless sensor tech-
nology is robust and capable of detecting physiological 
trend patterns in high-risk patients before introducing 
wireless vital signs monitoring into clinical practice. A 
secondary objective was to explore the potential of the 
wireless sensor to serve as a safety monitor in clinical 
practice.

MAterIAls AnD MethODs
study design and setting
We performed a methods comparisons study with an 
observational design in which patients were continuously 
monitored after high-risk surgery during the initial days 
of recovery at the surgical step-down unit (SDU) of the 
University Medical Center Utrecht, the Netherlands, a 

large academic hospital. Formal approval for this study 
was obtained from the local ethical committee (no: 
15/550).

study participants
Postoperative patients were asked to participate on admis-
sion to the SDU if their expected stay was at least 24 hours. 
These patients were considered for enrolment because 
they represent a high-risk subset of surgical patients that 
is more prone to experience deterioration compared 
with patients on the general ward. Exclusion criteria were 
patients with an implantable cardiac device, an allergy 
to adhesives, wound or skin lesion near the application 
site or inability to give informed consent. After written 
informed consent was obtained, researchers applied the 
sensor to the patient’s chest to start recording vital signs 
for 1–3 days using the wearable sensor and the routine 
monitoring system described hereafter.

Description of the wireless wearable sensor
The HealthPatch MD (VitalConnect, San Jose, California, 
USA) is a medical-grade lightweight, wireless and wear-
able adhesive biosensor that measures a number of vital 
signs continuously: single-lead ECG, HR, HR variability, 
RR, skin temperature, body posture and step count. It 
was designed to facilitate long-term remote monitoring of 
vital signs and activity metrics within the hospital environ-
ment as well as in the postdischarge period at home. The 
sensor consists of a disposable adhesive patch that houses 
two ECG electrodes, a thermistor and a zinc–air coin-cell 
battery. The reusable sensor module contains a triaxial 
accelerometer and Bluetooth Low-Energy (BLE) trans-
ceiver (see online supplementary appendix 1). The patch 
can be applied on the patient’s chest and measures vital 
signs continuously up to 3 days (4 days if continuous trans-
mission of its single-lead ECG waveform is disabled). The 
module processes the incoming signals and transmits the 
data via BLE to a relay device (for this study we used an 
iPad mini (Apple, Cupertino, California, USA) with the 
‘Healthwatch’ mobile application. This application can 
display vital signs data in real time for research purposes, 
but was not designed to be used as clinical monitoring 
system. Also, near real-time data can be viewed on the 
Healthwatch web cloud-based server, to monitor long-
term trends. Quality of the sensor data was verified several 
times by the researchers during data collection. Patient 
identification information was not entered on the mobile 
device to ensure privacy protection.

Although the wireless sensor can also measure position, 
in this study we only focused on assessing the accuracy and 
reliability of RR and HR monitoring. The sensor calculates 
HR using analysis of the single-lead ECG. The algorithm 
is based on automated detection of QRS complexes from 
the ECG waveforms. RR is derived from the combined 
information from three sources: an embedded algorithm 
uses a weighted average of two characteristics of the ECG 
signal: (1) QRS amplitude modulation and (2) respira-
tory sinus arrhythmia ; both ECG-derived signals change 
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during inspiration and expiration,26 and the algorithm 
uses (3) accelerometer data produced by chest move-
ment during respiration.27 Both HR and RR are updated 
every 4 s and the manufacturer states an accuracy of ±3 
breaths per minute (breaths/min), in the range of 4 to 42 
breaths for RR. The stated accuracy of HR is ±5 beats per 
minute (beats/min or 10% (whichever is greater), in the 
range of 30–200 beats/min.

Description of the bedside routine standard
HR and RR of patients were continuously monitored 
with the wearable sensor and simultaneously with a multi-
parameter bedside monitoring system designed for use 
in ICUs and operating rooms (XPREZZON, Spacelabs 
Healthcare, Snoqualmie, Washington DC, USA) which 
served as the reference monitor. This reference uses ECG 
for HR detection and measures RR by thoracic imped-
ance pneumography.

signal analysis
The raw data transmitted by the sensor containing the 
measurements and their associated time stamps were 
retrieved in CSV format. Data were stored and processed 
using Matlab (The MathWorks, Natick, Massachusetts, 
USA). Empty or invalid data (not-a-number) were 
removed to obtain continuous 2D vectors of vital sign 
samples with their corresponding time stamps. Data 
reports were automatically retrieved from the reference 
monitor. These contained vital signs data sampled once 
per minute (ie, one measurement was saved and trans-
mitted every minute). The sensor data, originally trans-
mitted once every 4 s was therefore resampled to once 
per minute (ie, one sample per minute of the sensor was 
retained corresponding to the nearest time point of the 
reference monitor) to produce paired data points with 
the reference monitor. Furthermore, sensor data and 
reference data were synchronised to ensure alignment 
of their respective time stamps. No artefact removal was 
applied to the data before analysis.

Besides the analysis on vital signs data transmitted every 
minute, a median filter over a 15 min period was applied 
to study the effect on HR and RR outliers and to further 
explore the potential of the wireless sensor in clinical 
practice. This filtering was calculated as a median over 
subsequent epochs of 15 min.

Outcomes
The primary outcome was bias and precision (95% limits 
of agreement (LoA)) of HR and RR of the wireless sensor 
compared with the bedside monitor. This reference 
standard reports an accuracy for HR of ±1% or 3 beats/
min (whichever is greater) and an accuracy of ±5% or 1 
breaths/min (whichever is greater) for RR.28 We consid-
ered HR and RR to be acceptable for clinical purposes 
if within ±10% of the reference monitor or ±3 breaths/
min or ±5 beats/min.29 A secondary endpoint was the 
reliability of detecting true critical clinical conditions 
such as bradycardia (HR <50 beats/min), tachycardia 

(HR >100 beats/min), bradypnoea (RR <12 breaths/
min) and tachypnoea (RR >20 breaths/min).30 Another 
secondary outcome was the reliability defined as time 
until the first occurrence of data loss (defined as a dura-
tion of a gap within the data of 2 min, 15 min, 1 hour 
or 4 hours) and the overall amount of data loss from 
various causes.

Statistical analysis
The series of observation pairs of HR and RR measure-
ments (one data point every minute) derived from 
the wireless sensor and the reference monitor were 
compared using the Bland and Altman Method for 
repeated measurements.31 This method was used to 
account for within-subject variation by correcting for 
the variance of differences between the average differ-
ences across patients and the number of measurements 
per patient. The mean difference (bias) between the 
wireless sensor and reference monitor and the 95% 
LoA (±1.96 SD) was determined for both the HR and 
RR data. In addition, a Clarke error grid analysis was 
conducted to specify the clinical accuracy and the 
consequences for clinical decision-making.32 The time 
(hours) to first occurrence of data loss was analysed 
with Kaplan-Meier survival plots.

A power calculation was not feasible due to the lack of 
preliminary data with these continuous monitoring systems. 
Therefore, we aimed to analyse data of at least 25 patients—
each with multiple hours of continuous data—which is suffi-
cient to evaluate the validity of the wireless patch sensor.

results
From September 2015 to September 2016, a total of 
33 postoperative patients entered the study. Data from 
the reference monitor were missing for eight patients 
due to technical issues with retrieving the data from 
the monitor’s on-board memory, resulting in a total 
of 1568 hours of monitoring time with the reference 
monitor and 1702 hours of vital signs monitoring from 
the wireless sensor. Therefore, measurement pairs of 
25 patients were available for agreement analysis. On 
average, 62 hours remained per patient for further 
analysis. The range of total monitoring time per patient 
varied from 12 to 124 hours. Table 1 summarises patient 
characteristics and surgical procedures.

example of a patient measurement
Figure 1 shows the HR and RR trend during the first 
four postoperative days of a 60-year-old male patient 
with extensive cardiac and vascular comorbidities, after 
an open nephrectomy procedure for a suspected carci-
noma in situ. Three events can be recognised: (1) a 
sudden HR increase on Thursday evening; later diag-
nosed as atrial fibrillation, (2) an episode of bradycardia 
on Saturday afternoon and (3) mild tachycardia and a 
subtle increase in RR starting Sunday afternoon, caused 
by bleeding from an aortic branch artery. After coil 
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embolisation, the patient was readmitted to the ICU. 
This example illustrates agreement between HR and RR 
measurements recorded with the wireless sensor and 
the reference standard. Note that RR derived from the 
reference monitor was highly variable compared with 
RR from the wireless sensor (figure 1).

heart rate
Table 2 shows bias and precision (95% LoA) from 
comparisons between the wireless sensor and the 

reference standard. For analysis, 55 565 min (926 hours) 
of HR measurement pairs were available. The mean 
difference (bias) in HR was −1.1 beats/min (reference 
standard minus sensor) with a 95% LoA of −8.8 to 6.5 
beats/min. Applying a 15 min median filter resulted in 
a narrower 95% LoA of −5.7 beats/min to 3.2 beats/
min (3986 min available for analysis). Bland and Altman 
plots for the complete and filtered HR datasets are 
shown in figure 2A and B, respectively.

respiratory rate
The mean difference between the reference monitor 
and the wireless sensor was −2.3 breaths/min with wide 
levels of agreement (95% LoA: −15.8 to 11.2 breaths/
min). The agreement between both methods improved 
after applying a 15 min median filter, resulting in a 95% 
LoA of −10.8 to 5.9 breaths/min. Bland and Altman 
plots for the complete and filtered RR dataset are 
displayed in figure 3A, B. Most ‘high RR’ outliers orig-
inated from the reference monitor and were observed 
in the higher RR range. This is also shown in figure 1 
where RR measurements derived from the reference 
monitor showed a higher variation compared with RR 
derived from the wireless sensor. This high variation 
reduced after applying a median filter over 15 min.

Diagnostic accuracy of the wireless sensor
Because of the relatively long monitoring time per 
patient and the high-risk population, we were able to 
capture several instances of bradycardia, tachycardia, 
bradypnoea and tachypnoea. The incidence of brady-
cardia was rare, a HR below 50 was present in only 
2% of all HR measurements in the complete dataset. 

Table 1 Patient characteristics (N=25)

Characteristic Value

Male gender—n (%) 18 (72)

Age (years)—median (IQR) [range]
63.0 (57.8–71.5) 
[23.0–77.0]

Body mass index (BMI; kg/m2)*—median 
(IQR) [range]

26.2 (24.2–29.4) 
[17.2–40.2]

ASA score

   1–2 (%) 8 (32)

   3–4 (%) 17 (68)

Comorbidities

   Hypertension—n (%) 8 (32)

   Cardiovascular disease—n (%) 9 (36)

   COPD—n (%) 3 (12)

   Diabetes—n (%) 3 (12)

*BMI of one patient was missing.
ASA, American Society of Anesthesiologists physical status 
classification; COPD, chronic obstructive pulmonary disease.

Figure 1 Example of a patient that is being measured for 4 days continuously with the wireless sensor (red) and reference 
standard (blue). The upper panel shows heart rate in beats per minute, the lower shows respiratory rate in breaths per minute.
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Tachycardia, bradypnoea and tachypnoea occurred 
more frequently in 14%, 15% and 34% of cases, respec-
tively. Sensitivity, specificity, positive predictive value 
and negative predictive value are shown in table 3. After 
applying median filtering, sensitivity and specificity of 
all episodes with abnormal HR and RR improved.

The Clarke error grid analyses of the filtered datasets 
are shown in figure 4A, B; it shows that 100% of the HR 
measurements and 99% of RR measurements are within 
region A or B, respectively, within 20% of the reference 
measurement, or outside 20% of the reference but 
not leading to unnecessary treatment. None of the HR 
measurements were in region, B, C or E, which means 
that none of the measurements would lead to failure to 
treat, unnecessary treatment or confusion between brady-
cardia and tachycardia. Very few of the RR measurements 

(≤1%) were within region C, D or E, indicating a poten-
tially dangerous failure to apply the right treatment.

technical performance
HR and RR data were recorded for the majority of the 
time (94%), from 36 sensors in 33 patients (table 4). 
Nineteen (53%) wireless patient monitoring series had 
complete uninterrupted data, but in 17 patients there 
was data loss (ranging from 8 s data loss to 60 hours). 
Most found sensor failure to be caused by a sawtooth 
pattern of the battery level from inadvertent covering 
of the air opening for the zinc–air battery resulting in 
measurement gaps.

Figure 5 shows the survival analysis for ‘time to first 
failure’ in data transmission of the sensor. Using a 
threshold (maximum duration of a gap in the data) of 

Table 2 Bland and Altman analysis of wireless heart rate (HR) and respiratory rate (RR) versus reference monitor in 
postoperative patients

Parameter No of measurement pairs Bias SD Lower 95% LoA Upper 95% LoA

Complete dataset

  HR 55 565 −1.1 3.8 −8.8 6.5

  RR 56 674 −2.3 6.8 −15.8 11.2

Filtered dataset*

  HR 3986 −1.2 2.2 −5.7 3.2

  RR 4001 −2.4 4.2 −10.8 5.9

*Dataset after applying a median filter.
LoA, limits of agreement.

Figure 2 Bland and Altman plots for complete (A) and filtered (A) datasets for heart rate (HR) during admission at the surgical 
step-down unit with few (white) to many (dark red) measurement pairs.
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2 min, this analysis showed that 63% of the wireless sensor 
measurements in patients were performed without data 
loss greater than 2 min. A gap duration of 1 hour resulted 
in 79% of sensor measurements without data loss greater 
than an hour.

DIsCussIOn
We studied the performance of a wearable wireless sensor 
to measure HR and RR continuously in high-risk postop-
erative patients. The results show that this sensor (Health-
Patch MD) can accurately measure HR with a deviation 
within 10% of the reference standard. In contrast, the 
accuracy for RR was outside the limit range we considered 

acceptable. However, this finding may be due to frequent 
outliers and clinically implausible variability of RR values 
provided by the reference monitor. Median filtering of 
both signals over a 15 min period resulted in a reduc-
tion of the number of RR measurement pairs outside the 
acceptable LoA and an improvement of LoA. Overall, 
data loss was limited with HR and RR measurements 94% 
of the time available.

strengths
To the best of our knowledge, this is the first clinical study 
that investigated the reliability and accuracy of contin-
uous vital signs monitoring using a wearable wireless 
patch sensor for several days in postoperative surgical 

Figure 3 Bland and Altman plots for complete (A) and filtered (B) datasets for respiratory rate (RR) during admission at the 
surgical step-down unit with few (white) to many (dark red) measurement pairs.

Table 3 Diagnostic accuracy for bradypnoea, tachypnoea, bradycardia, tachycardia

True positives 
(%)

False positives 
(%)

True negatives 
(%)

False 
negatives (%)

Sensitivity 
(%)

Specificity 
(%) PPV (%) NPV (%)

Bradycardia

  Complete dataset 824 (71) 363 (1) 55 148 (99) 339 (1) 71 99 69 99

  Filtered dataset* 24 (72) 0 (0) 3953 (100) 9 (0) 73 100 100 100

Tachycardia

  Complete dataset 7111 (90) 1490 (3) 47 321 (97) 752 (2) 90 97 83 98

  Filtered dataset* 496 (98) 65 (2) 3413 (98) 12 (0) 98 98 88 100

Bradypnoea

  Complete dataset 2113 (24) 562 (1) 47 438 (99) 6561 (12) 24 99 79 88

  Filtered dataset* 134 (33) 8 (0) 3587 (100) 272 (7) 33 100 94 93

Tachypnoea

  Complete dataset 16 210 (84) 14 602 (39) 22 694 (61) 3168 (12) 84 61 53 88

  Filtered dataset* 1225 (94) 1029 (38) 1668 (62) 79 (5) 94 62 54 95

*Dataset after applying a median filter.
NPV, negative predictive value; PPV,  positive predictive value.
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patients at a SDU. Most studies were actually obtained 
under controlled laboratory conditions.25 27 33 These 
studies demonstrated the ability of the HealthPatch 
sensor to accurately measure HR and RR in adult partic-
ipants. Hernandez-Silveira et al24 reported a higher 
accuracy for HR and RR measurements with the Sensi-
umVitals digital patch in stable patients with comorbid 
conditions for a limited time period (2 hour) compared 
with our study. Other studies used intermittent nurse 
observations on the ward as the only reference. Weenk 
et al34 reported that both HR and RR of the HealthPatch 
were in agreement with nurse measurements, although 
wide LoA were found. Another study compared RR 
measurements of nurses with readings from the Sensium-
Vitals digital patch and found inadequate agreement.35 
Although these studies showed the feasibility of wireless 
technology in clinical practice, comparison with nurse 
readings cannot validate the continuous performance 
of the wireless devices. Moreover, these wireless moni-
toring devices are not intended to deliver ‘spot’ readings 
for EWS, that is, their use was evaluated for a purpose 
outside the intended scope of use. Consequently, a draw-
back of these study designs was the inability to validate 
continuous HR and RR measurements of new remote 

monitoring devices in between nurse observations. In 
the current study reference, HR and RR were measured 
continuously in a clinical setting.

limitations
The results of the present study confirm the difficulty of 
accurate continuous RR monitoring. However, we should 
also consider the limitations of the reference standard36 37; 
accuracy of thoracic impedance RR measurements can 
be influenced by many factors independent of breathing, 
such as patient movement, talking and coughing. Imped-
ance artefacts could explain the high number of false 
negatives (ie, missed bradypnoea), resulting in low 
sensitivity. Impedance technique is the current bedside 
routine standard for continuous measurement of HR 
and RR in most hospitals today and therefore clinically 
relevant. However, it cannot be considered a gold stan-
dard for RR measurement. While capnography is widely 
regarded as a ‘true’ gold standard for RR, it has several 
drawbacks for continuous unsupervised respiratory 
monitoring in spontaneously breathing patients, since its 
nasal cannula can be easily dislodged, leading to incom-
plete data and a high number of false-positive ‘apnoea’ 
alarms.38 Furthermore, the HealthPatch sensor was not 

Figure 4 Clark error grid analysis to quantify clinical accuracy of the heart rate (A) and respiration rate (B) measurements with 
the HealthPatch MD as compared with the reference monitor of the filtered dataset. Region (A) are points within 20% of the 
reference monitor, region (B) contains points outside 20% of the reference, but not leading to unnecessary treatment, region 
(C) are points leading to unnecessary treatment, region (D) indicates a potentially dangerous failure to detect bradycardia or 
tachycardia (A) or bradypnoea or tachypnoea (B), region (E) represents points where events are confused (eg, bradycardia with 
bradypnoea).

Table 4 Amount of data loss within all wireless sensor measurements

Time loss (hours:minutes:seconds)

Total loss (%)*
Mean 
loss

Minimum 
loss

Maximum 
loss

All wireless sensor measurements (n=36) 101:15:24 (5.9) 02:48:45 00:00:00 59:59:08
Only wireless sensor measurements with any data loss (n=17) 101:15:24 (15.5) 05:57:22 00:00:08 59:59:08

*Data loss is defined as time without data as percentage of the total time measured.
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designed to indicate RRs <5 breaths/min. Nonetheless, a 
progressive slowing of breathing rate may still be identi-
fied and used as indicator of vital instability, for example, 
to recognise life-threatening opioid-induced respiratory 
depression.

Filtering
Applying a median filter over 15 min data epochs 
improved reliability of HR and RR by removing outliers, 
for example, a transient very high RR caused by a move-
ment artefact. This is appropriate since these tran-
sient artefacts (ie, RR >45 breaths/min) are extremely 
unlikely from a physiological perspective. Although 
filtering effectively eliminates such artefacts, this comes 
at the expense of reducing the number of available 
measurements and the reduced ability to detect sudden 
changes in vital signs (eg, cardiac arrest). An alternative 
might be to use a ‘moving’ median filter to keep the 
update rate at once every minute or once every 2 min. 
On the other hand, improved eliminaton of outliers 
could result in a higher proportion of epochs with reli-
able HR and RR resulting in lower false-positive alarms. 
The latter is extremely important if this remote moni-
toring system is to be clinically deployed on the ward or 
at home. Furthermore, continuous remote monitoring 
on the ward with a reduced frequency (ie, once every 
15 min) still provides much more information regarding 
the patient’s vital signs than the current intermittent 
monitoring practice, where vital signs are usually only 
observed once every 8-hour nurse shift.

In case an alarm is generated by the remote moni-
toring system, a nurse can personally check on the 
patient and correct if the cause of the alarm was not 
related to a change in the patient’s medical condition. 
However, it must be realised that a large number of false 
alarms is very disruptive on the general ward, especially 
when there is a low nurse to patient ratio (eg, at night). 
This may even decrease patient safety by taking away 

valuable nursing time from patients who are in real 
need of attention. We suggest that eliminating outliers 
to improve reliability and eliminate false-positive alerts 
far outweighs the limited benefits of having ‘contin-
uous’ vital signs data streams.

‘Methods comparison’ methodology and continuous 
monitoring
The goal of this study was to determine whether the 
wireless sensor is able to reliably measure RR and HR 
over time in postoperative patients. Although Bland and 
Altman analyses can reliably indicate bias and precision 
of ‘spot measurements’, it does not inform about the 
‘trending ability’ of the monitoring system over time, 
while this is of ultimate importance to timely recognise 
abnormal vital sign patterns. This was also confirmed in 
the study of Churpek et al21 that showed the added value 
of using trends of vital signs for detecting clinical dete-
rioration on the wards. In our study, the example case 
in figure 1 clearly demonstrates the ability of the wire-
less sensor to detect important physiological changes of 
a deteriorating patient over time, even while the LoA 
for detecting bradypnoea as determined by Bland and 
Altman analyses were deemed not acceptable. There-
fore, we wish to emphasise that accurate trend measure-
ments (eg, the ability to detect deterioration over 
time) is more important than just one accurate single 
measurement at one specific point in time.

Continuous monitoring on the general ward is still 
unknown territory. Future studies should therefore 
focus on the performance of wireless monitoring in 
patients at the general ward, including validation 
during periods of mobilisation. Particular emphasis 
should be on the early detection of critical adverse 
events. However, the usability and patient perspective 
on remote monitoring are important to determine 
when creating the infrastructure of a complete remote 
monitoring solution.

COnClusIOn
Wireless continuous monitoring may have the potential 
to contribute to early recognition of physiological decline 
in high-risk patients. The tested wireless sensor was able 
to accurately record HR, but the accuracy of respiratory 
rate needs further optimisation to reduce the incidence 
of false alarms and allow timely recognition of altered 
breathing patterns.
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