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Quantifying genetic heterogeneity 
between continental populations 
for human height and body mass 
index
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Michael E. Goddard5,6, Peter M. Visscher1,9 & Jian Yang1,7,8,9*

Genome-wide association studies (GWAS) in samples of European ancestry have identified thousands 
of genetic variants associated with complex traits in humans. However, it remains largely unclear 
whether these associations can be used in non-European populations. Here, we seek to quantify 
the proportion of genetic variation for a complex trait shared between continental populations. 
We estimated the between-population correlation of genetic effects at all SNPs ( rg ) or genome-
wide significant SNPs ( rg(GWS) ) for height and body mass index (BMI) in samples of European 
(EUR; n = 49, 839 ) and African (AFR; n = 17, 426 ) ancestry. The r̂g between EUR and AFR was 0.75 
( s.e. = 0.035 ) for height and 0.68 ( s.e. = 0.062 ) for BMI, and the corresponding r̂g(GWS) was 0.82 
( s.e. = 0.030 ) for height and 0.87 ( s.e. = 0.064 ) for BMI, suggesting that a large proportion of GWAS 
findings discovered in Europeans are likely applicable to non-Europeans for height and BMI. There 
was no evidence that r̂g differs in SNP groups with different levels of between-population difference in 
allele frequency or linkage disequilibrium, which, however, can be due to the lack of power.

Most traits and common diseases in humans are complex because they are influenced by many genetic variants 
as well as environmental  factors1,2. Genome-wide association studies (GWASs) have discovered > 70,000 genetic 
variants associated with human complex traits and  diseases3,4. However, most GWASs have been heavily biased 
toward samples of European (EUR) ancestry (~ 79% of the GWAS participants are of EUR descent)5. Progress 
has been made in recent years in uncovering the genetic architecture of traits and diseases in a broader range 
of  populations6–11. Given the population genetic differentiation among worldwide  populations5,12–15, the extent 
to which the associations discovered in EUR populations can be used in non-EUR such as Africans (AFR) and 
Asians remains unclear. Genetic correlation ( rg ) is the correlation between the additive genetic values of two 
traits in a  population16. However, by definition, we cannot observe the trait in AFR and EUR in the same indi-
viduals. Therefore, rg is better defined by the correlation between the additive effects of causal variants in the 
two populations. rg can be less than 1 due to genotype by environment interactions if the two populations are in 
different environments. Unfortunately, not all the causal variants for complex traits are known so we estimate rg 
based on the correlation between the apparent effects of genetic markers such as SNPs. This can be estimated by 
using the genomic relationship matrix (GRM) among all the individuals or, if only summary data is available, the 
correlation between estimated SNP  effects13,17–19. rg estimated from SNPs can be less than that based on causal 
variants if the LD between causal variants and SNPs differs between the populations. Galinsky et al.14 estimated 
this effect using simulation and found it to be small but this conclusion may not apply to rare causal variants.
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Previous trans-ethnic genetic studies have shown that the estimates of rg at common SNPs (e.g., those with 
minor allele frequencies (MAF) > 0.01) between EUR and East Asian (EAS) populations are high for inflamma-
tory bowel diseases ( ̂rg = 0.76 with a standard error (s.e.) of 0.04 for Crohn’s disease and ̂rg = 0.79 with s.e. = 0.04 
for ulcerative colitis)20 and bipolar disorder ( ̂rg = 0.68)21 and modest for rheumatoid arthritis ( ̂rg = 0.46 with 
s.e. = 0.06)13 and major depressive disorder ( ̂rg = 0.33 with a 95% confidence interval (CI) of 0.27–0.39)22. If 
the between-population rg for a trait estimated from SNPs is not unity, then it is of interest to know whether the 
between-population genetic heterogeneity differs at SNPs with different levels of between-population difference 
in allele frequency (i.e., Wright’s fixation  index23, FST) or LD, and whether the between-population rg estimated 
from all common SNPs (MAF > 0.01) can be used to measure the correlation of genetic effects between popula-
tions at the genome-wide significant SNPs. Answers to these questions are important to inform the design of 
gene mapping  experiments24–28, the genetic risk prediction of complex  diseases5,29 in the future in non-EUR 
populations and the detection of signatures of natural selection that has resulted in genetic differentiation among 
worldwide populations. In this study, we focus on estimating the correlation of genetic effects at all SNPs (denoted 
by rg ) between continental populations using a bivariate GREML  analysis30 (treating the phenotypes in the two 
populations as different traits) for two model complex traits, i.e., height and body mass index (BMI). We inves-
tigate the influence of the between-population differences in allele frequencies or LD on the between-population 
genetic heterogeneity. To do this, we first used genome-wide SNP genotype data to estimate rg between AFR and 
EUR populations for height and BMI. We also estimated the correlation of genetic effects between continental 
populations at the genome-wide significant SNPs ( rg(GWS) ) identified from an EUR GWAS using the bivariate 
GREML  method30 or a summary level data-based  method31. We then examined whether the between-population 
genetic overlap is enriched (or depleted) at the SNPs with stronger between-population differentiation in allele 
frequency or LD.

Results
Genetic correlation ( rg ) between worldwide populations for height and BMI. We used GWAS 
data on 49,839 individuals of EUR ancestry from the UK Biobank (UKB) and 17,426 individuals of AFR ancestry 
from multiple publicly available datasets including the UKB (Supplementary Fig. 1; Methods). Note that we used 
only ~ 50 K EUR individuals from the UKB for the ease of computation. All the individuals were not related in 
a sense that the estimated pairwise genetic relatedness was < 0.05 within a population. The EUR genotype data 
were imputed by the UKB (version 3) using the Haplotype Reference Consortium (HRC) and UK10K imputation 
reference  panel32. We imputed the AFR data to the 1000 Genomes Project (1000G) reference panel (Methods). 
After quality control (QC), 1,018,256 HapMap3 SNPs with MAF > 0.01 in both the two data sets were retained 
for analysis (Methods). We first used the bivariate GREML  approach30 to estimate rg between populations as well 
as the SNP-based heritability ( h2SNP ) in each population for height and BMI. It has been shown in Galinsky et al.14 
that the estimate of rg from a between-population bivariate GREML analysis is equivalent to the correlation of 
genetic effect at all SNPs. The GRM used in our bivariate GREML analysis was computed using two different 
strategies: (1) SNP genotypes standardized using allele frequencies estimated from a combined sample of the 
two populations (denoted as GRM-average); (2) SNP genotypes standardized using allele frequencies estimated 
from each population specifically (denoted as GRM-specific; Methods). The r̂g based on GRM-specific was 0.75 
( s.e. = 0.035 ) for height and 0.68 ( s.e. = 0.062 ) for BMI, suggesting strong genetic overlap between EUR and 
AFR for both height and BMI (Table 1). The ̂rg between EUR and AFR for height was very similar to that between 
EUR and SAS estimated from the UKB data reported in Galinsky et al. (0.77 with s.e. = 0.26)14. We did not 
observe a substantial difference in r̂g between the analyses based on GRM-average (Supplementary Table 1) and 
GRM-specific (Table 1). The ĥ2SNP in EUR and AFR from the bivariate GREML analysis were 0.50 ( s.e. = 0.0077 ) 
and 0.39 ( s.e. = 0.024 ) for height, and 0.25 ( s.e. = 0.0080 ) and 0.22 ( s.e. = 0.025 ) for BMI, respectively (Table 1), 
highly consistent with those from the univariate GREML  analysis33 where the corresponding estimates were 0.50 
( s.e. = 0.0078 ) and 0.40 ( s.e. = 0.026 ) for height, and 0.25 ( s.e. = 0.0080 ) and 0.23 ( s.e. = 0.025 ) for BMI. The 
first 20 principal components (PCs) were fitted in the bivariate GREML analysis to control for potential effects 
due to population stratification within populations (Methods). The results were almost identical even without 
adjustment for PCs (Supplementary Table 2). It is of note that the height ĥ2SNP in EUR was significantly larger 
than that in AFR ( P = 1.3× 10−4 ), which is consistent with the result from a recent study in European-Ameri-
cans and African-Americans15, presumably because the causal variants in non-Europeans, especially those with 
MAF < 0.01, were less well tagged by the SNPs on the SNP arrays compared to those in Europeans. Such a dif-
ference was much smaller and not statistically significant for BMI ( P = 0.35 ), which can be partly explained 
by that the imperfect tagging is proportional to trait  heritability34. To further investigate the difference in SNP 
tagging between populations, we estimated h2SNP in AFR and EUR in a bivariate GREML analysis based on two 
subsets of HapMap3 SNPs stratified by whether a SNP is included in the Affymetrix Human Origins (AHO) 
array (m = 185 k) or not (m = 832 k). Unlike the result above, there was no significant difference in the estimated 

Table 1.  Estimated r̂g between EUR and AFR using HapMap3 SNPs based on the ancestry specific GRMs for 
height and BMI.

ĥ2
EUR

 (s.e.) ĥ2
AFR

 (s.e.) r̂g (s.e) P ( rg = 1)

Height 0.50 (0.0077) 0.39 (0.024) 0.75 (0.035) 6.8 ×  10–13

BMI 0.25 (0.0080) 0.22 (0.025) 0.68 (0.062) 2.1 ×  10–7
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height variance explained by the Human Origins SNPs between EUR and AFR ( ̂h2SNP(AHO) = 0.14 with s.e. = 0.012 
in EUR and ĥ2SNP(AHO) = 0.13 with s.e. = 0.031 in AFR; Pdifference = 0.77; Supplementary Table 3), suggesting that 
the observed difference in the ĥ2SNP between EUR and AFR using the ~ 1 million HapMap3 is possibly attribut-
able to biases in ascertainment of SNPs towards European populations. We further estimated rg between EUR 
and EAS for BMI by a summary-data-based rg  approach13 using summary statistics from the GIANT consortium 
( n = 253, 288)35 and the Biobank Japan project (BBJ, n = 158, 284)10 (note that the GWAS data with compara-
ble sample size for EAS and the BBJ summary-level data for height were not available to us). The ̂rg between EUR 
and EAS was 0.80 ( s.e. = 0.037 ) for BMI, which was also significantly different from 1 ( P = 8.36× 10−8 ), in line 
with the estimate (0.75, s.e. = 0.023 ) from Martin et al.5 based on GWAS summary data from the UKB and BBJ.

Correlation of SNP effects between populations at the top associated SNPs. We have quantified 
above the between-population rg for height and BMI using all HapMap3 SNPs with MAF > 0.01. The estimates 
were high but statistically significantly smaller than 1 (Table 1), suggesting there is a between-population genetic 
heterogeneity for both traits. We know from a previous study that r̂g estimated from all SNPs is close to the 
estimated causal effect correlation ( ρ̂b ) between EUR and  SAS14. We then sought to ask whether the estimated rg 
from all SNPs is consistent with that estimated at genome-wide significant SNPs identified in EUR (i.e., rg(GWS)) . 
We estimated rg(GWS) between EUR and AFR using the recently developed  method31 that can estimate SNP 
effect correlation using summary data accounting for errors in the estimated SNP effects (Methods). We used 
the trait-associated SNPs identified in previous GWAS meta-analyses conducted by the GIANT  consortium35,36 
(with SNP effects re-estimated in our AFR and EUR samples to avoid biases due to the winner’s curse; see 
“Methods”). There were 538 and 57 nearly independent SNPs for height and BMI respectively at P < 5.0× 10−8 
selected from clumping analyses (LD r2 threshold = 0.01 and window size = 1 Mb) of the GIANT summary data 
(Methods)37. To avoid potential bias in estimating rg(GWS) due to remaining LD among these sentinel SNPs, we 
did an additional round of clumping using a window size of 10 Mb (Methods) and obtained 531 and 56 SNPs for 
height and BMI respectively. We call these the sentinel SNPs hereafter.

We first estimated rg(GWS) between our EUR sample and GIANT as a “negative control”; the estimate was 0.98 
( s.e. = 0.004 5) for height and 0.99 ( s.e. = 0.0069 ) for BMI, suggesting no significant differences in SNP effects 
between the GIANT (a meta-analysis of samples of EUR ancestry) and our sample of EUR participants from the 
UKB (Fig. 1). We then estimated rg(GWS) between EUR and AFR (SNP effects re-estimated in our samples). We 
found an estimate of 0.81 ( s.e. = 0.032 ) for height (Fig. 1a) and of 0.94 ( s.e. = 0.049 ) for BMI (Fig. 1b). Since 
individual-level data were available in our EUR and AFR samples, we performed a bivariate GREML analysis 
to estimate rg(GWS) only using the sentinel SNPs (Methods); the estimate was 0.82 ( s.e. = 0.030 ) for height and 
0.87 ( s.e. = 0.064 ) for BMI, similar to the corresponding estimates using the summary data above. Moreover, 
summary data-based r̂g(GWS) between EUR (SNP effects re-estimated in this study) and EAS (SNP effects from 
the BBJ  data38) was 0.90 ( s.e. = 0.043 ) for BMI. All these results suggest that a large proportion of GWAS findings 
discovered in Europeans are likely replicable in non-Europeans for the two traits (see below for more discussion). 
In addition, r̂g estimated using all SNPs was largely consistent with r̂g(GWS) for height, but some differences have 
been observed for BMI (see below for discussion).

Genetic correlation estimated at SNPs stratified by population difference in allele frequency 
or LD. If there is an effect of the between-population differences in allele frequencies on the between-popula-
tion genetic heterogeneity for a trait, we hypothesised that the estimate of rg at SNPs with higher FST is different 

Figure 1.  Estimated genetic effect correlation between AFR and EUR for height (a) and BMI (b) at genome-
wide significant SNPs. The near-independent trait-associated SNPs were discovered in GIANT with their effects 
re-estimated in our EUR ( n = 456, 422 ) and AFR ( n = 23, 355 ) data. The blue dots show a comparison of SNP 
effects between EUR and AFR and the grey ones show the comparison within EUR (i.e., GIANT vs. EUR-UKB).
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from that at SNPs with lower FST. To test this, we first calculated the FST values of the HapMap3 SNPs between 
EUR and AFR. To avoid difference in within-population allele frequency or LD between the two FST groups, we 
divided the SNPs into a large number of bins according to their allele frequencies and LD scores in each popula-
tion and then stratified the SNPs into two groups with equal number by their FST values in each MAF-LD bin 
(Methods). We show that there was no difference in allele frequency or LD score between the two FST groups 
after applying this SNP-binning strategy (Supplementary Fig.  2). We performed a two-component bivariate 
GREML analysis (based on GRM-specific) to estimate rg in each FST group and found no significant difference 
in r̂g between the two FST groups for both traits although the standard errors of r̂g were large (Table 2). Even if 
our previous study has shown that height increasing alleles are more frequent in EUR than  AFR39, which might 
explain the mean difference in height phenotype between EUR and AFR, the result reported here suggests that 
the population differentiation of frequencies of the height-associated SNPs does not seem to affect the genetic 
correlation between populations. Nevertheless, it is possible that there is a difference in rg between the two FST 
groups but the power of this study is not large enough to detect it.

We applied the same SNP-binning strategy to test whether the estimate of genetic correlation differs when 
the SNPs are ascertained by difference in LD between populations (Supplementary Fig. 3). We used a metric 
called LDCV (i.e., coefficient of variation of the LD scores across populations) proposed in a previous  study39 
to measure the differentiation of LD-score between EUR and AFR for each SNP (Methods). We stratified the 
SNPs into two LDCV groups with no difference in MAF or LD score between the groups in each individual 
population using the approach described above (Methods; Supplementary Fig. 4) and estimated rg by a two-
component bivariate GREML analysis. We found no significant difference in the estimate of r̂g between the two 
LDCV groups (Table 2), which does not support a significant role of LD difference in the between-population 
genetic heterogeneity at common SNPs but also could be due to the lack of power if the difference in rg between 
the two LDCV groups is very small.

Discussion
In this study we showed a substantial genetic overlap at HapMap3 SNPs (MAF > 0.01) for height and BMI between 
EUR and AFR ( ̂rg = 0.75 with s.e. = 0.035 for height and 0.68 with s.e. = 0.062 for BMI; Table 1) from a cross-
population bivariate GREML analysis of individual-level genotype  data30 and between EUR and EAS ( ̂rg = 0.80 
with s.e. = 0.037 for BMI) by a summary-data-based  approach13. All these estimates were significantly smaller 
than 1 (Table 1), suggesting some genetic heterogeneity between populations for both traits. We then used the 
recently developed rb  approach31 that is able to estimate the correlation of SNP effects between populations 
accounting for estimation errors in estimated SNP effects (Fig. 1), and confirmed the estimates by a bivariate 
GREML analysis using individual-level data. The bivariate GREML estimate of rg at the sentinel SNPs between 
EUR and AFR was marginally larger than the estimate for height ( ̂rg(GWS) = 0.82 with s.e. = 0.030 vs. r̂g = 0.75 
with s.e. = 0.035 ; P = 0.13 ), but the difference was larger for BMI ( ̂rg(GWS) = 0.87 with s.e. = 0.064 vs. r̂g = 0.68 
with s.e. = 0.062 ; P = 0.032 ), which may due to a difference in genetic architecture between the two traits and/
or the relatively small number of sentinel SNPs used for BMI. The estimated strong correlation in SNP effect 
between populations is in line with the finding from previous studies that GWAS results from EUR population 
are largely consistent with those from non-EUR populations for a certain number of complex  traits17,40–45. How-
ever, the extent to which the EUR-based GWAS findings can be replicated in non-EUR populations can be trait-
dependent5,22. To show this, we estimated r̂g between UKB-EUR (n =  ~ 450 k) and UKB-AFR (n =  ~ 6,300) for 42 
additional quantitative traits using  Popcorn13, a summary data-based approach for estimating cross-population rg . 
The median of the r̂g across the 42 traits was 0.94, consistent with our conclusion above (Supplementary Fig. 5). 
We also attempted to quantify the effect of population differentiation in SNP allele frequencies on the between-
population genetic heterogeneity by comparing r̂g estimated from SNPs with higher FST to that estimated from 
SNPs with lower FST but found no significant difference in r̂g between the two FST groups (Table 2). In addition, it 
should be noted that differences in SNP effects between populations could reflect the differences in causal effects 
and/or LD between SNPs and causal variants. Our estimated genetic effect correlation at all SNPs between EUR 
and AFR for height ( ̂rg = 0.75 with s.e. = 0.035 ; Table 1) was largely consistent with the causal effect correlation 
between EUR and SAS ( ρ̂b = 0.78 , s.e. = 0.26 ) estimated in a previous  study14. Although the standard error of ρ̂b 
is large, the causal effect correlation between EUR and AFR is similar to that between EUR and SAS. Then, the 
results seem to imply that, on average, the extent to which the difference in SNP effects between populations due 
to the difference in LD is unlikely to be large for common SNPs. This implication is consistent with our LDCV 
partitioning analysis which showed no significant difference in r̂g between common SNPs with higher and lower 
LDCV (Table 2). However, it should be noted that LDCV may differ from the between-population difference in 
LD between SNPs and causal variants.

Table 2.  Difference of the estimated r̂g for EUR-AFR between SNP sets stratified by allele frequency- and 
LD-matched FST (and LDCV) for height and BMI respectively. l and h indicate the SNP group with lower FST 
(or LDCV) and higher FST (or LDCV), respectively.

FST stratified LDCV stratified

r̂g−l(s.e.) r̂g−h(s.e.) Pdifference r̂g−l(s.e.) r̂g−h(s.e.) Pdifference

Height 0.84 (0.15) 0.68 (0.099) 0.509 0.92 (0.12) 0.59 (0.087) 0.076

BMI 0.73 (0.19) 0.62 (0.23) 0.785 0.82 (0.29) 0.63 (0.15) 0.640
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In summary, our study confirmed a large estimate of genetic correlation at common SNPs between world-
wide populations for  height14 and showed a similar level of between-population genetic correlation for BMI. We 
observed that the estimate of SNP effect correlation at the genome-wide significant SNPs was only marginally 
larger than the estimate of genetic correlation using all SNPs for height but the difference was more pronounced 
for BMI. We caution that the difference between r̂g(GWS) and r̂g needs to be quantified in higher precision and the 
extent to which the between-population genetic heterogeneity for a trait due to differences in allele frequency 
and LD need to be tested in data sets with larger sample sizes in the future. Moreover, an observed between-
population genetic heterogeneity for a complex trait could also be due to the interactions between genetic 
(G) and environmental (E) factors. The genotype-by-environment interaction component would be partially 
eliminated in rg estimation in the study design where two populations differ in genetic ancestry but live in the 
same environment conditions. We acknowledge that all the conclusions are restricted to common SNPs. The 
between-population genetic heterogeneity for complex traits at rare variants (or the variants that are rare in one 
population but common in another) remains to be explored with whole-genome sequence data in large  samples46. 
Nevertheless, all our results are consistent with the conclusion that most GWAS findings at common SNPs from 
EUR populations are largely applicable to non-EUR for height and BMI for variant/gene discovery purposes. 
However, cautions are required for phenotype (or disease risk) prediction given the limited accuracy of genetic 
prediction using EUR-based GWAS results in non-EUR populations. As discussed in recent  studies5,29, a number 
of genetic and non-genetic factors affect the accuracy of using predictors constructed in EUR populations in 
non-EUR populations, such as the differences in genetic architecture, allele frequency and LD structure between 
EUR and non-EUR populations, and the differences in environmental exposures and definitions of clinical phe-
notypes. By modelling the relative accuracy (RA, relative to the accuracy in populations of same ancestry as the 
discovery population), Wang et al. quantified how much proportion of the loss of RA using EUR-based PRS in 
AFR can be explained by the differences in allele frequency and  LD47. They found the quantities varied between 
traits, e.g., ~ 65% for height and ~ 84% for T2D, reflecting differences in genetic architecture between traits (e.g., 
heritability, polygenicity and cross-ancestry effect size correlation)47. One of the limitations of our study is that 
African Americans have substantial proportions of European ancestry, and our data do not cover the full diversity 
of the European and non-European populations. We focus only on the individuals that show similar ancestries 
with the individuals of European and African ancestries, respectively, in the 1000G (Supplementary Fig. 1). To 
examine whether the QC step of removing PC outliers is effective for removing AFR individuals with high EUR 
ancestry, we estimated the percentage of European ancestry using ADMIXTURE in our AFR data before QC, 
AFR after QC (outlier removal), and unrelated AFR after QC. The results show that our QC steps have effectively 
removed AFR individuals with high proportions of EUR ancestry (Supplementary Fig. 6; corresponding to the 
3 panels in Supplementary Fig. 1). A further QC criterion based on the estimated EUR ancestry (e.g., > 0.1) only 
removed 60 AFR individuals, which did not lead to notable differences in ĥ2SNP and r̂g (e.g., height ĥ2SNP = 0.39 
(s.e. = 0.024) in AFR and r̂g between EUR and AFR = 0.75 (s.e. = 0.035) using the original QC compared to 
ĥ2SNP = 0.39 (s.e. = 0.024) in AFR and r̂g = 0.75 (s.e. = 0.035) with the new QC step for height; Supplementary 
Table 4). To further demonstrate the effect of the admixture on the ĥ2SNP and r̂g , we divided AFR (corresponding 
to panel 3 in Supplementary Fig. 6) into two groups with higher and lower proportions of European ancestry, 
respectively (n = 8,847 for each group). The EUR data used in bivariate GREML analysis were two random sets 
(n = 50,000 for each) from UKB-EUR. We found that compared to the original r̂g between EUR and AFR ( ̂rg = 
0.75 with s.e. = 0.035 for height and r̂g = 0.68 with s.e. = 0.062 for BMI), the estimated r̂g appeared to be lower 
using the AFR samples that have lower proportion of European ancestry ( ̂rg = 0.69 with s.e. = 0.060 for height 
and r̂g = 0.53 with s.e. = 0.084 for BMI), and higher using AFR samples with higher proportion of European 
ancestry ( ̂rg = 0.78 with s.e. 0.058 for height and r̂g = 0.74 with s.e. = 0.12 for BMI; Supplementary Table 5). 
However, none of the difference were statistically significant, which could be due to the limited power of our data.

Methods
Data. GWAS data of 456,422 individuals of European ancestry were from the UKB (EUR-UKB). GWAS 
data of 24,077 individuals of African ancestry were from the UKB (AFR-UKB, n = 8230 ), the Women’s Health 
Initiative (WHI; n = 7480 ), and the National Heart, Lung, and Blood Institute’s Candidate Gene Association 
Resource (CARe) including ARIC, JHS, CARDIA, CFS and MESA ( n = 8367)48. QC of the UKB SNP geno-
types had been conducted by the UKB QC  team32 and the EUR-UKB data had been imputed to the HRC and 
UK10K reference panel. For the EUR-UKB imputed data (hard-call genotypes), we filtered out SNPs with miss-
ing genotype rate > 0.05, MAF < 0.01, imputation INFO score < 0.03 or P-value for HWE test <  10–6. We cleaned 
the WHI and CARe (AFR-WC) genotype data following the protocol provided by the dbGaP data submitters. 
We further removed SNPs with SNP call rate < 0.95, MAF < 0.01 or Hardy–Weinberg Equilibrium (HWE) test 
P < 0.001, and removed individuals with sample call rate < 0.9. We imputed the AFR-UKB and AFR-WC data to 
the 1000G using  IMPUTE249, and applied the same filtering thresholds as above to the imputed data. We then 
combined the cleaned AFR-UKB and AFR-WC as one AFR data set. Since the AFR samples are ancestrally more 
heterogeneous than the EUR-UKB sample, we removed the AFR individuals whose PC1 or PC2 were more than 
6 s.d. away from the mean of the AFR in 1000G in AFR-WC and AFR-UKB separately (the PC-based QC of 
the EUR-UKB sample was described in a previous  study50). Only the SNPs in common with those in HapMap3 
SNPs ( m =∼ 1, 018, 000 ) were retained for analysis. We used GCTA 51 to construct the GRM in each population 
based on all the HapMap3 SNPs and removed one of each pair of individuals with estimated genetic related-
ness > 0.05 in each population (retained 348,501 and 17,693 unrelated individuals in the EUR-UKB and AFR, 
respectively). These unrelated AFR individuals were a subset of the AFR samples after PC-based QC. The first 
20 principal components (PCs) were derived from the GRM in each population. Phenotypes in each population 
were adjusted for covariates (i.e., age in AFR-WC, and age and assessment centre in EUR-UKB and AFR-UKB) 
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in each gender group of each cohort and inverse-normal transformed after removing outliers that were 5 s.d. 
from the mean for height and 7 s.d. from the mean for BMI (because the phenotype distribution tends to be right 
skewed for BMI). We choose these two traits because they are two of the most commonly studied quantitative 
traits and we only have access to the individual-level data of only these two traits in WHI-AFR.

Estimation of h2
SNP

 and rg using all HapMap3 SNPs. To estimate h2SNP and cross-population rg for 
height and BMI, we conducted a bivariate GREML analysis using all HapMap3 SNPs in the unrelated individuals 
(genetic relatedness < 0.05). For the ease of computation, only 50,000 EUR individuals randomly sampled from 
the EUR-UKB data were included in the GREML analysis (all the AFR unrelated individuals were included in 
the analysis). To build the GRM for the bivariate GRM analysis (denoted by GRM-specific), the SNP genotypes 
were standardized based on the allele frequencies in a specific population (i.e., (x−2p)√

2p(1−p)
 with x being coded as 0, 

1 or 2 and p being the allele frequency in EUR, for example) using GCTA (–sub-popu option)51. The bivariate 
GREML analyses were then performed for height and BMI using the GRM-specific in a combined sample of 
EUR and AFR. The first 20 PCs generated from the GRM-specific were fitted as covariates in the bivariate 
GREML to control for population stratification. Only the samples that have both the genotype and phenotype 
data were included in the bivariate GREML analysis (n = 49,839 for EUR and n = 17,426 for AFR). We also per-
formed the bivariate GREML analyses based on GRMs (and PCs thereof) for which the SNP genotypes were 
standardized using the allele frequencies computed from the combined sample of EUR and AFR. The bivariate 
GREML analyses were also performed to estimate rg(GWS) using the GRM-specific built from the sentinel SNPs 
for both traits. To estimate rg between UKB-EUR and UKB-AFR for the additional 42 quantitative traits, we did 
GWAS for ~ 6300 individuals in UKB-AFR across traits using fastGWA 52. The GWAS summary data for UKB-
EUR (n =  ~ 450 k) have been published in a previous  study52 and are publicly available (see URLs).

To compare the difference in r̂g between SNP groups with higher and lower FST , we computed FST between 
EUR and AFR for each SNP in GCTA (–fst option)51. We first split the SNPs into 125 bins according to their 
MAF in EUR and 125 bins based on the frequencies of the same alleles in AFR (125*125 frequency bins in total). 
We next split each frequency bin into 4 LD bins according to LD scores of the  SNPs34 in EUR and 4 bins based 
on LD scores in AFR. We thereby obtained 250,000 (125*125*4*4) bins in total. We then equally divided the 
SNPs in each bin ( m = 4 in most bins) into two groups according to the sorted FST values. There were a small 
number of bins with only 3 SNPs. For those bins, we randomly allocated 1 or 2 SNPs to the high-FST group and 
the remaining SNPs to the low-FST group. Finally, we combined the SNPs across all the bins with high and low 
FST respectively and computed the GRM-specific for each of the two SNP groups, and fitted the two GRMs 
jointly in a bivariate GREML analysis to estimate the between-population rg and the population-specific h2SNP in 
each FST group for height and BMI. The first 20 PCs generated from the GRM-specific were fitted as covariates 
in the GREML analysis. The same strategy was applied to the LDCV stratification based on 250,000 bins includ-
ing 20*20 frequency bins and 25*25 LD bins. The method to compute LDCV has been described  elsewhere39.

Testing the difference in r̂g between SNP sets. We tested the difference in r̂g between two SNP sets 
(e.g., the two FST-stratified SNP sets described above). We computed the P-value for the difference using a χ2 
statistic with one degree of freedom, where χ2 = (r̂g1−r̂g2)

2

var(r̂g1−r̂g2)
 with r̂g1 and r̂g2 representing the estimates of the 

two SNP sets respectively, and var
(

r̂g1 − r̂g2
)

= var
(

r̂g1
)

+ var
(

r̂g2
)

− 2cov
(

r̂g1, r̂g2
)

 . In the bivariate GREML 
analysis, rg is defined as rg =

Cg(p1,p2)√
Vg(p1)

Vg(p2)
 where Cg(p1,p2) is genetic covariance between populations; Vg(p1) (or 

Vg(p2) ) is the genetic variance in a population. The sampling variance of the estimate of rg in a SNP set is

The sampling covariance of the estimates of rg between two SNP sets is

where the subscripts s1 (or s2 ) represents a SNP set. In practice, the parameters in the equations above can be 
replaced by their estimates to compute the estimates of var

(

r̂g
)

 and cov
(

r̂g1, r̂g2
)

.

var
�

r̂g
�

= r2g





var

�
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�

4V2

g(p1)

+
var

�
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�
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�
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cov
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Ĉg(p1p2s1), Ĉg(p1p2s2)
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Estimation of SNP effect correlation between populations from GWAS summary data. We 
obtained the trait-associated SNPs for height and BMI from the GIANT meta-analyses35,36. We used the rb 
method developed by Qi et al.31 to estimate the correlation of SNP effects between populations at the top associ-
ated SNPs accounting for sampling errors in the estimated SNP effects. To avoid bias due to ‘winner’s curse’, we 
re-estimated the SNP effects in our samples (independent from the samples used in the GIANT meta-analysis) 
using fastGWA 52. Since fastGWA controls for  relatedness52, we used all the samples passed QC (including close 
relatives) for the GWAS analysis ( n = 456, 422 for EUR and 23, 355 for AFR after PC-based QC). The pheno-
types were cleaned and normalized using the same strategy described above. The first 20 PCs were included as 
covariates in the fastGWA analysis to control for population stratification. To get a set of independent SNPs 
associated with a trait, we did a LD-based clumping analysis in  PLINK37 (threshold P-value = 5× 10−8 , window 
size = 1 Mb and LD r2 threshold = 0.01 ). After the clumping analysis, there were 538 and 57 near-independent 
SNPs associated with height and BMI respectively, which we call sentinel SNPs. To avoid potential bias in ̂rg(GWS) 
due to remaining LD between the sentinel SNPs, we performed an additional round of the clumping analysis 
with a much larger window size (i.e., 10 Mb) and obtained 531 and 56 sentinel SNPs for height and BMI respec-
tively. The sampling variance of r̂g(GWS) was computed by a Jackknife resampling  process31.

URLs. GCTA: http://cnsge nomic s.com/softw are/gcta
PLINK: https ://www.cog-genom ics.org/plink 2
Popcorn: https ://githu b.com/briel in/Popco rn
GWAS summary data for height and BMI in GIANT: https ://www.broad insti tute.org/colla borat ion/giant /

index .php/GIANT _conso rtium _data_files 
GWAS summary data for BMI in Biobank Japan in NBDC Human Database:
https ://human dbs.biosc ience dbc.jp/en/
UKB consortium: http://www.ukbio bank.ac.uk/
UKB-EUR GWAS summary data: http://fastg wa.info/ukbim p/pheno types 
Affymetrix Human Origins array: http://www.affym etrix .com/suppo rt/techn ical/bypro duct.affx?produ 

ct=Axiom _GW_HuOri gin
ADMIXTURE: http://dalex ander .githu b.io/admix ture/publi catio ns.html

Data availability
See URLs and acknowledgements for GWAS summary data and individual data respectively.
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