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SUMMARY

Induction of protective vaccine responses, governed by the successful generation of antigen-

specific anti-bodies and long-lived memory T cells, is increasingly impaired with age. Regulation 

of the T cell proteome by a dynamic network of microRNAs is crucial to T cell responses. Here, 

we show that activation-induced upregulation of miR-21 biases the transcrip-tome of 

differentiating T cells away from memory T cells and toward inflammatory effector T cells. Such a 

transcriptome bias is also characteristic of T cell responses in older individuals who have increased 

miR-21 expression and is reversed by antagonizing miR-21. miR-21 targets negative feedback 

circuits in several signaling pathways. The concerted, sustained activity of these signaling path-

ways in miR-21high T cells disfavors the induction of transcription factor networks involved in 

memory cell differentiation. Our data suggest that curbing miR-21 upregulation or activity in older 

individuals may improve their ability to mount effective vaccine responses.
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Graphical Abstract

In Brief

A hallmark of the aging immune system is its failure to induce long-lived memory. Kim et al. 

report that increased expression of miR-21 in naive T cells from older individuals sustains 

signaling in the MAPK and AKT-mTORC pathways, disfavoring induction of transcription factor 

networks involved in memory cell generation.

INTRODUCTION

Vaccination is one of the most successful and safest interventions in modern medicine and 

has facilitated extinction of the smallpox virus and nearly complete eradication of some 

other devastating viruses, such as the poliomyelitis virus. Although vaccination programs 

have been extremely successful in children, they have been less beneficial in the older 

population. Infections, especially those of the respiratory tract by influenza or respiratory 

syncytial viruses as well as pneumococci or pertussis, and their complications are a frequent 

cause of morbidity and mortality in individuals older than 65 years (Beard et al., 2016). 

Because age demographics are rapidly changing worldwide, immune defects associated with 

increasing age have become a societal challenge, and the need for effective adult vaccination 

programs is now more urgent than ever.

The failure in older individuals to generate appropriate adaptive immune responses cannot 

be attributed to a single major defect (Goronzy and Weyand, 2017; Nikolich-Zugich, 2018). 

Contrary to earlier predictions, the size and diversity of the human CD4+ T cell repertoire in 

older individuals is sufficient to respond to a diverse set of antigenic peptides (Qi et al., 

2014). The CD8+ T cell compartment is more affected by age, both in size and composition 

as well as in function and chromatin structure (Briceño et al., 2016; Czesnikiewicz-Guzik et 

al., 2008; Moskowitz et al., 2017; Nikolich-Zugich et al., 2012). Defects in T cell activation 

because of reduced dendritic cell function or T cell receptor (TCR) signaling have been 
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described (Li et al., 2012; Montgomery and Shaw, 2015) and may be overcome by 

adjuvanted vaccines or increasing the antigen dose (DiazGranados et al., 2014). The major T 

cell defect, however, appears to lie in cell differentiation and generation of T memory cells 

(Goronzy and Weyand, 2017). CD4+ T cell responses of older individuals are biased toward 

the generation of inflammatory effector T cells that undergo attrition, and long-lived 

memory cells fail to develop (Fang et al., 2016; Qi et al., 2016).

T cell activation and differentiation into effector and memory T cells is regulated by a 

network of microRNAs shaping the T cell proteome (Dooley et al., 2013; Podshivalova and 

Salomon, 2013). Across differentiation states, the expression levels of individual 

microRNAs vary dramatically. Global microRNA deficiency, induced by deletion of 

microRNA-processing molecules, affects the proliferative expansion and effector function of 

T cells after activation. Elegant reconstitution experiments have identified microRNAs that 

account for these defects, such as miR-17 92, controlling proliferation, or miR-181a, setting 

the TCR activation threshold (Li et al., 2007). Specific microRNAs, including miR-17 ~92, 

have also been linked to polarization into effector lineages, frequently by directly targeting 

lineage-determining transcription factors (Baumjohann and Ansel, 2013). The miR-17 ~92 

cluster is also important for the transition of CD8+ T cells from effector to memory 

phenotypes. miR-17 ~92 is induced in CD8+ T cells during the expansion phase following a 

viral infection but is downregulated during the contraction phase, enabling memory CD8+ T 

cell formation, presumably by repressing activation of the AKT-mammalian target of 

rapamycin complex (mTORC) pathway (Wu et al., 2012). Although these studies were done 

in the mouse, the miR-17 ~92 cluster is conserved throughout mammalian species, 

suggesting that these findings are relevant for humans (Concepcion et al., 2012).

We and others have hypothesized that changes in microRNA expression with age account for 

the functional defects seen in Tcell responses in older individuals (Teteloshvili et al., 2015). 

Here we show that miR-21 is dynamically regulated after T cell activation. By controlling 

the sustained activation of the mitogen-activated protein kinase (MAPK) and AKT-mTORC 

signaling pathways, increased expression of miR-21 accounts for the preferential generation 

of inflammatory effector cells seen in T cell responses of older individuals while disfavoring 

the induction of transcriptional signatures characteristic of memory cells.

RESULTS

Regulation of miR-21 Expression after T Cell Activation Is Age-Dependent

miR-21 is dynamically regulated in T cell responses (Smigielska-Czepiel et al., 2013); upon 

activation with beads coated with anti-CD3 and anti-CD28 antibodies in vitro, miR-21 

expression in naive CD4+ T cells was robustly induced by more than 20-fold (Figure S1A). 

When assessing the influence of age, we found a 2-fold increase in miR-21 expression in 

naive CD4+ T cells from older (65–85 years old) healthy adults compared with young (20–

35 years old) individuals, with higher variance in the older population. This difference was 

maintained on day 3 following in vitro activation but was no longer seen on day 5, when 

miR-21 expression plateaued (Figure 1A).
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miR-21 Induction Promotes Effector T Cell Differentiation

To examine whether the expression level of miR-21 influences T cell differentiation, we 

antagonized miR-21 by using a lentiviral transduction system. Naive CD4+ T cells were 

activated with beads coated with anti-CD3 and anti-CD28 antibodies and transduced with a 

lentiviral vector expressing scrambled control RNA (ctrl) or anti-sense miR-21 (anti-

miR-21) and a GFP reporter. Transduced cells were identified by GFP reporter activity. 

Transduction with the anti-miR-21 construct lowered the expression of miR-21 about 2-fold, 

approximately resembling the age-associated difference (Figure S1B). Partially 

counteracting the increase in miR-21 expression did not change CD4+ T cell proliferation, as 

determined by Cell Trace Violet (CTV) dilution (Figure 1B), nor T cell apoptosis or 

recovery (Figures S1C and S1D).

We next utilized RNA sequencing (RNA-seq) to compare the gene expression profiles of 

control and anti-miR-21-transduced (miR-21low) CD4+ T cells activated for 5 days under 

non-polarizing conditions. miR-21low cells had a distinct transcriptional signature, as shown 

by the shift in PC2 (accounting for 20% of the variance) in a principal-component analysis 

(PCA) (Figure 1C). No difference was seen in PC1 that reflected inter-individual 

differences. We identified 324 genes that were significantly upregulated and 304 genes that 

were downregulated in miR-21low cells compared with control cells (adjusted p < 0.1). 

Cumulative distribution frequency plots showed that bioinformatically predicted miR-21 

targets were upregulated with reduced miR-21 expression (p < 0.0001; Figure 1D).

Unopposed upregulation of miR-21 favored the induction of inflammatory and cytotoxic 

effector genes, including IL2RA, GZMB, CCL3, and CCL4 (Figure 1E). These control-

treated cells also had increased expression of inhibitory molecules, including LAG3, 

DUSP5, and ENTPD1 (CD39), the latter recently described as a hallmark of short-lived 

effector T cells in humans (Fang et al., 2016). In contrast, reducing miR-21 expression 

during activation favored the transcription of genes related to memory T cell formation, such 

as IL7R, BTLA, CD44, and CXCR3, and genes in the WNT signaling pathway, which is 

associated with self-renewal, such as CTNNB1 (β-catenin), LEF1, and SOX4. This bias was 

also reflected in transcription factor profiles; control cells expressed higher levels of 

transcription factors associated with effector differentiation, including PRDM1 (BLIMP1), 

JUNB, RUNX3, BHLHE40, and EGR1, whereas miR-21low cells had increased expression 

of BCL6, TCF7, and LEF1, involved in memory T cell differentiation (Kaech and Cui, 

2012). None of these upregulated, memory cell-related genes was a predicted target of 

miR-21, implying that miR-21 affected pathways up-stream of their transcription. A global 

comparison using gene set enrichment analysis (GSEA) of the RNA-seq data supported this 

candidate gene-derived interpretation. Attenuating the increase in miR-21 expression 

favored the induction of a gene expression pattern that is characteristic of murine memory 

CD8+ T cells (Kaech et al., 2002). In contrast, gene expression in activated CD4+ T cells 

with unopposed miR-21 expression was more closely related to the transcriptome of 

terminal effector CD8+ T cells (Sarkar et al., 2008; Figure 1F).
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Functional Consequences of Increased miR-21 Expression

We next explored whether the effect of miR-21 expression on the transcriptome is 

functionally important and examined naive CD4+ T cells from young and older individuals 

after transduction with anti-miR-21 and anti-CD3/CD28-mediated activation (Figure 2). 

Anti-miR-21-transduced CD4+ T cells exhibited higher expression of the interleukin-7 

(IL-7) receptor a chain (IL7Ra), a marker for memory precursor CD8+ T cells (Kaech et al., 

2003), compared with control cells on day 5. Flow cytometry also showed higher expression 

of CCR7 and CD62L in miR-21low cells. Furthermore, reducing miR-21 expression resulted 

in lower expression of the effector cell markers IL2Rα and CD39 (Figure 2A). Phenotypic 

changes induced by antagonizing miR-21 were seen with CD4+ T cells from young and 

older individuals.

Consistent with our transcriptome analysis, we observed higher BCL6 and TCF1 protein 

expression and reciprocal reduction of BLIMP1 in CD4+ T cells with lowered miR-21 

(Figures 2B and 2C). BCL6 and TCF1 are linked to memory and follicular helper (TFH) cell 

differentiation and antagonize PRDM1 (BLIMP1) expression, a transcriptional repressor 

involved in cytotoxic CD8+ T cell and Th1 cell differentiation (Crotty et al., 2010). 

Furthermore, we observed increased β-catenin expression in CD4+ T cells with reduced 

miR-21 (Figure 2B). Along with TCF1 and LEF1, β-catenin is a transcriptional coactivator 

in canonical WNT signaling and a key regulator of the generation of stem cell-like memory 

T cells (Gattinoni et al., 2011).

To assess effector functions, CD4+ T cells were re-stimulated on day 5 with phorbol 12-

myristate 13-acetate (PMA) and ionomycin. miR-21low cells had higher frequencies of IL-2- 

and tumor necrosis factor alpha (TNF-a)-producing cells but expressed less granzyme B than 

control cells. No difference in interferon γ (IFN-γ) production was observed (Figure 2D). 

This cytokine production profile of miR-21low cells closely resembled that of memory 

precursor T cells (Sarkar et al., 2008).

Similar results after transduction with anti-miR-21 were obtained for CD4+ T cells 

stimulated with the superantigen TSST-1 and dendritic cells (Figure S2) and anti-CD3/

CD28-activated naive CD8+ T cells (Figure S3).

Taken together, analysis of phenotypic markers, transcription factor networks, and effector 

functions supported the notion that induction of miR-21 expression upon T cell activation 

plays a regulatory role in effector differentiation, with high miR-21 upregulation promoting 

terminal effector cells and weaker upregulation favoring the development of memory 

precursor cells.

Increased miR-21 Expression with Older Age Favors Induction of a Terminal Effector Cell 
Expression Profile

The age-associated difference in miR-21 expression during early stages of naive CD4+ T cell 

responses was of the same magnitude as seen with transduced anti-miR-21 (Figures 1A and 

S1B). The increased miR-21 expression in older individuals may therefore favor the 

generation of inflammatory effector T cells and select against transcriptome signatures 

pertinent for memory T cells. To test this hypothesis, we activated naive CD4+ T cells from 
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young and older individuals with anti-CD3 and anti-CD28 beads for 5 days and performed 

transcriptome analysis by RNA-seq. We found that 794 genes were upregulated and 528 

genes were downregulated in activated cells from older individuals compared with young 

adults (adjusted p < 0.1). Notably, differentially expressed genes between young and older 

individuals included many of the genes associated with effector and memory cell 

differentiation that were also influenced by miR-21 dysregulation. In line with the enhanced 

expression of inflammatory and cytotoxic effector genes and inhibitory molecules with 

strong upregulation of miR-21 expression (Figure 1E), activated cells from older individuals 

exhibited higher expression of IL2RA, GZMB, CCL3, CCL4, LAG3, HAVCR2 (TIM3), and 

DUSP5 and transcription factors such as PRDM1 (BLIMP1), JUNB, and RUNX3 than cells 

from young adults (Figure 3A). In contrast, the expression of memory-associated genes and 

transcription factors, including SELL (CD62L), IL7R, CD28, TCF7, LEF1, ID3, and SOX4, 

were lower in activated cells from older compared with those from young individuals 

(Figure 3A). Differential gene expression of key transcription factors was confirmed by RT-

PCR in an independent cohort of young and older individuals. All expression differences, 

except for BCL6, remained statistically significant after controlling for multiple testing 

using Hochberg’s stepdown adjustment (Figure 3B). The differences in TCF7 and PRDM1 
expression were maintained until day 8 (Figure S4), suggesting that they did not reflect age-

associated differences in activation kinetics.

Comparison of global gene expression profiles supported this interpretation. Applying 

GSEA, the differences in transcriptome signatures induced by lowering miR-21 upregulation 

in T cell responses correlated to those of young compared with older adults. Conversely, 

genes upregulated in older individuals were more likely enriched in control cells with 

unopposed miR-21 up-regulation (Figure 3C). Importantly, the expression level of miR-21 in 

naive T cells before activation was an excellent predictor of the gene expression pattern on 

day 5 after activation, inversely correlating with expression of memory transcription factors 

such as TCF7 and LEF1 and directly correlating with transcription factors that are highly 

expressed in effector T cells, such as PRDM1 (BLIMP1), JUNB, and RUNX3 (Figure 3D). 

The transcription factor BCL6 did not correlate with miR-21 levels.

Because activated CD4+ T cells from older individuals had a transcription factor signature 

resembling those of terminal effector cells induced under conditions of high miR-21 

expression, we asked whether the effector molecule profiles differed accordingly with age. 

We activated naive CD4+ T cells from young and older individuals and compared the 

frequencies of IL-2-, TNF-α-, and granzyme B-producing cells on day 5 after re-stimulation 

with PMA and ionomycin. Although TNF-a production was not different, activated CD4+ T 

cells of older individuals produced more granzyme B and less IL-2 than cells from young 

adults, a pattern associated with short-lived terminal effector cells (Figure 3E). A 

preferential differentiation into inflammatory effector cells may explain the impaired vaccine 

responses that are seen with older age. To determine whether gene expression signatures of 

effector T cells after vaccination are inversely correlated with memory cell survival, we 

analyzed data (GEO: GSE86632) from a recent study with a live varicella zoster virus 

(VZV) vaccine (Qi et al., 2016). We compared the rate of decline of VZV-specific T cell 

frequencies from effector (days 8–14) with memory cells (day 28) with the gene expression 

profile of CD4+ human leukocyte antigen DR (HLA-DR+) CD38+ activated T cells isolated 
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at the time of the CD4+ T cell peak response. The decline in VZV-specific T cells during the 

contraction phase positively correlated with GZMB expression and negatively with TCF7 
expression (Figure 3F). These data are consistent with the model that preferential effector 

cell differentiation because of increased miR-21 levels in the early stages of the T cell 

response are associated with lower generation of longer-lived VZV-specific memory T cells.

miR-21 Targets PDCD4 to Increase AP-1 Activity

We explored whether signaling pathways regulated by miR-21 in the first days after 

activation influence whether T cells differentiate into proinflammatory effector cells or into 

memory T cells. Programmed cell death 4 (PDCD4) is one of the validated targets of 

miR-21 (Asangani et al., 2008) and has been shown to inhibit AP-1 activity (Yang et al., 

2006). We confirmed that PDCD4 was a miR-21 target in T cells by transfecting naive CD4+ 

T cells with miR-21-blocking locked nucleic acid (LNA21) or scrambled control and 

immunoblotting after 48-hr incubation without activation (Figure 4A). Upon T cell 

activation, PDCD4 transcripts declined to bottoming between day 3 and day 4 and slightly 

rebounding on day 5 (Figure S5). miR-21low cells expressing higher PDCD4 had reduced c-

Jun N-terminal kinase (JNK) phosphorylation on day 3 after activation (Figure 4B). JNK is a 

kinase upstream of c-Jun and AP-1 activation. To directly monitor AP-1 activity, we 

transduced naive CD4+ T cells with anti-miR-21 or control RNA after activation and 

additionally transfected the activated cells with an AP-1 reporter construct. Consistent with 

reduced JNK phosphorylation, AP-1 reporter activity was reduced in cells lentivirally 

transduced with anti-miR-21 (Figure 4C). These results indicate that upregulation of miR-21 

expression activates AP-1 signaling by targeting the negative regulator PDCD4 upon T cell 

activation.

In line with increased miR-21 levels, we found that naive CD4+ T cells of older individuals 

had lower expression of PDCD4 throughout the activation and effector cell differentiation 

stages than naive CD4+ T cells of young adults (Figure 4D). Activation of naive CD4+ T 

cells induced a similar level of JNK phosphorylation in young and older individuals on day 

3, suggesting that early signaling events are intact and not affected by age (Figures 4E and 

4F). However, by day 4, JNK phosphorylation levels had substantially decreased in activated 

cells from young adults, whereas they were largely unchanged in activated cells from older 

individuals, suggesting that old but not young naive CD4+ T cells have sustained AP-1 

activity while differentiating (Figures 4E and 4F).

To determine the contribution of AP-1 signaling to effector T cell differentiation, naive 

CD4+ T cells were activated with anti-CD3 and anti-CD28 beads in the presence of the AP-1 

inhibitor SR11302. In these experiments, we predominantly analyzed CD4+ T cells from 

older individuals (9 of 12 experiments for CD39, 12 of 12 for all other readouts). 

Pharmacologically inhibiting AP-1 activity enhanced IL7Rα and CCR7 expression and IL-2 

and TNF-α production while reducing IL2Rα, CD39, and granzyme B expression on day 5 

after activation, resembling the pattern in miR-21low cells (Figure 4G). Similar results were 

obtained with c-FOS silencing (Figure 4H). Because AP-1 signaling induces miR-21 

expression (Wang et al., 2014), treatment with the AP-1 inhibitor also dampened the 

upregulation of miR-21 after T cell activation, suggesting a positive feedback loop between 
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miR-21 expression, PDCD4 downregulation, and AP-1 activation (Figure 4I). Importantly, 

transfection of miR-21low cells with PDCD4-targeting small interfering RNA (siRNA) 

partially reversed the effect of miR-21 silencing (Figure 4J).

miR-21 Activates the Mammalian Target of Rapamycin and Extracellular Signal-Regulated 
Kinase Signaling Pathways by Targeting PTEN and SPRY1

Signaling molecules directly targeted by miR-21 in naive CD4+ T cells include PTEN and 

SPRY1, as shown by increased protein levels after antagonizing miR-21 (Figure 5A; Meng 

et al., 2007; Thum et al., 2008). Both PTEN and SPRY1 decline upon T cell activation to 

slowly recover on day 5 (Figure S5). Increased SPRY1 is predicted to dampen extracellular 

signal-regulated kinase (ERK) phosphorylation (Thum et al., 2008). Increased PTEN should 

inhibit the AKT-mTORC pathway. Indeed, pharmacological inhibition of AKT reproduces 

the functional and phenotypic shifts seen with reducing miR-21 activity (Figure S6). On day 

2 after activation, no major miR-21-dependent signaling differences were seen, as illustrated 

by the equal Ser235 and Ser236 phosphorylation of S6RP (Figure 5B) that occurs downstream 

of the mTORC1 as well as ERK signaling pathways (Roux et al., 2007). However, on day 3, 

antagonizing miR-21 showed the predicted effects on ERK, AKT, and mTORC1 

phosphorylation (Figure 5C). The effect was most striking on S6 phosphorylation, with a 

large subpopulation of miR-21low but not miR-21high cells losing S6 phosphorylation 

between day 2 and day 3 (Figures 5B and 5C). To examine whether miR-21-mediated loss in 

PTEN and SPRY1 act additively or synergistically to maintain S6 phosphorylation, naive 

CD4+ T cells were activated for 3 days and treated with combinations of the AKT inhibitor 

MK-2206 2HCl and the MEK1 and MEK2 inhibitor U0126 for 1.5 hr. S6 phosphorylation 

was lost in a subset of cells cultured with the AKT inhibitor as well as the MEK1 and MEK2 

inhibitor at doses that only slightly blocked AKT or ERK phosphorylation (Figures 5D and 

5E). Combining the MEK inhibitor with low concentration of the AKT inhibitor had an 

additive effect on S6 phosphorylation (Figure 5E).

Increased miR-21 Expression with Age Leads to Sustained Activation of the AKT- 
Mammalian Target of Rapamycin and ERK Signaling Pathways

Given the increase in miR-21 expression with age, we explored whether the similarities hold 

for the expression of PTEN and SPRY1. On days 3 and 4 after activation, naive CD4+ T 

cells from older individuals expressed significantly lower levels of PTEN and SPRY1 
transcripts than cells from young adults (Figure 6A and 6B). This difference was attenuated 

on day 5, when expression of PTEN and SPRY1 started to rebound in spite of high miR-21 

concentrations. The lower expression of these negative regulators appeared to be of 

functional importance to sustain S6 phosphorylation longer in activated T cells from older 

than young individuals (Figures 6C and 6D), reminiscent of the findings with cells differing 

in miR-21 expression (Figure 5). S6 phosphorylation was switched off in a subset of 

activated CD4+ T cells between days 3 and 4 after activation, and this subset was larger in 

CD4+ T cells from young individuals. Correspondingly, phosphorylation of upstream 

molecules decreased from day 3 to day 4 to a lesser extent in CD4+ T cells from older 

adults, leading to a significant age-dependent difference in phosphorylated AKT, 

mammalian target of rapamycin (mTOR), and ERK on day 4 (Figures 6C and 6D). Again, 
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the differences seen for S6 phosphorylation were more pronounced than those in the 

upstream pathways, suggesting cooperative activity.

The relationship between upstream signaling pathways influenced by miR-21 and S6 

phosphorylation was non-linear, with small upstream changes causing a digital response. To 

better describe the quantitative relationship between signaling molecules as influenced by 

age or miR-21 expression, we analyzed the flow data shown in Figures 6C and 6D using the 

conditional density resampled estimate of mutual information (DREMI) algorithm. 

Conditional density rescaled visualization (DREVI) plots showed a sharp transition from 

low to high S6 phosphorylation with an increase in ERK and AKT phosphorylation (Figure 

6E). On day 3, the inflection points of ERK and AKT (i.e., the activation threshold of each 

signaling molecule at which transition of S6 phosphorylation occurs from low to high) were 

not different between young and older individuals. On day 4, young activated cells had a 

shift of the sigmoid curves toward higher ERK and AKT phosphorylation, indicating that 

higher activities were needed to induce S6 phosphorylation. In contrast, the activation 

thresholds of ERK and AKT signaling for S6 phosphorylation were maintained between day 

3 and day 4 in CD4+ T cells from old individuals (Figure 6E). These data show that small 

differences in ERK or AKT phosphorylation between young and old T cells was not 

sufficient to explain the large difference in digital responses, suggesting cooperative 

interactions of upstream pathways or activities of unidentified pathways. DREVI plots 

comparing miR-21low and miR-21high cells showed the same patterns, indicating that the 

mechanisms are related to miR-21 expression (Figure 6F).

DISCUSSION

Studies in murine models have achieved an excellent understanding of the transcription 

factor and microRNA (miRNA) networks that regulate T cell differentiation. Important roles 

have been identified for the opposing activities of the transcriptional repressors BCL6 and 

BLIMP1 (Crotty et al., 2010). miRNAs are critical for T cell differentiation and function, 

and the roles of selected miRNAs such as of those in the miR-17 ~92 cluster have begun to 

be deciphered (Baumjohann et al., 2013; Kang et al., 2013; Wu et al., 2012). Gene-

regulatory pathways involved in the generation of TFH cells and memory precursor cells are 

at least in part overlapping and distinct from terminal effector T cells or TH1 cells (Choi et 

al., 2013; Crotty et al., 2010). These studies have generated the framework to understand and 

improve human vaccine responses in the aged host when the generation of protective 

adaptive immunity is impaired. Here we identify miR-21 as an important regulator to 

develop the transcriptional signature of an inflammatory effector cell versus that of a 

memory cell in vitro. Upon T cell activation, miR-21 was robustly induced, targeting 

negative regulators of three major signaling pathways: the ERK, AP-1, and AKT pathways. 

Small differences in miR-21 upregulation dramatically changed the expression and activity 

of transcriptional networks and, therefore, T cell differentiation, presumably through the 

cooperative activity of these pathways. Interventions to lower miR-21 expressions or to 

counteract miR-21’s effects on signaling pathways resulted in CD4+ T cells that expressed 

the homing receptors CCR7 and L-selectin, the cytokine receptor IL7Ra, and the 

transcription factor TCF1 and that were polyfunctional, all functional hallmarks of memory 

cells. In vitro studies cannot address the question of whether subdued miR-21 expression 
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also improves cell longevity, another requisite of memory cells compared with terminal 

effector T cells, and in vivo studies will be required to examine this point. The model that 

miR-21 controls an important decision point in the generation of long-lived memory cells is 

clinically relevant because miR-21 expression increases with age and could account for 

some of the findings characteristic of the T cell system in older individuals. The aging 

immune system is prone to inflammatory responses with the accumulation of functional 

effector T cells that have assumed features of innate effector cells (Pereira and Akbar, 2016; 

Warrington et al., 2001), and the T cell response is characterized by a preferential induction 

of effector T cells in vitro and a failure to generate memory T cells in vivo (Fang et al., 

2016; Qi et al., 2016).

How does the ability of miR-21 to inhibit the development of a memory transcriptome 

concur with the current model of T cell differentiation? Obviously, AKT activation, subdued 

in miR-21low cells, is a fundamental step in committing T cells to proliferation and 

differentiation. In our system, increased concentration of miR-21 within the first days after 

activation in older individuals was important to bias the transcriptome to effector instead of 

memory cells. However, although miR-21 effects on the expression of negative regulators 

were evident early after T cell activation, effects on signaling pathways were delayed, 

possibly because negative regulators are more efficacious when signaling intensities decline. 

Taken together, our data suggest that miR-21 upregulation functions mainly in sustaining 

signaling.

Our model is consistent with the observation that inhibition of mTORC1 signaling by 

rapamycin or by silencing RAPTOR during lymphocytic choriomeningitis virus (LCMV) 

infection favors differentiation of memory precursors and enhances memory cell number and 

function (Araki et al., 2009). Moreover, transgenic expression of constitutively active AKT 

in T cells inhibited the expression of WNT signaling molecules, resulting in failure to induce 

TCF1, important for memory T cell development (Kim et al., 2012). Also, IL-2 stimulation 

sustains activation of the phosphatidylinositol 3-kinase (PI3K)-AKT-mTOR pathway, 

promoting BLIMP1 expression and TH1 instead of TFH differentiation (Ray et al., 2015). In 

our data, we saw reduced CD25 expression on day 5 in miR-21low cells as well as in young 

CD4+ T cells that preferentially develop a memory signature. Moreover, under conditions of 

reduced miR-21 expression, we see activated T cells lose S6 phosphorylation faster in vitro. 

In vivo after LCMV infection, p-S6low CD8+ T cells were high in the expression of TCF1 

(Delpoux et al., 2017). TCF1 is highly expressed in memory precursor CD8+ T cells (Zhou 

et al., 2010). In summary, reduced miR-21 upregulation reproduces several features that 

have been described to favor the generation of memory cells and that are deficient in CD4+ 

T cell responses from older individuals.

In addition to the PI3K-AKT-mTORC pathway, miR-21 also targets MAPK signaling 

pathways; in fact, we propose that not a single target but the additive or synergistic activities 

of several signaling events influenced by miR-21 account for the effect on T cell 

differentiation. We observed that miR-21 reduces the expression of the negative regulators 

SPRY1 and PDCD4, resulting in increased ERK and AP-1 pathway activation. In mice, 

Spry1 knockout T cells have increased TCR signaling, leading to ERK and AP-1 activation 

and effector functions, such as IFN-g and granzyme B production (Collins et al., 2012). Of 
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particular interest for T cell differentiation is the ability of miR-21 to influence AP-1 

activity. We observed reduced JNK phosphorylation and AP-1 activity in miR-21low T cells 

or young naive CD4+ T cells that preferentially developed a T memory-like transcriptome. 

Sustained AP-1 activity is important because of its ability to induce BLIMP1 transcription, 

which can be counteracted by BCL6. BLIMP1 induces terminal effector T cell 

differentiation and inhibits the function of BCL6 to generate TFH cells (Crotty et al., 2010; 

Kaech and Cui, 2012). The major target of miR-21 enhancing JNK phosphorylation and 

AP1 activity is PDCD4. In addition, miR-21 may influence AP-1 activity through its ability 

to sustain AKT activity that phosphorylates BACH2, leading to rapid degradation 

(Roychoudhuri et al., 2016). Sustained AP-1 activation in BACH2-deficient CD8+ T cells 

promotes terminal effector cell differentiation after viral infection, leading to impaired long-

lived memory development (Roychoudhuri et al., 2016).

Taken together, miR-21 targets several signaling pathways with the net result of increased 

effector cell and decreased memory T cell differentiation. Activation of these signaling 

pathways is more sustained in T cell responses of older individuals, suggesting that 

attenuation of miR-21 expression may be beneficial for improving adaptive immunity after 

vaccination with age. Several mechanisms have been identified in regulating miR-21 

expression. STAT3 has been shown to induce miR-21 transcription after stimulation with 

IL-21 in CD4+ T cells or with IL-6 in myeloma cells (Lo¨ffler et al., 2007; van der Fits et al., 

2011); however, STAT3 is also important in the differentiation of TFH and memory cells 

(Cui et al., 2011; Schmitt et al., 2014), and it is therefore doubtful that interference with this 

pathway will be beneficial even when downregulating miR-21. Alternatively, inhibiting the 

forward feedback loop upregulating miR-21 transcription by temporary interference with 

AP-1 activity may be advantageous to induce memory T cells. Also, because miR-21 has 

generated interest as an oncogenic microRNA (oncomiRNA), several strategies to 

therapeutically target miR-21 in vivo are under development (Li and Rana, 2014).

STAR★METHODS

KEY RESOURCES TABLE
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 (CD3-2) Mabtech Cat# 3605-1-1000; RRID: AB_907218

CD28 (CD28.2) BD Biosciences Cat# 555725; RRID: AB_396068

CD4 (RPA-T4) BD Biosciences Cat# 555349; RRID: AB_398593

CD8 (RPA-T8) BD Biosciences Cat# 560662; RRID: AB_1727513

CD3 (HIT3a) BioLegend Cat# 300330; RRID: AB_10551436

CD45RA (HI100) BD Biosciences Cat# 555488; RRID: AB_395879

CD45RO (UCHL1) BD Biosciences Cat# 555493; RRID: AB_395884

CCR7 (G043H7) BioLegend Cat# 353212; RRID: AB_10916390

IL7Ra (eBioRDR5) Thermo Fisher Scientific Cat# 12-1278-41; RRID: AB_10853334

CD62L (DREG-56) BioLegend Cat# 304822; RRID: AB_830801

CD25 (M-A251) BD Biosciences Cat# 561399; RRID: AB_10643029

CD39 (A1) BioLegend Cat# 328218; RRID: AB_2562897

IL-2 (MQ1-17H12) BD Biosciences Cat# 560708; RRID: AB_1727543

TNFα (MAb11) BioLegend Cat# 502930; RRID: AB_2204079

Granzyme B (GB11) BD Biosciences Cat# 560213; RRID: AB_1645453

IFN-γ (4S.B3) BD Biosciences Cat# 554552; RRID: AB_395474

BCL6 (K112-91) BD Biosciences Cat# 561525; RRID: AB_10898007

TCF1/TCF7 (S33-966) BD Biosciences Cat# 564217; RRID: AB_2687845

β-catenin (15B8) eBioscience Cat# 50-2567-42; RRID: AB_11218086

p-JNK (T183/Y185; N9-66) BD Biosciences Cat# 562480; RRID: AB_11153134

p-S6 (S235/S236; N7-548) BD Biosciences Cat# 561457; RRID: AB_10643763

p-AKT (S473; M89-61) BD Biosciences Cat# 560343; RRID: AB_1645397

p-mTOR (S2448; O21-404) BD Biosciences Cat# 564242; RRID: AB_2738695

p-ERK (T202/Y204; 20A) BD Biosciences Cat# 612593; RRID: AB_399876

BLIMP-1 (6D3) Santa Cruz Biotechnology Cat# sc-47732; RRID: AB_628168

PDCD4 (600-401-965) Rockland Immunochemicals Cat# 600-401-965; RRID: AB_828370

PTEN (138G6) Cell Signaling Technology Cat# 9559; RRID: AB_823618

SPRY1 (D9V6P) Cell Signaling Technology Cat# 13013

β-actin (13E5) Cell Signaling Technology Cat# 4970; RRID: AB_2223172

Bacterial and Virus Strains

miRZip-scrambled hairpin vector Systems Biosciences Cat# MZIP000-PA-1

miRZip-21 anti-miR-21 Systems Biosciences Cat# MZIP21-PA-1

Biological Samples

Leukapheresis Stanford blood center N/A

Peripheral blood Healthy volunteers N/A

Chemicals, Peptides, and Recombinant Proteins

Lymphoprep STEMCELL Technologies Cat# 07851

Fixable Viability Dye Thermo Fisher Scientific Cat# 65-0866-14
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human GM-CSF R&D Systems Cat# 215-GM-010

Human IL-4 R&D Systems Cat# 204-IL-010

Human TNF-α Peprotech Cat# 300-01A

Human IL-2 Peprotech Cat# 200-02

Prostaglandin E2 Sigma Cat# P0409

SR11302, AP1 inhibitor Tocris Bioscience Cat# 2476

MK-2206 2HCl, AKT inhibitor Selleckchem Cat# S1078

U0126, ERK inhibitor Tocris Bioscience Cat# 1144

Hexadimethrine bromide (polybrene) Sigma Cat# H9268

Toxic shock syndrome toxin 1 (TSST-1) Toxin Technology Cat# TT606

hsa-miR-21-5p miRCURY LNA miRNA 
Inhibitor

QIAGEN (Exiqon) Cat# YI04100689

miRCURY LNA miRNA Inhibitor Control QIAGEN (Exiqon) Cat# YI00199006

Critical Commercial Assays

RosetteSep Human CD4+ T Cell 
Enrichment Cocktail

STEMCELL Technologies Cat# 15062

EasySep Human Naive CD8+ T Cell 
Enrichment Kit

STEMCELL Technologies Cat# 19158

CD45RO MicroBeads, human Miltenyi Biotec Cat# 130-046-001

CD14 MicroBeads, human Miltenyi Biotec Cat# 130-050-201

Dynabeads Human T-Activator CD3/CD28 Thermo Fisher Scientific Cat# 11131D

CellTrace Violet Cell Proliferation Kit Thermo Fisher Scientific Cat# C34557

Fixation/Permeabilization Solution Kit BD Biosciences Cat# 554714

BD Cytofix Fixation Buffer BD Biosciences Cat# 554655

BD Phosflow Perm Buffer III BD Biosciences Cat# 558050

Annexin V apoptosis detection kit BD Biosciences Cat# 559763

RNeasy Plus Micro Kit QIAGEN Cat# 74034

mirVana miRNA Isolation Kit Thermo Fisher Scientific Cat# AM1560

Ovation Human FFPE RNA-Seq Library 
Systems

NuGEN Cat# 0340, 0341

P3 primary cell Nucleofector Kit Lonza Cat# V4XP-3024

Power SYBR Green PCR Master Mix Thermo Fisher Scientific Cat# 4367659

Maxima First Strand cDNA Synthesis Thermo Fisher Scientific Cat# EP0741

miRCURY LNA RT Kit QIAGEN (Exiqon) Cat# 339340

Dual-Luciferase Reporter Assay System Promega Cat# E1910

Deposited Data

RNA-seq data of miR-21high and miR-21low 

cells
This study SRA: SRP158689

RNA-seq data of activated naive CD4+ T 
cells from
young and older individuals

This study SRA: SRP158502

Microarray data of VZV-specific CD4+ T 
cells

Qi et al., 2016 GEO: GSE86632

Experimental Models: Cell Lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

HEK293T ATCC Cat# CRL-11268; RRID:CVCL_1926

Oligonucleotides

SMARTApool c-FOS siRNA Dharmacon Cat# M-003265-01-0005

SMARTApool PDCD4 siRNA Dharmacon Cat# M-004438-03-0005

siGENOME Non-Targeting siRNA Pool Dharmacon Cat# D-001206-13-05

hsa-miR-21-5p miRCURY LNA miRNA 
PCR Assay

QIAGEN (Exiqon) Cat# YP00204230

SNORD48(hsa) miRCURY LNA miRNA 
PCR Assay

QIAGEN (Exiqon) Cat# YP00203903

Recombinant DNA

psPAX2 Addgene Cat#12260

pMD2.G Addgene Cat#12259

AP-1 luciferase reporter plasmid Addgene Cat#40342

pRL-SV40 renilla luciferase reporter Promega Cat# E2231

Software and Algorithms

FlowJo TreeStar RRID:SCR_008520

Prism GraphPad Software RRID:SCR_002798

Website for DREVI software Krishnaswamy et al., 2014 http://systemsbiology.columbia.edu/center-for-computational-biology-and-bioinformatics-c2b2

Website for gene set enrichment analysis 
(GSEA) software

The Broad Institute http://software.broadinstitute.org/gsea/index.jsp

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jörg J.

Goronzy (jgoronzy@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary human cell isolation—Peripheral blood samples were obtained from 27 female 

and 12 male healthy individuals who did not have a history of autoimmune disease, diabetes 

mellitus, renal disease, cardiovascular disease or cancer except skin cancer. Individuals with 

hypertension or hypercholesterinemia were included if controlled on treatment. 19 of these 

39 individuals were older than 60 years. In addition, samples were obtained from 128 blood 

or platelet donors. These samples were deidentified except for whether donors were younger 

than 35 years or older than 60 years. The studies were approved by the Stanford University 

Institutional Review Board, and participants gave informed written consent.

Untouched CD4+ T cells were purified from peripheral blood or leukapheresis samples of 

healthy volunteers with a human CD4+ T Cell enrichment kit (STEMCELL Technologies), 

followed by density gradient centrifugation using Lymphoprep (STEMCELL Technologies). 

Naive CD4+ T cells were further isolated by negative selection with anti-CD45RO magnetic 

beads (Miltenyi Biotec). Peripheral blood mononuclear cells (PBMCs) were isolated by 
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density gradient centrifugation. Naive CD8+ T cell were isolated from PBMCs using a 

human naive CD8+ T cell isolation kit (STEMCELL Technologies). CD14+ monocytes were 

isolated from PBMCs using anti-CD14 magnetic beads (Miltenyi Biotec). Purity of isolated 

cells was 90% or higher.

Cell lines—HEK293T cells (ATCC) were grown in Dulbecco’s modified eagle medium 

(DMEM) supplemented with 10% fetal bovine serum and 100 U/ml penicillin and 

streptomycin (Thermo Fisher Scientific).

METHOD DETAILS

Primary cell culture—Isolated T cells were activated with Dynabeads Human T-Activator 

CD3/CD28 (Thermo Fisher Scientific) in RPMI 1640 (Sigma) supplemented with 10% fetal 

bovine serum and 100 U/ml penicillin and streptomycin (Thermo Fisher Scientific). For 

AP-1 or AKT inhibition experiments, naive CD4+ T cells were activated with anti-CD3/anti-

CD28 beads along with the AP-1 inhibitor SR11302 (10 mM, Tocris Bioscience) or the 

AKT inhibitor MK-2206 2HCl (1 uM, Selleckchem), respectively. DMSO (Sigma) was used 

for control treatment. For AKT and MEK1/2 inhibition experiments, activated cells were 

cultured with combinations of the AKT inhibitor MK-2206 2HCl (40–1000 nM, 

Selleckchem), MEK1/2 inhibitor U0126 (400 nM, Tocris Bioscience) or vehicle (DMSO, 

Sigma) for 1.5 hours.

Lentivirus production and transduction—To antagonize miR-21, we used the 

miRZip-21 lentiviral vector expressing anti-sense miR-21 (Systems Biosciences). miRZip-

scrambled hairpin vector was used as a control (System Biosciences). The vector 

additionally contained a GFP reporter. Lentivirus was produced by transfection of a 

lentiviral vector, along with psPAX2 (Plasmid #12260; Addgene) and pMD2.G (Plasmid 

#12259; Add gene) expression vectors into HEK293T cells by using FuGENE (Promega). 

Lentiviral particles were collected 48 and 72 hours after transfection, filtered through a 0.45-

mm syringe filter (Millipore), concentrated using Peg-it solution (System Biosciences) and 

titered on HEK293T cells. For lentiviral transduction, naive CD4+ or CD8+ T cells labeled 

with CellTrace Violet (Thermo Fisher Scientific) were activated with anti-CD3/anti-CD28 

beads and transduced with a lentiviral vector expressing scrambled control RNA or anti-

sense miR-21 at a multiplicity of infection of 10 in the presence of 8 mg/ml polybrene 

(Sigma) and 10 U/ml human IL-2 (Peprotech). After 36 hours, activated cells were washed 

and cultured on plates coated with 1 mg/ml anti-CD3 (CD3–2) plus 2 mg/ml soluble anti-

CD28 Ab (CD28.2) and 10 U/ml human IL-2 (Peprotech).

T cell activation with superantigen—Dendritic cells (DCs) were generated from 

CD14+ monocytes by culture in complete RPMI 1640 (Sigma) with 800 U/ml granulocyte-

macrophage colony–stimulating factor and 1000 U/ml IL-4 (R&D Systems) for 6 days, 

followed by maturation with 1100 U/ml TNF-α (Peprotech) and 1 mg/ml prostaglandin E2 

(Sigma) for 24 hours. Naive CD4+ T cells were activated with anti-CD3/anti-CD28 beads 

and transduced with a lentiviral vector expressing scrambled control RNA or anti-sense 

miR-21. After 4 hours, cells were washed extensively to remove beads and lentivirus and 
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cultured with DCs at a ratio of 50 to 1 plus 1 ng/ml toxic shock syndrome toxin 1 (TSST-1, 

Toxin Technology) for 5 days.

Flow cytometry—For cell surface stains, cells were incubated with fluorescently 

conjugated antibodies in PBS containing 1% FBS at 4°C for 30 minutes. For intracellular 

cytokine assays, cells were re-stimulated with 25 ng/ml phorbol 12-myristate 13-acetate 

(PMA, Sigma) and 500 ng/ml ionomycin (Sigma) in the presence of Brefeldin-A 

(GolgiPlug, BD Biosciences) for 4 hours at 37°C. Cells were then incubated with cell-

surface antibodies, permeabilized with Cytofix/Cytoperm kit (BD Biosciences) and stained 

with fluorescently labeled antibodies specific to the indicated cytokines. For staining of 

transcription factors and phosphorylated signaling proteins, cells were fixed with Cytofix 

buffer (BD Biosciences) for 10 minutes at 37°C, followed by permeabilization with Perm 

buffer III (BD Biosciences) for 30 minutes on ice. Cells were then incubated with 

fluorescently labeled antibodies for 60 minutes at room temper-ature. Annexin V apoptosis 

detection kit (BD Biosciences) was used to detect apoptotic cells, according to the 

manufacturer’s instructions. Dead cells were excluded from the analysis using LIVE/DEAD 

Fixable Aqua (eBioscience). The following fluorochrome-conjugated antibodies were used 

for flow cytometry: anti-CD4 (RPA-T4), anti-CD8 (RPA-T8), anti-CD3 (HIT3a), anti-

CD45RA (HI100), anti-CD45RO (UCHL1), anti-CCR7 (G043H7), anti-IL7Ra (eBioRDR5), 

anti-CD62L (DREG-56), anti-CD25 (M-A251), anti-CD39 (A1), anti-IL-2 (MQ1–17H12), 

anti-TNFα (MAb11), anti-Granzyme B (GB11), anti-IFN-γ (4S.B3), anti-BCL6 (K112–

91), anti-TCF1/TCF7 (S33–966), anti-β-catenin (15B8), anti-p-JNK (T183/Y185; N9–66), 

anti-p-S6 (S235/S236; N7–548), anti-p-AKT (S473; M89–61), anti-p-mTOR (S2448; O21–

404), anti-p-ERK (T202/Y204; 20A). Cells were analyzed on an LSRII or LSR Fortessa 

(BD Biosciences). Flow cytometry data was analyzed using FlowJo (TreeStar). To determine 

the relationship between signaling molecules, we used conditional density rescaled 

visualization (DREVI) as previously described (Krishnaswamy et al., 2014). DREVI plots of 

the phospho-flow data were generated using software available at http://

systemsbiology.columbia.edu/center-for-computational-biology-and-bioinformatics-c2b2.

RNA sequencing and data analysis—To compare miR-21low cells and control cells, 

naive CD4+ T cells from four healthy individuals were activated with anti-CD3/anti-CD28 

beads and transduced with a lentiviral vector expressing scrambled control RNA or anti-

sense miR-21. On day 5 after activation, cells were re-stimulated with PMA/ionomycin for 3 

hours and lentivirally-transduced GFP+ CD4+ T cells were then sorted to > 97% purity on 

FACSAria (BD Biosciences). To compare effector cells of young and older individuals, 

naive CD4+ T cells from three young (20–35 year-old) and three older (63–85 year-old) 

individuals were activated with anti-CD3/anti-CD28 beads for 5 days. Total RNA was 

prepared using the RNeasy Micro Kit (QIAGEN) and RNA quality and quantity were 

examined by a 2100 Bioanalyzer (Agilent Technologies). cDNA synthesis and library 

preparation were performed with Ovation Human FFPE RNA-Seq Library Systems 

(NuGEN). Libraries were pooled and sequenced on an Illumina 2500 HiSeq (miR-21 

samples) or NextSeq 500 (young/old comparison). RNA-seq reads were aligned to hg19 

with TopHat2 (miR-21 samples) or STAR (young/old comparison) using GENCODE v19 

splice junctions. Differential expression was tested using DESeq2. Principal component 
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analysis (PCA) was performed on counts from 5000 genes with the highest variance across 

samples. Genes were considered to be differentially expressed if Benjamini-Hochberg 

adjusted p value was less than 0.1. Cumulative distribution frequency plot was used to 

compare global gene expression changes with antagonizing miR-21, displaying the 

log2(anti-miR-21/ctrl) against the cumulative frequency of all, miR-21 and miR-181a target 

genes, respectively. Bioinformatically-predicted miR-21 and miR-181a targets were 

downloaded from TargetScan (http://www.targetscan.org) and top 100 predicted targets 

based on the TargetScan Context ++ score were included in the analysis (Agarwal et al., 

2015).

Gene set enrichment analysis—Gene set enrichment analysis (GSEA) software from 

the Broad Institute (http://software.broadinstitute.org/gsea/index.jsp) was used to determine 

the enrichment of gene sets in miR-21low or control cells. For comparative GSEA analyses, 

we used gene signatures associated with murine memory CD8+ T cells over effector CD8+ T 

cells (Kaech et al., 2002) and KLRG1high terminal effector CD8+ T cells over KLRG1low 

memory precursor T cells (Sarkar et al., 2008) under GEO: GSE1000001, GSE10239, 

respectively.

Varicella zoster virus (VZV) vaccination—Frequencies of VZV-specific T cells 

determined by IFN-γ ELISPOT at day 8, 14 and 28 and gene expression in activated CD4+ 

T cells after vaccination with the live VZV vaccine Zostavax were previously published (Qi 

et al., 2016). The decline in VZV-specific T cells from effector (day 8–14) to memory (day 

28) time points was compared to expression levels of GZMB and TCF7 in isolated CD4+ 

HLA-DR+ CD38+ activated T cells at day 14 (GEO: GSE86632).

Transfection—To silence miR-21, naive CD4+ T cells were transfected with either locked 

nucleic acid (LNA) miR-21 inhibitor or scrambled inhibitor negative control (Exiqon) using 

the Amaxa Nucleofector system and P3 primary cell Nucleofector Kit (Lonza). After 48 

hours, PDCD4, PTEN, SPRY1 and b-actin expression was assessed by western blot. To 

silence c-FOS or PDCD4 expression in activated cells, naive CD4+ T cells activated for 36 

hours were washed and transfected with either SMARTApool c-FOS siRNA, SMARTApool 

PDCD4 siRNA or negative control siRNA (Dharmacon) using the Amaxa Nucleofector 

system and P3 primary cell Nucleofector Kit (Lonza). Cells were resting for 12 hours and 

cultured on plates coated with 1 mg/ml anti-CD3 (CD3–2; Mabtech) plus 2 ¼g/ml soluble 

anti-CD28 (CD28.2; BD Biosciences) and 10 U/ml human IL-2 (Peprotech). After 3 days, 

cells were harvested and analyzed.

RNA isolation and quantitative RT-PCR—Total RNA was isolated using either the 

RNeasy Plus Micro kit (QIAGEN) or a mirVana miRNA Isolation Kit (Ambion) and 

converted to cDNA using Maxima First Strand cDNA Synthesis Kits (Thermo Fisher 

Scientific). Quantitative RT-PCR was performed on the ABI 7900HT system (Applied 

Biosystems) using Power SYBR® Green PCR Master Mix (Thermo Fisher Scientific), 

according to the manufacturer’s instructions. Oligonucleotide primer sets used are as 

follows: TCF7: F- CTGGCTTCTACTCCCTGACCT, R- 

ACCAGAACCTAGCATCAAGGA; LEF1: F- AGAACACCCCGATGACGGA, R-
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GGCATCATTATGTACCCGGAAT; BCL6: F-GTTG TGGACACTTGCCGGAA, R-

CTCTTCACGAGGAGGCTTGAT; PRDM1: F-AACTTCTTGTGTGGTATTGTCGG, R-

CAGTGCTCGGTT GCTTTAGAC; JUN: F-AACAGGTGGCACAGCTTAAAC, R-

CAACTGCTGCGTTAGCATGAG; JUNB: F-ACGACTCATACACAGCTAC GG, R-

GCTCGGTTTCAGGAGTTTGTAGT; RUNX3: F-GCGAGGGAAGAGTTTCACCC, R-

TTGATGGCTCGGTGGTAGGT; PDCD4: F-TATGATGTGGAGGAGGTGGATGTGA, R-

CCTTTCATCCAAAGGCAAAACTACA; PTEN: F-

GGAAGTCTATGTGATCAAGAAATCG, R-CAGAAGTTGAACTGCTAGCCTCTGGA; 

SPRY1: F-GAGAGAGATTCAGCCTACTGCT, R-GCAGGTCTTTTCACCACCGAA; AC 
TB: F-ATGGCCACGGCTGCTTCCAGC, R-CATGGTGGTGCCGCCAGACAG. 

Expression levels were normalized to ACTB expression and displayed as 2−ΔΔCt.

miRNA quantification—Total RNA was isolated with a mirVana miRNA Isolation Kit 

(Ambion) and reverse- transcribed to cDNA using the miRCURY LNA Universal RT 

microRNA cDNA synthesis kit (Exiqon). Mature miR-21 expression levels were assessed by 

quantitative RT-PCR using the miRCURY LNA UniRT PCR primer for miR-21–5p (Exiqon) 

and Power SYBR® Green PCR Master Mix (Thermo Fisher Scientific). SNORD48 

(Exiqon) was used as internal control to normalize miR-21 expression.

Western blotting—Cells were lysed in RIPA buffer containing PMSF and protease and 

phosphatase inhibitors (Santa Cruz Biotechnology) for 30 minutes on ice. Proteins were 

separated on denaturing 4%–15% SDS-PAGE (Bio-Rad), transferred onto PVDF membrane 

(Millipore) and probed with antibodies to BLIMP-1 (6D3; Santa Cruz Biotechnology), 

PDCD4 (600–401-965; Rockland Immunochemicals), PTEN (138G6; Cell Signaling 

Technology), SPRY1 (D9V6P; Cell Signaling Technology) and β-actin (13E5; Cell 

Signaling Technology). Membranes were developed using HRP-conjugated secondary 

antibodies and Pierce ECL western blotting substrate (Thermo Fisher Scientific).

Luciferase reporter assay—Naive CD4+ T cells were activated with anti-CD3/anti-

CD28 beads and transduced with a lentiviral vector as described above. After 36 hours, 

activated cells were cotransfected with the AP-1 luciferase reporter plasmid (Plasmid 

#40342; Addgene) along with pRL-SV40 renilla luciferase reporter (Promega) using the 

Amaxa Nucleofector system and P3 primary cell Nucleofector Kit (Lonza). After 4 hours, 

activated cells were cultured on plates coated with 1 μg/ml anti-CD3 (CD3–2; Mabtech) plus 

2 mg/ml soluble anti-CD28 (CD28.2; BD Biosciences) and 10 U/ml human IL-2 

(Peprotech). On day 3 after activation, cells were lysed and luciferase reporter activity was 

measured with the Dual-Luciferase Reporter Assay System (Promega).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism (GraphPad). Unless stated otherwise, data are 

presented as mean and error bars indicate the standard error of the mean. Paired or unpaired 

two-tailed Student’s t tests were used for comparing two groups. A two-tailed Pearson’s 

correlation test was used for correlation analysis. One-way ANOVA with Tukey’s post hoc 

test was used for multi-group comparisons. To correct for multiple testing, we used the 

Benjamini–Hochberg method with a family-wise-error rate at the 0.05 level. Significance of 
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differences in cumulative distribution frequencies was estimated by Kolmogorov–Smirnov 

test. p < 0.05 was considered statistically significant. Statistical details and significance can 

be found in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Upregulation of miR-21 upon T cell activation promotes effector cell 

differentiation

• Expression of miR-21 in naive CD4 T cells increases with age

• T cell responses in old individuals favor effector over memory cell 

differentiation

• miR-21 attenuation induces transcription factor networks supportive of 

memory cells
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Figure 1. Age-Related Increase in miR-21 Expression Controls T Cell Differentiation
(A) Naive CD4+ T cells were isolated from 14 20- to 35-year-old and 16 65- to 85-year-old 

healthy individuals and activated with anti-CD3 and anti-CD28 beads. miR-21 expression 

was measured at the indicated time points by qRT-PCR. Results are normalized to the 

expression of RNU48 and presented relative to those of unstimulated naive CD4+ T cells. 

The horizontal lines represent mean values. *p < 0.05; ****p < 0.0001; NS, not significant; 

all by two-tailed unpaired t test.

(B) Naive CD4+ T cells were activated with anti-CD3 and anti-CD28 beads and transduced 

with a lentiviral vector expressing scrambled control RNA or anti-sense miR-21 (anti-

miR-21). The representative histogram shows proliferation of lentivirally transduced GFP+ 

cells assessed by CellTrace Violet (CTV) dilution on day 5 (left). Proliferation indices are as 

determined by Flow-Jo (n = 10).
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(C-F) Naive CD4+ T cells were activated and transduced with a lentiviral vector as described 

in (B). GFP+ cells transduced with control RNA or anti-miR-21 were sorted on day 5 after 

activation, followed by RNA-seq (n = 4).

(C) In a PCA, miR-21low cells (blue) cluster separately from control-treated cells (red) in 

PC2. Each symbol represents paired replicates.

(D) Cumulative distribution plots show the mRNA fold change of miR-21low cells relative to 

control cells for all genes (blue) and bioinformatically predicted miR-21 (red) or miR-181a 

(green) targets determined by TargetScan (D = 0.3323, p < 0.0001, by Kolmogorov-Smirnov 

test between all genes and miR-21 targets).

(E) Selected genes with significantly increased (red) and decreased (blue) expression in 

miR-21low cells relative to those of control cells (adjusted p < 0.1) are shown as heatmaps of 

fold differences in paired samples.

(F) GSEA plots show the enrichment of gene signatures of murine CD8+ memory (top left, p 

= 0.002, false discovery rate [FDR] = 0.062) and murine KLRG1+ CD8+ terminal effector 

(top right, p = 0.021, FDR = 0.206) compared with changes induced by antagonizing 

miR-21 expression.
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Figure 2. Functional Consequences of Increased miR-21 Expression
Naive CD4+ T cells were activated with anti-CD3 and anti-CD28 beads and transduced with 

a lentiviral vector expressing either scrambled control RNA or anti-miR-21 for 5 days.

(A) Representative histograms of the surface expression of IL7Ra, CCR7, CD62L, IL2Ra, 

and CD39 in GFP+ cells and results of paired samples from 13 (5–8 > 65 years) individuals 

are shown. Effect sizes were similar in young and old individuals.
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(B) Representative histograms of intracellular expression of BCL6, TCF1, and b-catenin in 

GFP+ cells and results from 6–12 (6–9 > 65 years) individuals. The filled gray histograms 

represent the fluorescence minus one (FMO) control.

(C) Representative western blot of BLIMP-1 expression in sorted GFP+ cells and results 

from one old and two young individuals.

(D) Representative histograms and results from 10 to 13 experiments (5 from old 

individuals) of IL-2, TNF-a, granzyme B, and IFN-g production in GFP+ cells after re-

stimulation with PMA and ionomycin. **p < 0.01, ***p < 0.001, ****p < 0.0001; all by 

two-tailed paired t test.
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Figure 3. Activation of Naive CD4+ T Cells from Older Individuals Preferentially Induces the 
Gene Signature of Effector Cells
(A) Naive CD4+ T cells from three 20– 35-year-old and three 63- to 85-year-old individuals 

were activated with beads coated with anti-CD3 and anti-CD28 antibodies for 5 days, 

followed by RNA-seq. The heatmap indicates the relative expression of selected genes 

(adjusted p < 0.1).

(B) Differentially expressed genes from RNA-seq were confirmed by qRT-PCR in an 

independent cohort of 15 20- to 35-year-old and 19 65- to 85-year-old individuals on day 5 

after activation. Results were normalized to ACTB and expressed relative to those of cells 
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from a young individual. The horizontal lines represent mean values (two-tailed unpaired t 

test).

(C) GSEA plots show the enrichment of a gene signature characteristic of young activated 

CD4+ T cells in miR-21low cells (left, p < 0.001, FDR = 0.001), whereas the gene signature 

of old activated CD4+ T cells was related to that in CD4+ T cells with unopposed miR-21 

expression (right, p = 0.028, FDR = 0.265).

(D) The plots display miR-21 levels in unstimulated naive CD4+ T cells for each individual 

presented in Figure 1A (young, closed circles; old, open circles) on the x axis and indicated 

transcript levels on day 5 after activation on the y axis (n = 30). Dotted lines indicate the best 

fit by linear regression. Pearson correlation coefficient and significance are shown.

(E) Naive CD4+ T cells isolated from 20- to 35-year-old and 65- to 85-year-old healthy 

individuals were activated with beads coated with anti-CD3 and anti-CD28 antibodies for 5 

days. Representative plots indicate intracellular production of IL-2 and granzyme B after re-

stimulation with PMA and ionomycin. Numbers in quadrants indicate percent cells in each 

area. Graphs show the frequencies of IL-2-, granzyme B-, and TNF-a-producing cells from 

experiments with cells from 13 young and 14 older individuals. The horizontal lines 

represent mean values.

(F) After VZV vaccination, the VZV-specific T cell frequencies in peripheral blood 

mononuclear cells (PBMCs) were determined by IFN-g enzyme-linked immunospot 

(ELISPOT) at effector (days 8–14) and memory (day 28) time points. Plots display the ratio 

of the VZV-specific T cell frequencies on days 8–14 to day 28 for each individual on the x 

axis and GZMB or TCF7 transcripts in isolated CD4+ HLA-DR+ CD38+ activated T cells on 

day 14 on the y axis (n = 17). Dotted lines indicate the best fit by linear regression. Pearson 

correlation coefficient and significance are shown. *p < 0.05, **p < 0.01, ****p < 0.0001; 

all by two-tailed unpaired t test.
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Figure 4. miR-21 Promotes Effector Cell Differentiation through AP-1 Activation
(A) Naive CD4+ T cells were transfected with either scrambled control or miR-21-blocking 

locked nucleic acid (LNA21). After 48 hr, PDCD4 and b-actin expression were assessed by 

western blot. Representative blots and mean normalized intensities from four experiments 

are shown (mean ± SEM, two-tailed paired t test).

(B) Naive CD4+ T cells were activated with anti-CD3 and anti-CD28 beads and transduced 

with a lentiviral vector expressing scrambled control or anti-miR-21. The representative 

histogram shows phosphorylated JNK in GFP+ cells on day 3. The filled gray histogram 

represents unstimulated naive CD4+ T cells. Results from 7 experiments are expressed 

relative to the geometric mean fluorescence intensity (MFI) of controls (mean ± SEM, two-

tailed paired t test).

(C) Naive CD4+ T cells were activated and transduced as described in (B) and co-transfected 

with the AP-1 luciferase reporter plasmid and the Renilla luciferase control construct. On 
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day 3, the activity of AP-1 firefly luciferase was measured and normalized to that of Renilla 
luciferase (n = 4, mean ± SEM, two-tailed paired t test).

(D–F) Naive CD4+ T cells isolated from 20- to 35-year-old and 65- to 85-year-old 

individuals were activated with beads coated with anti-CD3 and anti-CD28 antibodies.

(D) PDCD4 expression was quantified by RT-PCR on day 3 and day 5. Results are 

normalized to ACTB and presented relative to those of cells on day 3 from young 

individuals. The horizontal lines represent mean values (n = 12–19, two-tailed unpaired t 

test).

(E and F) Representative histograms (E) and geometric MFI of phosphorylated JNK on day 

3 and day 4 from 10 individuals (F). The filled gray histograms represent unstimulated naive 

CD4+ T cells. The horizontal lines represent mean values, and significance was calculated 

by two-tailed unpaired t test.

(G) Naive CD4+ T cells from older adults were activated with anti-CD3 and anti-CD28 

beads in the presence of either DMSO or the AP-1 inhibitor SR11302 for 5 days. Surface 

expression of IL7Ra, CCR7, IL2Ra, and CD39 and intracellular production of IL-2, TNF-a, 

and granzyme B after re-stimulation with PMA and ionomycin were assessed by flow 

cytometry (n = 12, two-tailed paired t test).

(H) Activated naive CD4+ T cells were transfected with scramble control (si-ctrl) or c-FOS-

specific siRNA (si-FOS) on day 2. IL-2, TNF-a, and granzyme B production were assessed 

on day 5 (n = 4, two-tailed paired t test).

(I) Naive CD4+ T cells were activated as described in (G). miR-21 expression was measured 

on day 3 by qRT-PCR. Results are normalized to the expression of RNU48 and presented 

relative to those of unstimulated naive CD4+ T cells (n = 6, two-tailed paired t test).

(J) Naive CD4+ T cells were activated with anti-CD3 and anti-CD28 beads and transduced 

with a lentiviral vector expressing scrambled control RNA or anti-miR-21. After 36 hr, 

activated cells were transfected with si-ctrl or PDCD4-specific siRNA (si-PDCD4). The 

graphs show marker expression in GFP+ cells on day 5 (n = 8, one-way ANOVA followed 

by Tukey’s multiple comparison test).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 5. miR-21 Controls AKT and ERK Activation
(A) Naive CD4+ T cells were transfected with either scrambled control or LNA21. 

Representative western blots and mean normalized band intensities of PTEN, SPRY1, and b-

actin expression after 48 hr are shown (n = 3–4, mean ± SEM).

(B and C) Naive CD4+ T cells from young and older individuals were activated with anti-

CD3 and anti-CD28 beads and transduced with a lentiviral vector expressing scrambled 

control RNA or anti-miR-21.

(B) Representative histogram of phosphorylated S6 in GFP+ cells on day 2 and results from 

7 individuals.

(C) Representative histograms of phosphorylated S6, AKT, mTOR, and ERK in GFP+ cells 

on day 3 and results of paired samples from 7 individuals. The filled gray histograms 

represent unstimulated naive CD4+ T cells.
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(D and E) Naive CD4+ T cells from healthy adults were activated with anti-CD3 and anti-

CD28 beads. On day 3, activated cells were treated with combinations of the AKT inhibitor 

MK-2206 2HCl and the MEK1 and MEK2 inhibitor U0126 for 1.5 hr.

(D) Representative histograms show phosphorylated S6, mTOR, and ERK in cells treated 

with combinations of 40 nM of the AKT inhibitor and 400 nM of MEK1 and MEK2 

inhibitor. Numbers in histograms indicate geometric MFI of p-mTOR and p-ERK.

(E) Graphs depicting the frequencies of cells with phosphorylated S6 cultured with the 

indicated concentrations of the AKT inhibitor in the presence or absence of 400 nM of the 

MEK1 and MEK2 inhibitor (n = 4, mean ± SEM).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; all by two-tailed paired t test.
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Figure 6. Sustained Activation of the AKT and ERK Signaling Pathways in Old Naive CD4+ T 
Cells
(A and B) Naive CD4+ T cells isolated from 20- to 35-year old and 65- to 85-year-old 

individuals were activated with beads coated with anti-CD3 and anti-CD28 antibodies. 

Expression of PTEN (A) and SPRY1 (B) was measured by qRT-PCR on day 3, 4, and 5. 

Results are normalized to ACTB and presented relative to those of cells on day 3 from 

young individuals. The horizontal lines represent mean values (n = 8–19, two-tailed 

unpaired t test).
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(C and D) Representative histograms (C) and phosphorylated S6, AKT, mTOR, and ERK on 

day 3 and day 4 from ten individuals (D) are shown. The filled gray histograms represent 

unstimulated naive CD4+ T cells. The horizontal lines represent mean values (two-tailed 

unpaired t test).

(E) Representative conditional density rescaled visualization (DREVI) plots show DREMI 

analysis of the relationship between p-ERK (left) or p-AKT (right) with S6 phosphorylation 

in naive CD4+ T cells from young and older individuals on days 3 and 4 after activation with 

anti-CD3 and anti-CD28 beads.

(F) DREMI analysis of miR-21high and miR-21low cells as described in (E).

*p < 0.05, **p < 0.01, ***p < 0.001.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 (CD3-2) Mabtech Cat# 3605-1-1000; RRID: AB_907218

CD28 (CD28.2) BD Biosciences Cat# 555725; RRID: AB_396068

CD4 (RPA-T4) BD Biosciences Cat# 555349; RRID: AB_398593

CD8 (RPA-T8) BD Biosciences Cat# 560662; RRID: AB_1727513

CD3 (HIT3a) BioLegend Cat# 300330; RRID: AB_10551436

CD45RA (HI100) BD Biosciences Cat# 555488; RRID: AB_395879

CD45RO (UCHL1) BD Biosciences Cat# 555493; RRID: AB_395884

CCR7 (G043H7) BioLegend Cat# 353212; RRID: AB_10916390

IL7Ra (eBioRDR5) Thermo Fisher Scientific Cat# 12-1278-41; RRID: AB_10853334

CD62L (DREG-56) BioLegend Cat# 304822; RRID: AB_830801

CD25 (M-A251) BD Biosciences Cat# 561399; RRID: AB_10643029

CD39 (A1) BioLegend Cat# 328218; RRID: AB_2562897

IL-2 (MQ1-17H12) BD Biosciences Cat# 560708; RRID: AB_1727543

TNFα (MAb11) BioLegend Cat# 502930; RRID: AB_2204079

Granzyme B (GB11) BD Biosciences Cat# 560213; RRID: AB_1645453

IFN-γ (4S.B3) BD Biosciences Cat# 554552; RRID: AB_395474

BCL6 (K112-91) BD Biosciences Cat# 561525; RRID: AB_10898007

TCF1/TCF7 (S33-966) BD Biosciences Cat# 564217; RRID: AB_2687845

β-catenin (15B8) eBioscience Cat# 50-2567-42; RRID: AB_11218086

p-JNK (T183/Y185; N9-66) BD Biosciences Cat# 562480; RRID: AB_11153134

p-S6 (S235/S236; N7-548) BD Biosciences Cat# 561457; RRID: AB_10643763

p-AKT (S473; M89-61) BD Biosciences Cat# 560343; RRID: AB_1645397

p-mTOR (S2448; O21-404) BD Biosciences Cat# 564242; RRID: AB_2738695

p-ERK (T202/Y204; 20A) BD Biosciences Cat# 612593; RRID: AB_399876

BLIMP-1 (6D3) Santa Cruz Biotechnology Cat# sc-47732; RRID: AB_628168

PDCD4 (600-401-965) Rockland Immunochemicals Cat# 600-401-965; RRID: AB_828370

PTEN (138G6) Cell Signaling Technology Cat# 9559; RRID: AB_823618

SPRY1 (D9V6P) Cell Signaling Technology Cat# 13013

β-actin (13E5) Cell Signaling Technology Cat# 4970; RRID: AB_2223172

Bacterial and Virus Strains

miRZip-scrambled hairpin vector Systems Biosciences Cat# MZIP000-PA-1

miRZip-21 anti-miR-21 Systems Biosciences Cat# MZIP21-PA-1

Biological Samples

Leukapheresis Stanford blood center N/A

Peripheral blood Healthy volunteers N/A

Chemicals, Peptides, and Recombinant Proteins

Lymphoprep STEMCELL Technologies Cat# 07851

Fixable Viability Dye Thermo Fisher Scientific Cat# 65-0866-14
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human GM-CSF R&D Systems Cat# 215-GM-010

Human IL-4 R&D Systems Cat# 204-IL-010

Human TNF-α Peprotech Cat# 300-01A

Human IL-2 Peprotech Cat# 200-02

Prostaglandin E2 Sigma Cat# P0409

SR11302, AP1 inhibitor Tocris Bioscience Cat# 2476

MK-2206 2HCl, AKT inhibitor Selleckchem Cat# S1078

U0126, ERK inhibitor Tocris Bioscience Cat# 1144

Hexadimethrine bromide (polybrene) Sigma Cat# H9268

Toxic shock syndrome toxin 1 (TSST-1) Toxin Technology Cat# TT606

hsa-miR-21-5p miRCURY LNA miRNA Inhibitor QIAGEN (Exiqon) Cat# YI04100689

miRCURY LNA miRNA Inhibitor Control QIAGEN (Exiqon) Cat# YI00199006

Critical Commercial Assays

RosetteSep Human CD4+ T Cell Enrichment Cocktail STEMCELL Technologies Cat# 15062

EasySep Human Naive CD8+ T Cell Enrichment Kit STEMCELL Technologies Cat# 19158

CD45RO MicroBeads, human Miltenyi Biotec Cat# 130-046-001

CD14 MicroBeads, human Miltenyi Biotec Cat# 130-050-201

Dynabeads Human T-Activator CD3/CD28 Thermo Fisher Scientific Cat# 11131D

CellTrace Violet Cell Proliferation Kit Thermo Fisher Scientific Cat# C34557

Fixation/Permeabilization Solution Kit BD Biosciences Cat# 554714

BD Cytofix Fixation Buffer BD Biosciences Cat# 554655

BD Phosflow Perm Buffer III BD Biosciences Cat# 558050

Annexin V apoptosis detection kit BD Biosciences Cat# 559763

RNeasy Plus Micro Kit QIAGEN Cat# 74034

mirVana miRNA Isolation Kit Thermo Fisher Scientific Cat# AM1560

Ovation Human FFPE RNA-Seq Library Systems NuGEN Cat# 0340, 0341

P3 primary cell Nucleofector Kit Lonza Cat# V4XP-3024

Power SYBR Green PCR Master Mix Thermo Fisher Scientific Cat# 4367659

Maxima First Strand cDNA Synthesis Thermo Fisher Scientific Cat# EP0741

miRCURY LNA RT Kit QIAGEN (Exiqon) Cat# 339340

Dual-Luciferase Reporter Assay System Promega Cat# E1910

Deposited Data

RNA-seq data of miR-21high and miR-21low cells This study SRA: SRP158689

RNA-seq data of activated naive CD4+ T cells from
young and older individuals

This study SRA: SRP158502

Microarray data of VZV-specific CD4+ T cells Qi et al., 2016 GEO: GSE86632

Experimental Models: Cell Lines

HEK293T ATCC Cat# CRL-11268; RRID:CVCL_1926

Oligonucleotides

SMARTApool c-FOS siRNA Dharmacon Cat# M-003265-01-0005
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REAGENT or RESOURCE SOURCE IDENTIFIER

SMARTApool PDCD4 siRNA Dharmacon Cat# M-004438-03-0005

siGENOME Non-Targeting siRNA Pool Dharmacon Cat# D-001206-13-05

hsa-miR-21-5p miRCURY LNA miRNA PCR Assay QIAGEN (Exiqon) Cat# YP00204230

SNORD48(hsa) miRCURY LNA miRNA PCR Assay QIAGEN (Exiqon) Cat# YP00203903

Recombinant DNA

psPAX2 Addgene Cat#12260

pMD2.G Addgene Cat#12259

AP-1 luciferase reporter plasmid Addgene Cat#40342

pRL-SV40 renilla luciferase reporter Promega Cat# E2231

Software and Algorithms

FlowJo TreeStar RRID:SCR_008520

Prism GraphPad Software RRID:SCR_002798

Website for DREVI software Krishnaswamy et al., 2014 http://systemsbiology.columbia.edu/center-for-computational-biology-and-bioinformatics-c2b2

Website for gene set enrichment analysis (GSEA) 
software

The Broad Institute http://software.broadinstitute.org/gsea/index.jsp
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