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ABSTRACT In eukaryotes, protein kinase A (PKA) is a master regulator of cell proliferation
and survival. The activity of PKA is subject to elaborate control and exhibits complex time
dynamics. To probe the quantitative attributes of PKA dynamics in the yeast Saccharomyces
cerevisiae, we developed an optogenetic strategy that uses a photoactivatable adenylate
cyclase to achieve real-time regulation of cAMP and the PKA pathway. We capitalize on the
precise and rapid control afforded by this optogenetic tool, together with quantitative com-
putational modeling, to study the properties of feedback in the PKA signaling network and
dissect the nonintuitive dynamic effects that ensue from perturbing its components. Our
analyses reveal that negative feedback channeled through the Ras1/2 GTPase is delayed,
pinpointing its time scale and its contribution to the dynamic features of the cAMP/PKA sig-

naling network.
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INTRODUCTION

The second messenger cyclic-AMP (cAMP) is a ubiquitous signaling
molecule whose synthesis by adenylate cyclase and degradation by
phosphodiesterases (PDEs) occur in all branches of life. In eukary-
otes, protein kinase A (PKA) is the most conserved cAMP-responsive
protein. Binding of cAMP to the regulatory subunit of PKA frees its
catalytic units to phosphorylate hundreds of targets regulating a
vast swath of metabolism and cellular physiology. cAMP often ex-
hibits pulsatile or oscillatory dynamics. In Dictyostelium, for exam-

This article was published online ahead of print in MBoC in Press (http://www
.molbiolcell.org/cgi/doi/10.1091/mbc.E16-06-0354) on November 9, 2016.
TThese authors contributed equally to this article.

*Present address: Department of Systems Biology, Harvard Medical School,
Boston, MA 02115.

J.S.-O. conceived of the optogenetic approach and designed the experiments
with input from H.E.S. and J.S.W., which J.5-O. and S.C. carried out and analyzed.
Modeling was performed by R.B., with input from S.C. and J.S.-O. The manuscript
was prepared by J.S-.0, S.C., and R.B., with input from H.E.S. and J.S.W.
*Address correspondence to: Jacob Stewart-Ornstein (Jacob_Stewart-Ornstein@
hms.harvard.edu), Hana El-Samad (hana.el-samad@ucsf.edu).

Abbreviations used: bPAC, bacterial photoactivated adenylyl cyclase; BLUF, blue-
light using FAD; cAMP, cyclic-AMP; LED, light-emitting diode; ODE, ordinary dif-
ferential equation; PKA, protein kinase A.

© 2017 Stewart-Ornstein, Chen, Bhatnagar, et al. This article is distributed by
The American Society for Cell Biology under license from the author(s). Two
months after publication it is available to the public under an Attribution—
Noncommercial-Share Alike 3.0 Unported Creative Commons License (http://
creativecommons.org/licenses/by-nc-sa/3.0).

“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of
the Cell®” are registered trademarks of The American Society for Cell Biology.

Volume 28 January 1, 2017

ple, waves of cAMP coordinate colony growth and differentiation
(Tyson and Murray, 1989), and in humans, oscillating cAMP levels
regulate insulin secretion in pancreatic beta cells (Holz et al., 2008).

In budding yeast, cAMP levels are regulated by extracellular glu-
cose and a range of growth- and stress-related signals. Changes in
these environmental variables alter cAMP levels, modulating activity
of the PKA complex, which in turn fans out to regulate a wide range
of cellular processes, estimated to involve at least one-third of the
genome (Zaman et al., 2009). PKA has been shown to directly phos-
phorylate more than two dozen proteins, including the mitochon-
drial protein import machinery, P-body components, autophagy
proteins, glycolysis machinery, and a large number of transcription
factors (Ptacek et al., 2005). In conditions of plentiful resources,
cAMP levels are high, and PKA promotes rapid fermentative growth
by enhancing glycolysis and ribosomal production. In stressful con-
ditions, a decrease in cAMP levels causes a drop in PKA activity, re-
sulting in the inhibition of ribosomal and growth-related programs
and the activation of stress-responsive factors such as the transcrip-
tion factor Msn2. This low-PKA-activity state is in many cases tran-
sient, as negative feedback loops embedded in the PKA network
and involving the small G-protein Ras cause PKA activity to rebound
even as stressful conditions continue (Nikawa et al., 1987a).

PKA exerts much of its influence through regulation of the nu-
clear localization and activity of several transcription regulators,
most notably the stress-responsive Msn2 and its homologue, Msn4.
Decreased phosphorylation by PKA of these stress-responsive
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transcription factors leads to their nuclear localization (Smith et al.,
1998). Observation of the PKA-regulated subcellular localization of
Msn2 in yeast cells suggests that PKA activity is highly dynamic,
with rapid pulses of activity occurring in “bursts” of Msn2 localiza-
tion on the minute time scale (Cai et al., 2008).

Although substantial progress has been made in probing the
downstream consequences of dynamic Msn2 pulsing (Hao and
O'Shea, 2011; Hansen and O’'Shea, 2013, 2015), our understanding
of how PKA generates these dynamics is incomplete, partly because
upstream tools to perturb the PKA system in vivo are typically slow
(e.g., mutations) or nonspecific (e.g., stress). A tool that provides a
rapid, specific, and reversible perturbation of PKA signaling is there-
fore needed. In this work, we develop the recently discovered bac-
terial photoactivatable adenylate cyclase (bPAC; Iseki et al., 2002;
Stierl et al., 2011) as a quantitative perturbation tool to investigate
PKA dynamics in Saccharomyces cerevisiae. We demonstrate that
by expressing this bacterial protein in yeast cells, we can achieve
high-resolution temporal control of PKA activity. Using precise opto-
genetic stimuli, we develop and test a model of PKA signaling and
uncover important aspects of its dynamics.

RESULTS

Rapid in vivo regulation of PKA activity by a bPAC

Previous reports demonstrated that PKA exhibits complex dynamics
that occurs on fast time scales, on the order of minutes (Gérner
et al., 1998; Garmendia-Torres et al., 2007; Cai et al., 2008). There-
fore, quantitative studies of this system require perturbations with a
time resolution of seconds. To achieve such rapid perturbation, we
expressed in budding yeast cells a recently characterized bPAC,
originally from the soil bacterium Beggiatoa (Ryu et al., 2010; Stierl
etal., 2011), that contains a light-sensitive BLUF (blue light receptor
using FAD) domain linked to an adenylate cyclase domain. This con-
struct allows for regulation of cAMP levels in living cells by illumina-
tion with blue light (<500 nm), which transiently alters the conforma-
tion of the light-sensitive BLUF domain, rendering the associated
cyclase domain competent to catalyze the conversion of ATP to
cAMP (Figure 1A). To take advantage of this genetically encoded
tool, we assembled a custom-built system that allows us to coordi-
nate the imaging of budding yeast in a fluorescence microscope
with illumination by a blue-light LED. This system is capable of pro-
viding graded illumination for 1-40 pW/mm?. Although substantially
brighter than ambient light (~4 uW/mm?), these blue-light intensi-
ties do not trigger a stress response in budding yeast (Supplemen-
tal Figure S1). Furthermore, bPAC has a fast spontaneous reversion
to the inactive state (<30 s; Supplemental Figure S2; Stierl et al.
2011), enabling of bPAC activity at high time resolution regulation
through control of light intensity. Using this infrastructure, we were
able to apply controlled amounts of blue light to cells expressing
the bPAC construct and quantify the resulting PKA activity in real
time using a localization-based fluorescent Msn2 reporter (Supple-
mental Figure S2). Msn2 nuclear localization is modulated by PKA
via phosphorylation of PKA motifs (RRxS) in the Msn2 nuclear im-
port (nuclear localization sequence [NLS]) and export sequences
(Gorner et al., 1998), making the nuclear enrichment of Msn2 an
accurate measure of PKA activity (Hao and O’Shea, 2011).

To test the ability of bPAC to regulate PKA in vivo, we built a
yeast strain harboring both a hormone-inducible dominant-negative
allele of Ras252*N (Zaman et al., 2009; Stewart-Ornstein et al., 2013)
and a constitutively expressed bPAC. We used the translocation of
mCherry-tagged Msn2 in and out of the nucleus as a measure of
PKA activity (Hao and O’Shea, 2011; quantification of nuclear local-
ization is discussed in Materials and Methods). Expression of Ras2524N
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FIGURE 1: Expression of a bPAC in budding yeast allows for real-time
light-gated control of PKA signaling. (A) The bPAC protein switches
from an inactive to an active conformation in response to light.

(B) Nuclear localization of Msn2 after inhibition of the PKA pathway
by expression of a dominant-negative Ras2 allele (524N; red inset)
and subsequent blue light activation of bPAC expressed in the same
strain (blue inset). Activation of the dominant-negative allele results in
rapid nuclear localization of Msn2 into the nucleus, and this is
synchronously reversed by bPAC activation. Nuclear localization is
defined as the ratio of nuclear to cytoplasmic Msn2 (see also Materials
and Methods). Time trace (thick black line) shows average of 65 cells
with SDs (thin black lines).

inhibits cAMP production by sequestering the Ras guanine exchange
factor CDC25, preventing the formation of Ras-GTP and hence acti-
vation of the endogenous adenylate cyclase. As a result, when this
allele is induced, we expect cAMP levels to drop, PKA to become
inactive, and Msn2-mCherry to be localized to the nucleus. Consis-
tent with this expectation, we observed complete localization of
Msn2 to the nuclei of cells within 10 min of the induction of Ras2524N
expression (Figure 1B and Supplemental Movie S1). Activation of
bPAC should provide an orthogonal non-Ras-dependent source of
cAMP, which would activate PKA and cause Msn2-mCherry to be
exported from the nucleus. Indeed, upon illumination with blue light,
there was a rapid and synchronous exit of Msn2 from the nucleus.
These data are consistent with a sharp increase in PKA activity upon
illumination induced by cAMP production from the activated bPAC
and show that bPAC can produce sufficient cAMP to compensate for
the loss of Ras-dependent endogenous adenylate cyclase activity.

The dynamics of PKA signaling induced by optogenetic
stimulation is explained by a computational model

Using the precise perturbation afforded by the bPAC construct, we
next explored how PKA dynamics is shaped by its signaling network.
To do so, we exposed wild-type cells expressing bPAC to a 3-min
pulse of light (Figure 2A). As discussed earlier, in resting cells, Msn2
localization is predominantly cytoplasmic due to the PKA phosphor-
ylation of the NLS, with occasional stochastic nuclear localization in
individual cells. Consequently, blue light-mediated activation of
bPAC and the subsequent increase in cAMP had only the slight and
expected effect of inducing uniform Msn2 cytoplasmic localization.
Of interest, however, soon after the blue light was turned off, we
observed a sharp transient (lasting ~5 min) increase in Msn2 nuclear
localization above the initial localization state (Figure 2B and Sup-
plemental Movie S2). This pulse of Msn2 nuclear localization after
bPAC shutoff is surprising since we expected Msn2 to return mono-
tonically to its prestimulus steady state. The observed behavior is a
hallmark of an underdamped system, whose signature is a transient
overshoot (transient PKA inactivation) before return to steady
state (fully active PKA) upon change in input, as compared with an
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FIGURE 2: A computational model of the cAMP-PKA circuit explains the response to bPAC
stimulation. (A) Diagram of the components involved in the model and their interactions.
Included are production of cAMP through bPAC stimulation and endogenous cyclase activity,
Msn2 nuclear localization, autoregulatory negative feedback on PKA through Cdc25 and Ras2,
and the effect of Pde1 and Pde2 on cAMP degradation. (B) Top, nuclear localization of Msn2 as
a function of time (black dots are the mean from a population of 379 cells; shaded gray error
bars indicate SD) after a single pulse of blue light (40 pW/mm?). The orange trace is the output
of the computational model containing a negative feedback loop for a single representative
parameter set. The purple trace is a representative output of a model not containing the
feedback. Middle, concentration of cAMP as a function of time for the model with (orange) or
without negative feedback (purple). The negative feedback model predicts a cAMP undershoot
(minimum value denoted by a star), whereas the open loop model (purple) monotonically
approaches the steady-state value (black dotted). The model undershoot is more pronounced
than the experimentally observed undershoot because of the detection limit of the experiment.
Bottom, cAMP production and degradation rates as a function of time. The undershoot in cAMP
concentration is generated by a delayed production of cAMP. The cAMP minimum (star) is
reached when the rate of cAMP production is balanced by the rate of degradation.

overdamped system, which exhibits monotonic return to this steady
state. Such unexpected behavior can be generated by a negative
feedback loop with a delay, a hypothesis that we wanted to further
pursue.

Feedback loops are believed to decorate the architecture of the
PKA signaling network. To investigate the possibility that feedback
is responsible for the underdamped behavior of the PKA system af-
ter bPAC-mediated rapid alteration of cAMP levels, we built two
mathematical models of the PKA network. The first is a negative
feedback model consisting of PKA, its core regulatory and activation
components (Cdc25, Ras, and cAMP), the exogenous optogenetic
stimulation, and Msn2 nuclear shuttling kinetics. The negative feed-
back in this system has been identified genetically and is generally
considered to be implemented through regulation of the Ras1/2
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GTPase proteins (Colombo et al., 2004; Jian
et al., 2010). The second model is an identi-
cal open loop variant that lacks the negative
feedback component, as the dependence
of Cdc25 levels on PKA activity is removed
(Supplemental Note S1). With this open-
loop model, we wanted to test whether the
Msn2 pulse of activity could be simply gen-
erated by the interaction of Msn2 with PKA
without the need to invoke feedback or
whether it is necessarily generated by nega-
tive feedback in PKA signaling.

In contrast to prior work (Garmendia-
Torres et al., 2007; Cazzaniga et al., 2008),
we did not seek to build a model that re-
flects all known biochemical interactions
surrounding PKA signaling. Instead, by
capturing only the known essential interac-
tions in the PKA system, we aimed to build
a simple model that could recapitulate the
pulse of Msn2 translocation after a bPAC
pulse. Because the parameters for the in-
teractions that are captured in the model
have not been measured independently,
we simulated both open- and closed-loop
models for >107 log-uniformly sampled pa-
rameter sets. We then selected the 5.5 x
10% parameter sets that minimized the
mean square error between the model out-
put and the wild-type experimental data of
Figure 2B and optimized these sets by the
Nelder-Mead algorithm to improve the fit
(Nelder and Mead, 1965). We found 1.4 x
10% parameter sets for the negative feed-
back model that generated a good fit to
the data (Figure 2B and Supplemental
Data Set S1). At the same time, we could
not identify any parameters for the open-
loop model that could recapitulate qualita-
tively or quantitatively the transient pulse
of Msn2 (Supplemental Figure S3 and Sup-
plemental Data Set S2). Instead, for all pa-
rameters sampled, the open-loop model
produced an overdamped Msn2 nuclear
residence and depletion profile that de-
creased upon bPAC activation and mono-
tonically increased to prestimulus steady
state upon bPAC shutoff.

Examining the parameter sets for the feedback model that could
recapitulate the Msn2 pulse data revealed a common feature they
all shared: a feedback-induced delay for the activation of the en-
dogenous adenylate cyclase after bPAC shutoff.

In simple terms, bPAC activation injects a large concentration of
cAMP into the system with two consequences. First, the endoge-
nous cAMP production is repressed by the PKA feedback on Ras1/2
activity. In addition, as cAMP concentration increases, the PDE-medi-
ated degradation of cAMP also increases due to mass action effects.
When bPAC is shut off, this cAMP degradation initially continues at a
high rate. This degradation is not immediately counteracted by the
endogenous production of cAMP, as Ras1/2 activity is delayed by
the engaged PKA feedback. As a result of such imbalance between
degradation and production dynamics, cAMP levels transiently drop
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FIGURE 3: Computational modeling is used to dissect the behavior of the Aira2, Apde1, and Apde2 mutants. (A) Model
predicted nuclear localization of Msn2 (top), concentration of cAMP (middle), and cAMP production/degradation rates
(bottom) as a function of time for Aira2. The plots are shown for two representative parameter sets, one of each of the
class 1 and class 2 parameter regimes that could explain this mutant. Top, experimental nuclear localization in response
to 40-uW/mm? blue light input; symbols with error bars in gray. Arrows indicate the change in minimum cAMP
concentration (star) due to the deletion. (B) Same plots as in A, for the Apde1 and Apde2 mutants. Parameter sets used

to generate these plots are sets 7 and 30 of Supplemental Dataset S3.

below bPAC preinduction levels (Figure 2B). The corresponding
drop in PKA activity consequently generates a pulse of Msn2 nuclear
translocation. Msn2 localization reaches its cytoplasmic steady state
when the degradation and production of cAMP equilibrate. Support-
ing the idea that the pulse of Msn2 nuclear localization is a result of
feedback-induced delay, we observed in the model that the pulse
occurs precisely when one of the components in the feedback loop
traversing Ras1/2 to PKA is rate limiting (Supplemental Figure S4).
Moreover, the lack of a cAMP undershoot after bPAC shutoff for the
open-loop model is in agreement with the idea that the feedback-
induced delay of cAMP production produces the cAMP undershoot
and subsequent Msn2 pulse. Taken together, our data suggest that
the observed pulse after bPAC shutoff is likely to be a structural fea-
ture of the negative feedback surrounding PKA.

Quantitative features of Msn2 nuclear pulse after bPAC
shutoff depend on the components of the PKA signaling
network

An implication of feedback in generating the transient Msn2
pulse after bPAC shutoff is that the attributes of this pulse, such
as its peak height and time to peak, can be predictably modified
by perturbations of different components that impinge on this
feedback. To explore this idea, we built bPAC strains in which one
of the following three negative regulators of PKA was deleted:
Ira2, a GTPase-activating protein (GAP) that inhibits Ras1/2 and
hence decreases PKA activity; and low- and high-affinity PDEs
Pde1 and Pde2, respectively, which also decrease PKA activity by
degrading cAMP. We then delivered a pulse of blue light input to
these strains and measured the time dynamics of Msn2 nuclear
localization. Deletion of Ira2, Pde1, and Pde2 generated qualita-
tive and quantitative differences in the system’s response to the
bPAC input. Compared to WT, Aira2 showed no transient Msn2
pulse upon bPAC shutoff, whereas both Apdel and Apde2
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displayed a delayed and attenuated Msn2 pulse (Figure 3 and
Supplemental Figure S5).

To capitalize on the model as a guide for our intuition in under-
standing these differences, we used the parameter sets of the feed-
back model that fit the wild-type (WT) data as seeds to perform a
second stage of fitting to experimental data from all four strains (WT
and three mutants; Supplemental Note S1). Of the original data set,
only ~300 parameter sets from the original ensemble produced a
good fit to all experimental data (Supplemental Data Set S3), sug-
gesting that the mutant data effectively constrained the model pa-
rameters. For any one mutant, simulated trajectories of nonfitted
variables (e.g., active Ras) were quantitatively different based on the
particular parameter set used. However, these trajectories had com-
mon qualitative features that provided plausible explanations for
the particular Msn2 phenotype observed in the various mutants.

For Aira2, two nonexclusive parameter categories were at the
root of the suppression of the Msn2 translocation pulse (Figure 3A
and Supplemental Figure Sé). In the first category, accumulation of
Ras in the model due to the absence of the negative regulator IRA2
caused a large increase in cAMP concentration both at steady state
and during bPAC application (Figure 3A, left). After bPAC shutoff,
the degradation of cAMP still proceeds at a fast rate and may cause
cAMP levels to transiently drop below their (elevated) steady-state
value. However, for the particular parameter sets corresponding to
this mutant, even the lowest cAMP level achieved is still sufficient to
keep PKA activity above the threshold that needs to be traversed in
order for Msn2 to translocate to the nucleus (Supplemental Figure
S7). In the second category of parameters also reproducing the
Aira2 data, the lack of an Msn2 pulse resulted from altered feed-
back. Here the pulse of Msn2 nuclear translocation was abrogated
by the fact that, due to higher Ras activity in this mutant, CAMP
degradation was more quickly balanced by endogenous cAMP pro-
duction after bPAC shutoff (Figure 3A, right).

Molecular Biology of the Cell
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FIGURE 4: High-precision control of cAMP using bPAC allows for systematic characterization of the PKA system using
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with blue light duration (left) and amplitude (right) in cells expressing bPAC. Experimental WT data collected at 30-s
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light doses. (B) Top, the model predicts that nuclear localization shows a trend similar to the experimental data of A
when light amplitude or duration increases (parameter set 0 from Supplemental Data Set S3; see also Supplemental
Figure S7). Data normalized by maximum value. Bottom row, maximum simulated cAMP concentration increases with
both light duration and amplitude. (C) Left, mean Msn2-mCherry nuclear localization after blue light illumination at
different pulse frequencies. Right, peak mean Msn2 nuclear localization at each frequency (black dots) with fit to
second-order transfer function (gray lines). (D) Left, model prediction of the frequency sweep experiment in C for a
representative set of parameters (parameter set 17 in Supplemental Data Set S3). Right, peak Msn2 nuclear localization
at each frequency for representative parameter sets (black dots), with fits to second-order transfer function (gray lines).

The model also clarified the phenotypes of Apde T and Apde2,
which both show a delayed and attenuated Msn2 nuclear translo-
cation pulse. In both mutants, degradation of cAMP is reduced,
resulting in rapid accumulation of cAMP to levels exceeding those
of the wild type upon bPAC stimulation. After bPAC shutoff, im-
paired degradation of this excess cAMP keeps PKA activity high
for an extended period of time, therefore maintaining Msn2 cyto-
plasmic localization during that time and explaining the delay.
Levels of cAMP eventually decline below a level capable of keep-
ing PKA active, and a pulse of Msn2 nuclear translocation ensues.
The presence of the pulse is still a result of the feedback-induced
delay in endogenous cAMP production, but its attenuated magni-
tude is a manifestation of the combined effect of a slower cAMP
degradation (slower rise time for the pulse) and a greater ability of
cAMP production to balance this degradation (Figure 3B). The
different quantitative phenotypes of Apde1 versus Apde2 are as-
cribed by the model to different affinity of these enzymes to
cAMP, resulting in a differential effect of their deletion on cAMP
degradation rate. This differential binding of Pde1 and Pde2 to
cAMP is well documented experimentally (Sass et al., 1986;
Nikawa et al., 1987b). In addition, the model indicates that at
steady state, CAMP levels for these mutants is similar to that of the
wild type, a nonintuitive result of the feedback ensuring that de-
creased cAMP degradation is homeostatically counteracted by
decreased Ras.

The observation that the dynamics of the Msn2 nuclear pulse is
profoundly affected by perturbations of the PKA network, sup-
ported by our modeling results, lends further support to the notion
that this pulse is predominantly generated by the PKA signaling net-
work itself.
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bPAC enables frequency- and amplitude-modulated control
of the PKA signaling network

To further explore the feedback model with the constrained param-
eters, we subjected it to light pulses of increasing amplitudes and
durations, inputs for which the model was not fit (Figure 4A). With
increasing light duration at a fixed intensity, the model predicted a
corresponding graded increase in peak nuclear localization of Msn2
(Figure 4B). A similar conclusion holds for increasing light intensity
for a constant duration (Figures 4B and Supplemental Figure S8).
This is because in this model, the cAMP response is dependent on
the integral of the total light pulse within this intensity/duration re-
gime (Figure 4B, bottom). Hence both light stimulus amplitude and
duration can achieve a continuous range of values for the peak of
the Msn2 pulse. Experiments performed with bPAC pulses of differ-
ent intensities and durations agree with this result (Figure 4A), sup-
porting the basic model structure.

Finally, we asked whether the model can recapitulate the filtering
properties of the PKA system, which can be determined by assess-
ing the system’s output to different bPAC input pulse trains of differ-
ent frequencies (Toettcher et al., 2013). Such a frequency response
analysis provides a quantitative picture of the dominant time scales
of PKA signaling. We therefore used the optogenetic bPAC input to
apply light pulses at six distinct frequencies spanning 0.83 to
0.11 min~", with five repeats of each frequency (except for 0.11 min™,
which only had two repeats). Experimental data revealed a low-pass
filter with a cutoff frequency of 0.33 min~' and quality factor of 0.88
(Figure 4C and Supplemental Movie S3), suggesting that the re-
sponse time scale of the PKA system is <1/0.33 = 3 min and that
inputs with substantially higher frequency content are significantly
attenuated.
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We then stimulated the computational model with a bPAC input
consisting of a train of pulses with decreasing frequencies and com-
pared these simulations to the experimental results (Figure 4D,
top). We repeated this exercise for all of the parameter sets that
recapitulated the data in previous sections. The maximum magni-
tude of Msn2 nuclear localization varied among parameter sets.
However, all parameter sets consistently predicted that the system
has the characteristics of a second-order low-pass filter with a me-
dian cutoff frequency of 0.14 min~" with interquartile range of 0.12-
0.15 min~" and a quality factor of 0.86 with interquartile range of
0.77-0.93 (see Supplemental Note S1 for the conventions used in
the transfer function and Supplemental Figure S9 for the phase re-
sponse). The cutoff frequency arises because at high pulsing fre-
quencies, shutoff of bPAC is now closely followed by another bPAC
activation pulse, such that cAMP concentration now cannot fall be-
low the preinduction level before the next light pulse is applied
(Figure 4D, bottom).

The quantitative difference between the computational and ex-
perimental cutoff frequency is not surprising. Ultimately, our model
was built to be the most parsimonious representation that captures
the phenomenology and overall characteristics of the system and
trained on a limited set of data. Specifically, since the model was
trained on 3-min light pulses, it cannot predict accurately the rates
of cAMP production/degradation necessary to fit shorter light
pulses and hence cannot quantitatively fit data obtained at high in-
put frequencies. Therefore, while this model reveals the main dy-
namic characteristics of the PKA signaling network, featuring de-
layed feedback, more detailed representations and experimentation
are needed to accurately capture the true quantitative complexity of
the PKA system.

DISCUSSION
Growth-regulatory signaling pathways such as the PKA pathway link
perception of the environment with cell proliferation. To reliably re-
lay the environmental state, these pathways often show rapid dy-
namics. Rapid dynamics of PKA was previously documented in re-
sponse to environmental perturbations (Garmendia-Torres et al.,
2007; Hao and O’Shea, 2011). Fast and minimally pleiotropic pertur-
bation tools are therefore required to explore these dynamics and
evaluate their functional roles. Optogenetic perturbations are in-
creasingly identified as powerful tools to carry out these studies.
Although optogenetic technology has seen widespread use in neu-
roscience, these tools were only recently introduced in the study of
a wider breadth of molecular biology. In this work, we capitalize on
a naturally occurring bPAC to study PKA signaling in budding yeast.
We show that when coupled with real-time reporters and computer-
controlled illumination, bPAC constitutes a powerful general tool for
administering precise and specific perturbations to this system to
probe its quantitative properties. Using this tool, we were able to
study the system-level characteristics of the PKA signaling pathway.

Specifically, our studies using bPAC indicated that strong neg-
ative feedback channeled through Ras1/2 in the PKA signaling
network in budding yeast causes a delay in Ras1/2-mediated en-
dogenous production of cAMP, and we pinpointed its relevant
timescale. Using these data, we were able to build a quantitative
computational model that generated a rigorous predictive under-
standing of the role of feedback in generating PKA activity dy-
namics, which may be important in regulating downstream signal-
ing and gene expression.

Using a combination of precise optogenetic perturbation and
quantitative modeling, this study enabled identification of dynamic
properties of the PKA signaling network that would otherwise be
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difficult to dissect using slower and more pleiotropic methods such
as knockouts and overexpression. More generally, our analyses re-
vealed two salient principles. First, the presence of feedback in a
system generates nonintuitive dynamic effects upon perturbation of
components both within (such as Ira2) and outside the feedback
loop (such as Pde1/2). Second, different regulatory components
with the same overall qualitative description (e.g., both Pde1/2 and
Ira2 negatively affect PKA activity) can generate vastly different
qualitative and quantitative phenotypes.

Overall it is tempting to hypothesize that these regulators could
be used as gateways for different environmental inputs into this sys-
tem. In this scheme, different inputs can affect and perturb different
regulators. Because perturbation of such regulators induces distinct
dynamical phenotypes, this scheme could be the basis for encoding
the identity of inputs into different dynamical patterns of the path-
way. Dynamic encoding of inputs has been proposed as a strategy
for implementing response specificity in a signaling pathway that
propagates multiple environmental inputs (Hao and O’Shea, 2011).
Although current research has focused on identifying specific mole-
cular implementations of such a strategy, in the future, it will be in-
teresting to investigate the dynamically malleable platform of feed-
back as a possible basis for generating dynamic encoding in
signaling pathways.

MATERIALS AND METHODS

Yeast strains and constructs

All yeast strains used for these experiments are derived from
W303A-1 in which the ade2 marker was reverted to ADE2+ to re-
duce the autofluorescence. Msn2-mCherry was integrated at the
trp1 locus, and the bPAC construct was integrated into the leu2 lo-
cus. Overexpression construct for RAS2(S24N) was integrated into
the TRP1 locus of a LEU2+ MATalpha strain that contained an estra-
diol-inducible construct. All strains were constructed using standard
yeast protocols and LioAc/PEG transformation.

The RAS2(S24N) expression vector was constructed by amplifica-
tion of the RAS2 gene from yeast genomic DNA and cloned down-
stream of a prGAL1 promoter in a TRP1-marked single integration
plasmid. Site-directed mutagenesis was performed to create the
dominant-negative allele of RAS2(S24N) using a standard Qui-
kChange protocol and the pfuTurbo enzyme mix (Stratagene, La
Jolla, CA). The bPAC gene was synthesized with yeast-optimized co-
dons by Integrated DNA Technologies (Coralville, IA) and cloned
downstream of a prNOP7 promoter in the LEU2-marked single inte-
gration vector.

Microscopy, image acquisition, and analysis

Cells expressing Msn2-mCherry or related constructs were plated in
SD complete medium onto concanavalin A-coated 96-well glass-
bottom plates, allowed to settle, and then washed twice with fresh
medium and 100 pl of fresh medium added.

Samples were imaged on a Nikon Ti inverted scope with
arc-lamp illumination using red fluorescent protein (560/40 nm
excitation, 630/75 nm emission; Chroma, Bellows Falls, VT) and
yellow fluorescent protein (510/10 nm excitation, 542/27 nm
emission; Semrock, Rochester, NY) filters. Blue light illumination
was provided by a 465-nm LED driven by a USB-controlled power
source (MIGHTex, Pleasanton, CA) mounted on the bright-field
condenser. Imaging and illumination were controlled and coordi-
nated by custom Matlab (MathWorks, Natick, MA) software inter-
faced with the pmanager software suite (Edelstein et al., 2010).

Images were processed and analyzed with ImageJ and custom-
built Matlab scripts. Nuclear localization was computed by dividing
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the average intensity of the brightest 10% of pixels in the cell by the
median intensity of the cell.

Deterministic model

An ordinary differential equation (ODE) model of the PKA regulatory
network, consisting of mostly Michaelis-Menten interactions, was
constructed with five state variables and 24 parameters. Latin hyper-
cube sampling and Nelder-Mead optimization of parameters
(Nelder and Mead, 1965) were done to obtain model fits. Additional
details of the computational methods are described in Supplemen-
tal Note S1.
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