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Abstract

Neural circuits consist of many noisy, slow components, with individual neurons subject to

ion channel noise, axonal propagation delays, and unreliable and slow synaptic transmis-

sion. This raises a fundamental question: how can reliable computation emerge from such

unreliable components? A classic strategy is to simply average over a population of N

weakly-coupled neurons to achieve errors that scale as 1=
ffiffiffiffi
N
p

. But more interestingly, recent

work has introduced networks of leaky integrate-and-fire (LIF) neurons that achieve coding

errors that scale superclassically as 1/N by combining the principles of predictive coding

and fast and tight inhibitory-excitatory balance. However, spike transmission delays pre-

clude such fast inhibition, and computational studies have observed that such delays can

cause pathological synchronization that in turn destroys superclassical coding performance.

Intriguingly, it has also been observed in simulations that noise can actually improve coding

performance, and that there exists some optimal level of noise that minimizes coding error.

However, we lack a quantitative theory that describes this fascinating interplay between

delays, noise and neural coding performance in spiking networks. In this work, we elucidate

the mechanisms underpinning this beneficial role of noise by deriving analytical expressions

for coding error as a function of spike propagation delay and noise levels in predictive coding

tight-balance networks of LIF neurons. Furthermore, we compute the minimal coding error

and the associated optimal noise level, finding that they grow as power-laws with the delay.

Our analysis reveals quantitatively how optimal levels of noise can rescue neural coding per-

formance in spiking neural networks with delays by preventing the build up of pathological

synchrony without overwhelming the overall spiking dynamics. This analysis can serve as a

foundation for the further study of precise computation in the presence of noise and delays

in efficient spiking neural circuits.
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Author summary

Remarkably, the brain can perform precise computations, despite being composed of

noisy neurons with slow, unreliable synaptic connectivity. To understand how this is pos-

sible, we can imagine the classic strategy where neurons are grouped into weakly-coupled

subpopulations, creating redundancy to achieve high precision. But interestingly, recent

work proposed a tight-balance neural network that instead uses fast, strong connectivity

between neurons to achieve much higher precision with the same number of neurons.

This efficiency is attractive, but notably, signals take time to propagate in the brain. Such

propagation delays alone can lead to pathological synchronization. Intriguingly, while

noise commonly degrades the performance of a computational system, it has been

observed in simulations that noise can help mitigate synchronization and in fact rescue

performance in tight-balance networks. In this work, we develop a theory that quantifies

the simultaneous effects of delays and noise in tight-balance networks, and allows us to

compute the optimal noise level as a function of delay, yielding conceptual insights into

how noise can counteract delay induced synchronization to preserve precise computation

in efficient neural networks.

Introduction

The brain is capable of precise, reliable computation—for example, a professional violinist

generates fine motor commands to reproduce a given pitch, or an impressionist produces

speech patterns to mimic a celebrity’s voice. Yet, the underlying computational substrates in

the brain—neurons, synapses, and axonal transmission—are noisy, unreliable, and slow [1, 2].

This paradox begs a fundamental question in neuroscience: how do neural networks facilitate

precise computation with imprecise computational primitives [3]? And moreover, in light of

evolutionary forces favoring energy-efficiency [4, 5], how is this precise computation facili-

tated efficiently?

The simplest setting to study the precision of computation is that of coding [6]—with what

fidelity can, say, a dynamical signal x(t) be encoded in a network and read back out as an esti-

mate x̂ðtÞ? The classic strategy is to read out x̂ðtÞ as an average over N redundant neurons; this

results in a readout error that scales as 1=
ffiffiffiffi
N
p

as long as single neuron noise is not strongly

coupled across the population [1]. However, a recent predictive coding framework [7] intro-

duced a formulation for a tightly-balanced network of spiking leaky-integrate-and-fire (LIF)

neurons with readout error that scales superclassically as 1/N. In predictive coding, only the

unpredicted difference x̂ðtÞ � xðtÞ is encoded and passed to downstream processing, saving a

great deal of information compared to directly encoding x(t); signatures of predictive coding

have been observed in sensory areas of the brain [8]. The predictive coding framework [7]

combines this principle with that of a strong, fast inhibitory feedback, known as tight balance,

so that each neural spike corrects the error x̂ðtÞ � xðtÞ when it reaches a threshold and rapidly

inhibits the other neurons to prevent overcorrections—this results in a highly efficient code, in

which no spike is wasted. Moreover, despite each spike’s dedicated purpose, the framework is

robust to the death of individual neurons and reproduces the highly irregular spiking activity

observed in cortex [9].

Critically, however, axonal and synaptic transmission introduce a delay that renders the

rapid inhibition in the framework [7] problematic, reducing the fidelity of the code [10–12].

Namely, if an inhibitory signal arrives late, other neurons may spuriously spike, producing
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overcorrections in the error and wasted spikes. However, intriguingly, adding noise to the neu-

ral membrane potentials introduces a beneficial variation, spreading out the times at which

neurons will spike next so that the delayed inhibition has sufficient time to propagate before

spurious spikes occur, and rescues the coding fidelity. Notably, too little noise does not provide

a sufficient spread, and too much noise destroys overall fidelity. Thus an optimal noise level

exists.

Importantly, several simulation studies have observed the beneficial role of noise in the pre-

dictive coding framework [7], regardless of the specific neural model or noise modality. For

example, [12] studies a soft-threshold neural model with transmission delays, [11] studies an

LIF model with membrane noise, transmission delays, and synaptic delays, and [10] studies

conductance-based Hodgkin-Huxley neural dynamics with finite time-scale synapses. Indeed,

it is a general phenomenon in the predictive coding framework that a group of neurons com-

pete to correct the same error, and delays preclude timely inhibition, resulting in pathological

synchrony known as the hipster effect [13]; noise helps diversify the dynamics, assuaging the

effect. While observations from simulations are insightful, however, we lack a quantitative

understanding of this fascinating interplay between the delay and the level of noise. How does

coding fidelity depend on the length of the delay and the level of noise? And given a delay,

what is the highest achievable fidelity and the associated optimal level of noise? Indeed, the

simple, efficient spiking network of the predictive coding framework presents a foundational

scenario in which to expand the study of stochastic facilitation [14].

We address these fundamental questions by going beyond simulations to derive analytical

expressions for coding fidelity as a function of noise level and small delays in tightly balanced

networks of LIF neurons. Previous work [15] derived similar expressions for non-spiking

“rate” neurons by adapting the predictive coding framework [7] to non-spiking neurons. Our

work takes a step closer toward understanding efficient coding in biological neural networks

by explicitly including the spiking nature of neural communication in the brain. Indeed, when

considering efficiency, spikes are important because action potentials account for a large por-

tion of the brain’s energy expenditure [16] and provide a form of digital communication,

which may allow the brain to tap into the efficiency associated with a hybrid analog-digital

computing system [17, 18]. Moreover, experiments have shown that spike-timing conveys

information in several brain regions [19–21]. Thus, we hope that our analytical insights here

provide a foundation for further investigation into the interplay of noise and delays in efficient

cortical circuits.

Models

Efficient coding with a network of leaky integrate and fire neurons

We ask the question, how well can a spiking network encode a continuous, time-varying input

signal in the presence of noise and transmission delays? To operationalize this question, we

start with three assumptions: (1) the output signal is linearly decoded from a densely-con-

nected population of spiking neurons, (2) the network minimizes the mean-squared error

between its output and the input signal, and (3) for brevity, we assume the input is 1-dimen-

sional, though our results can be extended to multi-dimensional signals. Thus we consider a

scalar input signal x(t), and the network’s scalar output x̂ðtÞ—the network’s estimate for x(t).
The network itself is a densely-connected recurrent circuit of N leaky integrate and fire (LIF)

neurons. The activity of the i’th neuron (where i = 1, . . ., N) is described by the spike train,

oiðtÞ ¼
P

k dðt � tki Þ, where δ(�) is the Dirac δ-function representing a single spike, and tki is

the time of the k’th spike of the i’th neuron. To convert this discrete spiking activity into a

smoother output signal, the spike trains oi(t) are first passed through a linear filter to yield the
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instantaneous firing rates ri(t), which obey

t _riðtÞ ¼ � riðtÞ þ toiðtÞ; ð1Þ

where the dot (_) represents derivative with respect to time, and τ is the time-constant of the fil-

ter. And second, these firing rates ri(t) are linearly summed to yield the network’s estimate

x̂ðtÞ:

x̂ðtÞ≔
1

N

XN

i¼1

wiriðtÞ; ð2Þ

where the wi 2 R are the weights of the linear decoder.

The network’s objective is to achieve x̂ðtÞ � xðtÞ by minimizing the mean-squared-error

ε2 ¼ hðxðtÞ � x̂ðtÞÞ2it, where the angular brackets h�it denote average over time. In order to

simplify our study of the mean-squared-error ε2, we choose to work with inputs x(t) that vary

slowly compared to the spiking network’s timescale τ. With this choice, we can treat the input

x(t) = x as effectively constant, and thus ε2 can be written as ε2 ¼ ðhx̂ðtÞit � xÞ2 þ hðdx̂ðtÞÞ2it ,
where we have substituted in dx̂ðtÞ≔ x̂ðtÞ � hx̂ðt0Þit0 and used the fact that hdx̂ðtÞit ¼ 0.

Importantly, we see that ε2 can be divided into two contributions: a contribution from the bias

ðhx̂ðtÞit � xÞ2 and a contribution from the variance hðdx̂ðtÞÞ2it. Since the bias—here, a con-

stant—could be deterministically removed [15], we focus on computing the contribution from

the variance, which is simply the square of the standard deviation of the readout,

sreadout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðx̂ðtÞ � hx̂ðt0Þit0 Þ
2
it

q

: ð3Þ

We henceforth refer to σreadout as the readout error—an inverse measure for coding fidelity.

The dynamics of the N densely-connected LIF neurons are given by the equation

t _ViðtÞ ¼ � lVViðtÞ þ IiðtÞ � tJiioiðtÞ � t
X

j6¼i

Jijojðt � DÞ þ
ffiffiffi
t
p
sZiðtÞ; and

and neuron i emits a spike when Vi > T:

ð4Þ

where Vi(t) is the membrane potential of the i’th neuron, T ¼ 1

2
is the firing threshold (in the

absence of noise, delay, and with small leak, one will find that this choice of threshold will

make the average membrane potential approximately zero when the estimation error is zero

[7]), λV controls the strength of the leak, Ii(t) is the input current, Jii implements the neural

self-reset, Jij implements dense connectivity, Δ is the spike propagation delay, and the ηi(t) are

independent unit-Gaussian noise with σ controlling the membrane noise level.

Now the critical question is, how do we choose the input Ii(t) and recurrent connectivity Jij
so that the noisy, delayed, discontinuous, and nonlinear dynamics of Eq 4 result in minimal

readout error σreadout? We start with the predictive coding framework proposed in [7] that

specifies these network properties given fixed readout weights {wi: 1� i� N}. The framework

does so by minimizing the mean-squared-error in a setting in which there are no delays (Δ =

0), and noise is negligible. The resulting network [7] has

Jij ¼ wiwj ð5Þ

IiðtÞ ¼ NwixðtÞ: ð6Þ

This network exhibits tight balance: the O(N) excitatory input currents Ii(t) are matched by the

O(N) inhibitory terms involving Jij in Eq 4. (The weights wi and the input x(t) are O(1), and
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each neuron, on average, spikes at an O(1) rate, hence a total O(N) inhibition when summing

across the population.) Tight balance, i.e., balance of O(N), can be contrasted with balance of

Oð
ffiffiffiffi
N
p
Þ, known as classical balance [22], or balance of Oð<

ffiffiffiffi
N
p
Þ, representing loose or no bal-

ance. Importantly, tight balance facilitates the superclassical O(1/N) scaling of the readout

error in [7]—as was shown in [15]—and thus we specialize in this work to tight balance. And

for simplicity, we specialize to uniform readout weights, wi = 1 8i, which corresponds to a pop-

ulation of neurons with the same tuning curve. In the following, we study how the nonzero

delay Δ and non-negligible noise level σ impact the readout error σreadout.

Soft-threshold model

In addition to the LIF model, we introduce a soft-threshold model to study the effects of noise

and delays in a simpler setting. In the soft-threshold model, the membrane potentials obey

t _ViðtÞ ¼ IiðtÞ � tJiioiðtÞ � t
X

j6¼i

Jijojðt � DÞ;

and neuron i emits spikes with probability rate rðViÞ ¼

r; Vi > T

0; Vi � T
:

8
<

:

ð7Þ

The soft-threshold model is also known as the escape-rate model [23], and has been used in

prior work on the predictive coding framework [12] and in fitting neural spike train record-

ings to Generalized Linear Models (GLMs) [24].

Notably, the probabilistic firing of the neurons introduces variation in spike-timing. This is

similar to how in the LIF model (Eq 4) the noise term
ffiffiffi
t
p
sZiðtÞ accumulates over time in the

membrane potentials, which also results in variation in spike-timing. Intuitively, the standard

deviation, 1/ρ, of the exponentially-distributed spike-times under the probabilistic firing rate ρ
corresponds to an effective noise level, which we can tune by adjusting ρ. However, note that

in contrast to the LIF model, which requires the leak term λV Vi(t) to bound accumulated vari-

ability from the noise term
ffiffiffi
t
p
sZiðtÞ, we will see in the next section that probabilistic firing

introduces naturally-bounded spike-time variability. Thus, the leak term λV Vi(t) is not neces-

sary in the soft-threshold model, and so we do not include it in Eq 7 for simplicity.

Importantly, for the ρ!1, zero delay (Δ = 0) limit, the soft-threshold model becomes

equivalent to the original formulation of the predictive coding framework with hard threshold

[7]. The LIF model also becomes equivalent to [7] in the zero noise (σ = 0), zero delay (Δ = 0)

limit. Thus, both models serve as good starting points for analyzing the predictive coding

framework with small delays and small noise, as we will see below. We analyze the soft-thresh-

old model in addition to the more complex LIF model because it offers simpler derivations,

but yields similar conclusions as the more complex LIF model.

Results

Overall behavior of efficient coding spiking models

To understand the nominal dynamics of the LIF and soft-threshold models, let us consider

encoding the constant input signal x(t) = 1, and first consider the dynamics of the LIF model

with a large number of neurons N. The input current Ii(t) (Eq 6) becomes Ii(t) = N with our

choice of decoding weights wi = 1, and the connectivity strengths Jij become Jij = 1 8i, j (Eq 5).

When there are no spike transmission delays (Δ = 0) and no noise (σ = 0), the dynamics of every

membrane potential Vi(t) are identical (Eq 4): a spike from any neuron inhibits all membrane

potentials equally, instantaneously, and simultaneously; and any differences in the membrane
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potentials’ initial conditions Vi(0) are forgotten on the time-scale τ/λV due to the leak term

−λV Vi(t). We are interested in continuously operating networks, so let us consider the network

dynamics after a long time t� τ/λV, in which the initial conditions are indeed forgotten. In this

case, the membrane potentials Vi(t) are traveling together toward threshold, driven by the input

current Ii(t) = N (Fig 1a, top). When a membrane potential reaches threshold, the neuron fires a

spike, which immediately self-resets the membrane potential by 1 via the −τJiioi(t) term and dec-

rements all other membrane potentials by 1 through the −τ ∑j6¼i Jijoj(t) term (Eq 4). (Note that

here we have assumed that some infinitesimal variation in the membrane potentials persists,

e.g., an infinitesimal remnant from the forgotten initial conditions; thus, when the membrane

potentials approach threshold, a single membrane potential hits threshold and spikes an instant

before the rest of the membrane potentials, allowing sufficient, i.e., infinitesimal, time for the

Fig 1. Tight-balance spiking network dynamics and readout. (a) Nominal dynamics. When there are no spike propagation delays and zero noise, the

membrane potentials (purple) follow the same trajectory in time. When the population reaches threshold, one neuron’s spike (red) instantaneously inhibits

all the neurons, preventing further spikes. This produces perfectly regular spikes, like clockwork with an approximate period of t

N. Each spike contributes 1

N
to the readout, creating a tight, zig-zag approximation x̂ðtÞ (blue) for the encoded signal, x(t) = 1 in this case. (b) The effect of delays and noise. When

delays are present and noise is added to the membrane potentials (left, multicolor), two effects appear that decrease the fidelity of the readout x̂ðtÞ (right,

blue): variation in spike-timing and synchronous spurious spikes. The noise on the membrane potentials (σ) creates variations in the time it takes

membrane potentials to reach threshold—a deviation from the perfectly regular spikes in (a). And after the first neuron in the population crosses threshold

and spikes (red), there is a delay Δ until the other neurons receive inhibition, and thus some extra neurons may spike—spurious synchronous spikes

(yellow). Given a fixed delay, too little noise σsmall does not spread the membrane potentials enough to prevent a large number of spurious spikes, and too

much noise σlarge destroys the fidelity of the code altogether. An optimal noise level exists, σ�. (c) Soft-threshold model. In the soft-threshold model, neurons

spike probabilistically once their membrane potentials surpass threshold, with a spiking probability rate ρ. As ρ is varied (not illustrated), one finds a

relationship analogous to the noise level trade-off for the LIF model shown in (b): too small ρ creates large variations in spike times, and too large ρ creates

many spurious spikes during the delay. Thus, an optimal ρ� exists.

https://doi.org/10.1371/journal.pcbi.1010593.g001
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instantaneous inhibition to prevent additional neurons from spiking.) The membrane potentials

then continue to be driven by the input current Ii(t) = N, and it takes a time of approximately

τ/N for a membrane potential to reach threshold again, where we have assumed that the leak

term −λV Vi(t) is small relative to the O(N) driving current because the membrane potentials

themselves are Vi(t) = O(1). When a membrane potential reaches threshold after time of approx-

imately τ/N, it fires a spike, and this process repeats: the network produces spikes like clockwork,

with an approximate period of τ/N.

Given this network spiking pattern, we can understand the corresponding readout trajec-

tory x̂ðtÞ by recalling that the readout x̂ðtÞ is a sum of instantaneous firing-rates ri(t) uniformly

weighted by 1

N (Fig 1a, bottom). The mean readout hx̂ðtÞit ¼ 1 because the time constant of the

instantaneous firing rates ri(t) is τ (Eq 1), τ × 1/(τ/N) = N spikes occur during a time τ, and the

firing rates are weighted by 1

N in the decoder (N spikes� 1

N ¼ 1). This mean matches the

desired signal, x(t) = 1. Furthermore, the readout trajectory x̂ðtÞ forms a zig-zag around the

mean value because the readout x̂ðtÞ simply exponentially decays with time constant τ between

spike-times, which is approximately linear because the time between spikes τ/N is small com-

pared to τ (since N is large). And the zig-zag is tight; it has magnitude O(1/N), because each

spike contributes 1

N to the readout. Thus we see here the superclassical O(1/N) scaling of the

readout error, because each individual spike is precisely timed to optimally correct the devia-

tions in x̂ðtÞ from x(t) = 1.

Next, let us consider the addition of noise σ> 0 and spike propagation delay Δ> 0 (Fig 1b).

Intuitively, the integration of the independent noise terms
ffiffiffi
t
p
sZiðtÞ spread out the membrane

potentials Vi(t), and thus they no longer share exactly the same trajectory when traveling

toward threshold and instead travel in a continuously-fluctuating packet of some finite width.

Importantly, both the packet width and the variance in the time to first spike increase with the

noise level σ. Now, as the packet travels toward threshold, a top neuron in the packet eventually

reaches threshold and spikes. This spike instantly self-resets the firing neuron through the

−τJiioi(t) term, but the inhibition arrives a time Δ later to the other membrane potentials

through the −τ ∑j6¼i Jijoj(t − Δ) term. Importantly, during the delay time Δ, all membrane

potentials continue to be driven by the strong input current Ii(t) = N, and so there is a possibil-

ity that additional membrane potentials reach threshold before they receive the inhibition

from the first neuron’s spike. As these neurons hit threshold, they produce extra, spurious

spikes that create undesirably large deviations in the readout x̂ðtÞ, leading to high readout

error. Thus for a fixed delay Δ, we see a trade-off in the noise level: for small noise σsmall, the

membrane potentials travel in a tight packet, and thus there are likely many membrane poten-

tials crossing threshold during the delay Δ resulting in many spurious spikes and a large read-

out error. And for large noise σlarge, the membrane potentials are more spread out, reducing

the number of spurious spikes during the delay Δ, but at the cost of introducing a large devia-

tion in the time-to-spike for the first-spiking, top neuron in the packet. This implies that there

exists some intermediate optimal noise level σ� that balances these effects to minimize the

readout error. Below we will analytically compute the readout error σreadout as a function of the

noise level σ and the delay Δ and calculate this optimal noise level σ� and the associated mini-

mal readout error s�readout .

Importantly, the soft-threshold model exhibits the same trade-off (Fig 1c). For small proba-

bilistic firing rate ρ, the number of spurious spikes during the delay Δ is small, but the standard

deviation in the time-to-spike of a single neuron is large: 1/ρ. And for large ρ, the number of

spurious spikes is large, but the standard deviation in time-to-spike is small. Thus for some

fixed delay Δ, an optimal ρ� (or equivalently, an optimal noise level 1/ρ�) exists that minimizes

the readout error σreadout in the soft-threshold model.
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In the following subsections, we quantitatively elucidate this trade-off between minimizing

spurious spikes and minimizing spike-timing variability, and we calculate σreadout as a function

of noise and delay for the soft-threshold model and the LIF model in turn, for networks with a

large number of neurons N. We begin with the simpler soft-threshold model, as it will allow us

to derive an exact expression for σreadout in the limit of small delays and noise. Then, we will

analyze small noise and delays in the LIF model, and ultimately derive an approximate upper-

bound for σreadout and see that both models exhibit the same behavior. We corroborate our

analytic results with simulations, whose details are provided in Section B Simulation details in

S1 Appendix.

Analysis of noise, delays, and coding error in the soft-threshold model

In this section, we calculate the contributions of spike-time variability and spurious spikes to

the readout error σreadout for the soft-threshold model. We provide concise derivations here,

and detailed derivations in S1 Appendix. To begin, we consider the simple scenario in which

the membrane potentials Vi(t) all start with initial condition Vi(0) = 0, as would be the case

when there is no external input, and if there were an additional leak term to ensure all mem-

brane potentials decay to 0. Then, we consider turning on the dynamics, Eq 7. The input cur-

rent Ii(t) = N drives the membrane potentials toward threshold together, and all membrane

potentials reach threshold simultaneously. At this point, the population begins emitting spikes

probabilistically with rate Nρ, as there are N membrane potentials superthreshold individually

firing with probability rate ρ.

Statistics of spike-time variability. After some time above threshold, the population

eventually emits a spike. The variation in this first-spike time (where time is measured relative

to when the population had crossed threshold) is a departure from the optimal clockwork one-

spike-every-τ/N spiking pattern for a network with zero delay and zero noise as described

above, and thus this first-spike time variability increases the readout error σreadout. To quantify

the increase, we therefore wish to describe the statistics of this first-spike time. Now, since the

population is emitting spikes probabilistically with a constant rate (Nρ), the time it takes until

the first spike occurs is an exponentially-distributed random variable. For an exponential dis-

tribution, the mean and standard deviation are given by the reciprocal of the rate, thus here

the first-spike time has mean 1

Nr and standard deviation 1

Nr (Fig 2a, top). And naturally, this

first-spike time variability also creates fluctuations in the readout, with standard deviation 1

Nrt,

which arises from the standard deviation of the first-spike time 1

Nr, multiplied by the magnitude

of the � 1

t
slope of the approximately linear decay of the readout (Fig 2a, bottom).

Statistics of spurious spikes induced by delays. After the first spike occurs, one mem-

brane potential is instantly reset, and the other N − 1 membrane potentials continue to spike

probabilistically during the spike propagation delay Δ. Hence, spurious spikes may occur, and

we would like to describe their statistics to quantify how they increase the readout error σread-
out. To this end, the mean number of spurious spikes, λ, is the time Δ multiplied by the total

spiking probability rate of the population, which is (N − 1)ρ� Nρ; this yields

l ¼ DNr: ð8Þ

And here, for ease of analysis, we assume the delay Δ is much smaller than the O(1/N) network

interspike interval (see the second paragraph of Results for the O(1/N) interspike interval).

With this assumption, differences in the N membrane potentials due to delayed inhibition van-

ish before the membrane potentials impinge upon threshold together again; this guarantees

the simple scenario that we are considering here, where N neurons always reach threshold

together (see Section A.2 Readout error for the soft-threshold model in S1 Appendix for
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details). Thus we introduce the parameter δ by the definition

D≔
d

N
ð9Þ

where we assume δ� τ so that the delay Δ is much less than the network inter-spike interval.

Note that with these definitions we have λ = δρ. And since we are interested in high-perform-

ing networks, i.e. small readout error σreadout, we focus on the limit where λ� 1, where there

are few undesirable spurious spikes. In this limit, the number of spurious spikes is simply Pois-

son-distributed with mean λ and standard deviation
ffiffiffi
l
p

. Importantly, the variability in the

number of spurious spikes creates variability in the next time the population reaches threshold

together because each spike decrements the membrane potentials, thus the input current Ii(t)
= N takes a variable amount of time to drive the membrane potentials to threshold again (Fig

2a, top). And the fluctuation in the readout due to spurious spikes has standard deviation
ffiffiffi
l
p

=N, as each spike contributes 1

N to the readout (Fig 2a, bottom).

Averaging across time to calculate the readout error. To calculate σreadout, we recognize

that the time-average of the squared deviation of the readout in Eq 3 is by definition

an integral of the squared deviation over a long time interval, divided by the interval

Fig 2. Soft-threshold readout error. (a) The soft-threshold and the delay create variations in the membrane potential dynamics Vi(t), which in turn create

variations in the readout x̂ðtÞ. When the membrane potentials (top, purple) surpass threshold, the neurons spike probabilistically, and the first-spike time is

an exponential random variable with standard deviation 1

Nr. After a first spike, the number of spurious spikes that occur during the delay is a Poisson

random variable, with standard deviation
ffiffiffi
l
p

, and each spike inhibits the membrane potentials Vi(t) by 1 through recurrent connectivity (see the first

paragraph of Results for recurrent connectivity). These variations in spike-timing and spurious spikes carry through to the readout x̂ðtÞ (bottom, blue).

Note that since the network input is constant, the readout encoding this input should produce a constant output as closely as possible; however, these

variations instead increase the deviation (light blue shaded) from the mean readout hx̂ðtÞit (black horizontal line). (b) Readout error as a function of the

mean number of spurious spikes λ and the delay δ. Top: for three different values of delay (blue, red, purple), λ is varied in computer simulations (N = 32,

dots) and Eq 10 (solid curves), revealing both the U-shaped dependence of the readout error σreadout and an excellent match between theory and

experiment. Bottom: the optimal readout error s�readout (black) and the associated optimal λ� increase as a function of delay δ according to Eqs 12 and 11.

https://doi.org/10.1371/journal.pcbi.1010593.g002
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duration—i.e., hðx̂ðtÞ � hx̂ðt0Þit0 Þ
2
it ¼ limT!1

1

T

R T
0
ðx̂ðtÞ � hx̂ðt0Þit0 Þ

2dt; thus, we turn our

attention to computing this integral. Importantly, because of its long time interval, the integral

includes many sequences of the population reaching threshold, a variable amount of time until

a first spike occurs, the production of a random number of spurious spikes during the spike

propagation delay, and the return of the population to threshold; thus it effectively sums over

all possible values of first-spike time and number of spurious spikes, with the values’ frequen-

cies weighted by the probability distributions that we quantified above. To help simplify the

integral, we approximate the timing of the spurious spikes by treating them as if they occur at

the same time as the first spike because we are considering small delays δ� τ; this is illustrated

in Fig 2a by the lack of time differences between the random number of spikes, which are

depicted together as a single vertical deviation at a single instant. Then performing the integra-

tion (see Section A.2.2 Mean readout error in S1 Appendix) reveals that we can express the

combined effect of fluctuations from spike-time variability and spurious spikes via the sum of

their variances—intuitively, one may expect these independent sources of variation to add in

this way, as variances add for independent random variables in general; the integration yields

the readout error σreadout to leading order in small delay δ and small mean number of spurious

spikes λ:

sreadout ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

12
þ

d
2

l
2
t2
þ l;

s

ð10Þ

where under the square root, the first term ( 1

12
) arises from the baseline readout error in the

case of zero delays and zero noise, the second term is the contribution from spike-time vari-

ability ( 1

r2t2
¼ d2

l2t2
by the relation λ = δρ), and the third term is the contribution from the mean

number of spurious spikes (λ). Importantly, we note that the mean number of spurious spikes

λ can simply be thought of as a reparameterization of the probability rate ρ.

Furthermore, we can minimize Eq 10 with respect to λ to find the minimal readout error

s�readout and optimal noise level, parameterized via the optimal mean number of spurious spikes

λ�. This yields

l
�
¼ 21=3ðd=tÞ

2=3
; ð11Þ

and

s�readout ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

12
þ

3ðd=tÞ
2=3

22=3

s

ð12Þ

s�readout �
1

N
1
ffiffiffiffiffi
12
p þ

33=2

22=3
ðd=tÞ

2=3

� �

: ð13Þ

We corroborate our analytic results with simulations in Fig 2b.

Analysis of noise, delays, and coding error in the LIF model

In this section, we study the readout error σreadout as a function of small delays and noise for

the LIF model. We provide concise derivations here, and detailed derivations in S1 Appendix.

For ease of exposition, we first examine the LIF model with zero delay (Δ = 0) and small noise

(σ> 0) to isolate the contribution of spike-time variability to the readout error σreadout, as no

spurious spikes can occur when spike propagation is instantaneous. Then, we will introduce

and study small delay (Δ> 0). We will make use of several approximations and inequalities in
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our analysis of the LIF model, which will result in our final analytic expression for σreadout
being an approximate upper-bound on the actual error.

Readout error in the LIF model with no delays. To understand how the readout error

σreadout depends on small noise in the case of zero delay, we begin by describing the behavior of

the population of membrane potentials under the dynamics of Eq 4 with delay Δ = 0. To gain

some intuition, let us first consider what the membrane potential dynamics look like if spiking

is disabled, i.e., the firing threshold T is taken to infinity. Importantly, the inhibitory terms

−τJiioi(t) and � t
PN

j6¼i JijojðtÞ are zero, and thus Eq 4 becomes the well-known Ornstein–

Uhlenbeck (OU) process [25]. The stochastic process Vi(t) after some time t� τ approaches a

stationary Gaussian process distribution with a mean of N/λV and a temporal autocovariance

given by

covðViðsÞ;ViðtÞÞ≔ hðViðsÞ � EðViðsÞÞÞðViðtÞ � EðViðtÞÞÞi ð14Þ

¼
s2

2lV
e�

lV
t jt� sj

� �
: ð15Þ

Thus at any moment of time, the membrane potentials are distributed as a Gaussian packet of

constant width

sOU ≔
s
ffiffiffiffiffiffiffiffi
2lV

p : ð16Þ

and over a mixing time scale of τ/λV, the membrane potentials diffuse and forget their past val-

ues due to the external noise. Note that we are interested in analyzing continuously operating

networks, thus these stationary statistics will be relevant in our analysis.

Next, let us consider reintroducing the effects of spiking, returning to the original dynamics

of Eq 4 with delay Δ = 0. We consider any initial condition in which the membrane potentials

are all subthreshold with Vi(0) < T, 8i. As the membrane potentials travel toward threshold,

driven by strong input current Ii(t) = N, the top membrane potential will reach threshold first

and spike. Importantly, this spike instantly, simultaneously, and uniformly inhibits all mem-

brane potentials. Thus only the mean membrane potential is decremented, but the relative

positions of the membrane potentials are preserved—i.e., the entire distribution is shifted

lower by a constant value. Thus, this observation reveals a simple overall behavior: the mem-

brane potentials are traveling in a Gaussian packet of constant width, with the entire packet

being periodically decremented each time the top neuron in the packet reaches threshold and

fires a spike.

With this membrane potential packet dynamics in mind, we will first quantify the spike-

time variability of the first spike. It is important to understand this spike-timing variability as

it contributes directly to the readout error σreadout as we shall see below. We first start by con-

sidering the simplifying case of small λV� 1. This limit affords two useful simplifications: (1)

the membrane potentials fluctuate slowly within the Gaussian packet, with long mixing time-

scale τ/λV (Eq 15), and thus the same neuron repeatedly wins the race toward threshold (Fig

3a), and (2) the threshold-crossing time of this neuron is well-approximated by the first-pas-

sage time of ordinary Brownian motion with drift, as Brownian motion is simply an OU pro-

cess with λV = 0. Thus on time-scales shorter than the long mixing time τ/λV, we need only

consider the dynamics of the neuron with the top membrane potential in the packet, as

opposed to the entire population. Hence, we can express spike-time variability as random

interspike interval durations, which are drawn from the Brownian motion first-passage time

distribution. Importantly, the statistics of the first-passage time tfp for Brownian motion are
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known [26]. For a particle undergoing Brownian motion with time constant τ, noise σ, drift μ,

initial position x0, and the goal of reaching a threshold θ, the mean and variance of its first-pas-

sage time are htfpi ¼
ðy� x0Þt

m
and hðtfp � htfpiÞ

2
i ¼

ðy� x0Þs
2t2

m3 . In our case, the dynamics of the top

membrane potential have time constant τ, noise σ, drift Ii(t) = N, initial membrane potential of

� 1

2
(the threshold T ¼ 1

2
minus the self-reset of 1 through the −τJiioi(t) term in Eq 4), and the

goal of reaching the threshold T ¼ 1

2
. This yields the moments htfpi ¼ t

N and

hðtfp � htfpiÞ
2
i ¼ s2t2

N3 .

Now, to work toward calculating σreadout, which involves integrating x̂ðtÞ over time, we start

by considering the readout x̂ðtÞ at a particular time t, under the influence of the spike-time

variability we just quantified for small λV. Recall that the readout x̂ðtÞ is a uniform sum

(wi = 1) of instantaneous firing rates ri(t) (Eq 2) and that the firing rates ri(t) are simply leaky

integrations of the spike-trains oi(t) (Eq 1). Thus we can write the readout x̂ðtÞ as a sum of

decaying exponentials, with one exponential for each spike-time tk in the past:

x̂ðtÞ ¼
1

N

X1

k¼1

e�
Dtk
t ; ð17Þ

Fig 3. LIF model with zero delay. (a) Spike raster plots from simulations (N = 32) for three different values of the membrane potential leak λV. Notably, for

small λV, we observe long runs in which the same neuron repeatedly spikes. Thus in the small λV limit, the next spike time is well-approximated by

considering only the possibility that the same neuron spikes again. (b) Readout x̂ðtÞ (blue) and its deviation x̂ðtÞ � xðtÞ (light blue shaded) from the mean

hx̂ðtÞit for a single interspike interval. The variations in interspike interval durations accumulate to produce a variation in the readout with standard

deviation sffiffi
2
p 1

N, using the approximation from (a). (c) Readout error σreadout as a function of noise σ for different values of λV. Integrating the deviation

illustrated in (b) across time yields the readout error in the small λV limit, Eq 19 (black). Simulations (dots on dashed lines, N = 64) with larger λV are

upper-bounded by Eq 19.

https://doi.org/10.1371/journal.pcbi.1010593.g003
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where Δtk≔ t − tk. Recalling that the interspike interval durations are random variables drawn

from the first-passage time distribution, we recognize that the Δtk are also random variables,

which are simply the sum over past interspike interval durations, tjfp:

Dtk ¼ t � t1 þ
Xk� 1

j¼1

tjfp: ð18Þ

Now importantly, although the interspike interval durations tjfp themselves are independent

because the repeatedly-spiking top neuron always starts afresh at its reset potential after spik-

ing and carries no history of the rest of the membrane potentials, we note that in contrast, the

Δtk are correlated random variables because Δtl contains all the terms in Δtk, 8l> k. (Δt2 con-

tains all the terms in Δt1, Δt3 contains all the terms in Δt2 and Δt1, and so on.) Thus we have in

x̂ðtÞ (Eq 17) an infinite sum of correlated random variables. To evaluate the statistics of x̂ðtÞ,
in particular its variance which contributes to σreadout, we make a simplifying approximation.

Namely, by the central limit theorem, we take the sum
Pk� 1

j¼1
tjfp in the Δtk (Eq 18) to be Gauss-

ian because it contains many terms for most k in the sum from k = 1 to1 in x̂ðtÞ (Eq 17).

With this Gaussian approximation, the distribution of Δtk depends only on the mean and vari-

ance of tfp, as opposed to the more complex non-Gaussian first-passage time distribution.

Using this Gaussian approximation, we can calculate the variance of x̂ðtÞ in Eq 17 in the

limit of small noise, and we do so for a particular point in time tmid, halfway through a given

interspike interval (illustrated in Fig 3b). We find that the variance in the readout x̂ðtmidÞ is s2

2N2

(see Section A.3.1 Readout at a single point in time in S1 Appendix for a detailed calculation).

Then finally to compute σreadout (Eq 3), we integrate the squared deviation of the readout over

a long time interval in the same manner as we did for the soft-threshold model (c.f. the para-

graph preceding Eq 10). Namely, we recognize that this long interval of integration is simply

comprised of many individual interspike intervals, and within each interspike interval, the

deviations x̂ðtÞ � hx̂ðtÞit are related to the variable x̂ðtmidÞ, illustrated as a vertical shift of the

readout x̂ðtÞ in Fig 3b (note that tmid here does not denote a single instant in time, but rather

refers to the time in the middle of a given interspike interval). And since we have quantified

the distribution of x̂ðtmidÞ, we can perform the integration (see Section A.3.2 Mean readout

error in S1 Appendix for details), which yields

sreadout ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12
þ
s2

2

r

: ð19Þ

We compare this expression to simulations, and we find empirically that it matches well for

small λV (Fig 3c, λV = 0.01); this is to be expected because we used the simplifying case of small

λV� 1 in our derivation of Eq 19. However, importantly, releasing the assumption that λV

is small, we find empirically that Eq 19 also serves as an upper-bound for general λV (Fig 3c,

λV = 0.1, 1, 10).

Readout error in LIF model with delays. Next, we build upon our analysis for zero delay

Δ = 0, and calculate the readout error σreadout for small delay Δ> 0. The primary additional

effect from the introduction of nonzero delay Δ is the possibility of spurious spikes. Spurious

spikes increase the readout error σreadout, as we have seen in the soft-threshold model. Simi-

larly, for the LIF model, we would like to quantify the statistics of spurious spikes and their

contribution to the readout error σreadout.
To calculate the statistics of spurious spikes, recall from our analysis for zero delay Δ = 0

that the membrane potentials travel in a Gaussian packet of width σOU (Eq 16) toward thresh-

old, and eventually a top neuron in the packet reaches threshold and fires a spike. (See Section
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A.4.1 Mean number of spurious spikes in S1 Appendix for details on how small delays merely

widen this packet slightly.) Then, during the spike propagation delay Δ, the other membrane

potentials continue to travel toward threshold, and may fire extra, spurious spikes. We can

estimate the mean number of spurious spikes during Δ by considering the tail of the approxi-

mately Gaussian membrane potential packet impinging upon threshold (Fig 4a).

The position of the Gaussian packet at the time of the first spike can be estimated via the

condition that the tail probability above threshold T of the Gaussian packet is 1/N, so that out

of N neurons the expected number of neurons to spike is 1 (Fig 4a, top). This tail probability

condition approximately determines the location of the packet’s mean value �V ≔ 1

N

PN
i¼1

Vi

via the condition

1

N
¼

Z 1

T

1
ffiffiffiffiffiffi
2p
p

sOU

e
�
ðV� �V Þ2

2s2
OU dV: ð20Þ

This condition can be solved to yield the approximate location of the mean �V at the time of

the first spike:

�V ¼ T �
ffiffiffi
2
p

sOU erfc� 1 2

N

� �

; ð21Þ

where erfc−1 is the inverse complementary error function.

Now we consider the mean number of extra spurious spikes that will occur in the time Δ
after this first spike. Note that during this time, the Gaussian packet is moving up towards

threshold at rate N/τ. Thus over a time Δ = δ/N all membrane potentials in the range T − δ/τ to

T will further cross threshold (Fig 4a, bottom). Thus we can compute the mean number of spu-

rious spikes λ by integrating the density of membrane potentials within this range:

l ¼ N
Z T

T� d=t

1
ffiffiffiffiffiffi
2p
p

sOU

e
�
ðV� �V Þ2

2s2
OU dV: ð22Þ

Importantly, we recover the intuition that increased noise reduces the number of spurious

spikes. Basically, increasing σ corresponds to larger σOU, i.e. a wider packet, which in turn

reduces the total density of membrane potentials in the range T − δ/τ to T that are ready to

cross threshold after the first spike occurs. This can be readily understood by inspecting the

leading-order expression for Eq 22 for small δ/τ, which is

l � cðNÞ
d=t

sOU
; ð23Þ

where cðNÞ≔ Ne� ðerfc
� 1ð2=NÞÞ2ffiffiffiffi
2p
p is a coefficient that grows sub-logarithmically with N, c(N)<

O(log(N)). Thus interestingly, the total number of neurons N does not contribute strongly to

the mean number of spurious spikes λ. Finally, since we are considering high-performing net-

works with a small mean number of spurious spikes (λ� 1), we expect the number of spuri-

ous spikes to be well approximated by a Poisson distribution—the independent probability of

each neuron crossing threshold during the delay gives rise to a binomial distribution for the

number of spurious spikes, and a binomial distribution with a large number of trials and small

per-trial probability (as is the case here) is well-approximated by a Poisson distribution. This

completes our characterization of the spurious spike statistics.

Lastly, to calculate the readout error σreadout, we integrate the squared deviation in the read-

out x̂ðtÞ across time, taking into account fluctuations due to: (1) spike-time variability from

noise, which we isolated and quantified by analyzing the zero-delay case, and (2) the spurious
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Fig 4. LIF model with nonzero delay. (a) Calculation of the number of spurious spikes. For a nonzero noise level σ1, the membrane potentials travel in a

Gaussian packet with density P(V, t) (blue, top left) toward threshold (vertical red dotted line). The typical position of the packet at the time t when the first

neuron spikes is determined by ensuring the tail probability (red, shaded area) above threshold equals 1/N. During the spike propagation delay Δ, the

Gaussian packet continues traveling toward threshold (blue, bottom left), and the mean number of spurious spikes λ is given by the additional probability

density that crosses threshold (yellow, shaded area). A larger noise level σ2 spreads out the Gaussian packet (green, right), thus reducing λ. (b) Readout x̂ðtÞ
(blue) and its deviation x̂ðtÞ � xðtÞ (light blue shaded) from the mean hx̂ðtÞit . Similar to Fig 3b, the accumulated spike-time variation creates fluctuations in

x̂ðtÞ with standard deviation upper-bounded by sffiffi
2
p 1

N, but in addition, spurious spikes introduce a Poisson variation in the readout with standard deviation
ffiffiffi
l
p

1

N. (c) Integrating the deviations illustrated in (b) yields an approximate upper-bound for σreadout, Eq 24 (blue). Conceptually, σreadout receives

contributions from noise (Eq 24 without the λ term; yellow, dashed), and synchronous spurious spikes (Eq 24 without the s2

2
term; green, dashed). (d)

Readout error σreadout for varying levels of noise. For zero delay (top), noise is not necessary to prevent spurious spikes, and thus it strictly increases σreadout.
For non-zero delays (bottom), σreadout has a U-shaped dependence on σ, and an optimal noise level σ� exists. The dots/squares on dashed lines represent

σreadout from simulations (N = 64), and solid lines are Eq 24, with the region below shaded, indicating upper-bound. Blue signifies λV = 0.1; yellow λV = 1.0.
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spikes that we just characterized (Fig 4b). Evaluating the integral for σreadout with the composi-

tion of these fluctuation sources (see Section A.4.2 Mean readout error in S1 Appendix for

details), we obtain the approximate upper-bound

sreadout ≲
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12
þ
s2

2
þ l

r

; ð24Þ

to leading order in σ and λ. Importantly, in this calculation we have used the fact that our result

for σreadout in the zero-delay case (Eq 19) was an approximate upper-bound (for general λV, Fig

3c). Also we observed empirically that our calculation for the mean number of spurious spikes

λ (Eqs 20 to 22) is an approximate upper-bound as well (see Section A.4.1 Mean number of

spurious spikes in S1 Appendix). Thus the composition of these bounds on sources of fluctua-

tion in turn provides an approximate upper-bound on readout error in Eq 24. A plot of our

theory for the readout error as a function of noise σ for a fixed nonzero delay δ is shown in Fig

4c. We see that the readout error displays a non-monotonic dependence in the noise level σ,

which arises as a trade-off between two competing effects. First, increasing noise contributes

to increasing error through added spike-time variation through the middle term in Eq 24. But

increasing noise σ also leads to a smaller mean number λ of spurious spikes through desyn-

chronization of the population (see Eqs 23 and 16). This trade-off between reducing spike time

variation and preventing spike synchronization leads to an optimal level of noise σ�.
We compare our approximate upper-bound for the readout error σreadout against simula-

tions, and we empirically observe that it indeed bounds the error and reproduces the expected

dependence on σ and δ (Fig 4d). Further, we numerically minimize Eq 24 (with higher-order

terms, see Eq S91 in S1 Appendix) to obtain an approximate upper-bound for the minimal

error s�readout and an estimate for the associated optimal noise level σ� for a given delay δ (Fig

4e). Numerically differentiating our calculated s�readout and σ� with respect to δ (see Section

A.4.2 Mean readout error in S1 Appendix), we find that they grow as

s�readout ≲ ðd=tÞ
2=3
; ð25Þ

and

s� � ðd=tÞ
1=3
: ð26Þ

Here, the growth of the minimal error s�readout (Eq 25) matches that of the soft-threshold model

(Eq 12). And furthermore, the growth of the associated optimal noise level σ� also matches that

of the soft-threshold model—the noise level in the soft-threshold model is the standard devia-

tion of the time-to-spike, 1

r
, and Eq 11 implies that 1

r�
� ðd=tÞ

1=3
.

Discussion

In summary, we studied coding fidelity in tightly balanced networks of spiking LIF neurons

with small noise and delays by analyzing the standard deviation σreadout of a simple linear read-

out for a slowly-varying 1-D scalar dynamical variable. In contrast to previous works studying

noise and delays in complex neural models chiefly via computer simulations, our work obtains

(e) Minimal readout error s�readout and optimal noise level σ� as a function of delay δ. Minimizing Eq 24 (with higher-order terms, see Eq S91 in S1

Appendix) with respect to σ yields s�readout (left, solid lines) and σ� (right, solid lines). s�readout �
1ffiffiffi
12
p and σ� asymptotically approach (δ/τ)2/3 and (δ/τ)1/3,

respectively (dashed black lines). We take the minimal σreadout from the simulations in (d) and the associated optimal noise level to generate the dots/

squares on the blue/yellow dashed lines, observing that our theory indeed provides an upper-bound for s�readout and a good estimate for the optimal noise

level σ� in finite-sized simulations.

https://doi.org/10.1371/journal.pcbi.1010593.g004
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a richer understanding by examining two simple noise modalities, the soft-threshold model

and the LIF model, with simple finite transmission delays and deriving analytical expressions

for the readout error σreadout as a function of noise level and delay, revealing a power-law

dependence on delay for the optimal noise level σ� and minimal readout error s�readout.

For the soft-threshold model, we derived exact expressions (Eq 10) for σreadout as a function

of the delay and the superthreshold probabilistic spiking rate ρ, which we reparameterized as

λ, the mean number of spurious spikes during a spike propagation delay—equivalent to an

inverse noise level. For a given delay, we recovered the characteristic U-shaped dependence of

σreadout on λ (Fig 2). Minimizing our expression for σreadout with respect to λ, we found that the

optimal λ� grows with the delay as (δ/τ)2/3 and the associated minimal s�readout grows with the

delay as (δ/τ)2/3 (Eqs 12 and 11).

For the LIF model, we characterized the dynamics of the membrane potentials as a Gauss-

ian packet from an OU process impinging upon the threshold, and we derived an approximate

upper-bound for σreadout as a function of small noise and delays. Again, we recovered the char-

acteristic U-shaped dependence of σreadout on noise level (Fig 4). Minimizing our approximate

upper-bound for σreadout, we found that s�readout grows with delay as (δ/τ)2/3 and the approxi-

mate optimal noise level σ� grows as (δ/τ)1/3 (Eqs 25 and 26). The behavior of s�readout matches

that of the soft-threshold model, and the behavior of σ� matches the behavior of λ� in the soft-

threshold model, when λ� is converted to a noise level.

Our hope is that our analytical results help quantitatively elucidate the fundamental mecha-

nisms underpinning the beneficial role of noise in the presence of delays and provide a founda-

tion for further analysis of more complex neural models. Indeed, our analytical results shed

light on previous observations in simulations of more complex models, and they naturally sug-

gest future directions of investigation. For example, in a neural model with more biophysical

details than we consider in our work, [11] observes that the optimal noise level increases weakly

with population size N, but the mechanisms underlying this phenomenon are not discussed.

Interestingly, we can inspect our expression for the mean number of spurious spikes λ (Eq 23),

and note that it has a coefficient c(N) that grows sub-logarithmically with population size N.

Thus as population size N grows, with all else held constant, the mean number of spurious

spikes λ increases weakly with N. To mitigate this increase, one expects a corresponding weak

increase in the optimal noise level σ� (which then widens the membrane potential packet to

compensate for the increased coefficient c(N) in the number of spurious spikes λ, Eq 23), just as

[11] observes in simulations. Indeed, studying the parameter λ, the mean number of spurious

spikes during a propagation delay, could yield fruitful insight in such computational studies.

Generality and future directions

More complex dynamics. We derive our results in the context of encoding a slowly-vary-

ing input, but our results may also apply to emulating a slowly-varying dynamical system.

Indeed, the predictive coding framework [7] provides a formulation to map an arbitrary linear

dynamical system to the connectivity of a network of spiking LIF neurons. To understand how

our results relate to this more general task, we note that in the predictive coding framework,

efficient coding is facilitated by a set of fast, instantaneous synapses, whereas the underlying

linear dynamical system is facilitated by a set of slow synapses with finite-timescale dynamics.

Importantly, when small axonal transmission delays are introduced, the fast synapses undergo

a major change—they go from instantaneous to non-instantaneous. And in contrast, the slow

synapses undergo a relatively minor change—they are now slightly delayed, in addition to

already being slow. Thus the main contribution of delay to modifying the dynamics of such

networks [7], should arise primarily from the effect of the delay on the fast, not the slow
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synapses. It is precisely the effect of delay on fast synapses which we treat in our analysis here.

Thus, our results could be used to describe the leading-order degradation due to delays in the

more general scenario of emulating a linear dynamical system, with slowly-varying dynamics.

We also note that the predictive coding framework [7] can be extended to emulate non-linear

dynamical systems [27]; the non-linear dynamics are also facilitated by slow synaptic connec-

tions, and thus our approach may be extended to this setting as well, again by capturing the

leading-order effect of delays on the fast synapses.

And while we consider encoding a positive, one-dimensional scalar signal, our results can

also apply to encoding an arbitrary D-dimensional vector in RD
. Importantly, when coding for

a D-dimensional signal in the predictive coding framework [7], each neuron codes for some

direction inRD. And when the coding error grows in any particular direction, the subpopula-

tion of neurons tuned for that direction compete to spike and correct the error. Thus, our cal-

culations may be adapted to approximately describe this scenario by replacing the parameter

N! Neff, where Neff is the size of the effective subpopulation actively participating in coding

any particular direction.

However, for coding signed signals, we note that our analysis for positive-only coding

directions (wi = 1, 8i) leaves out the possibility of a detrimental ping-pong effect. That is, if one

of the neurons has a negative coding direction (if wi = −1 for some i), a spike from a positively-

coding neuron excites the negatively-coding neuron (and vice versa), which can initiate a vol-

ley of spurious synchronous spikes. Naturally, the ping-pong effect also arises when neurons

have antipodal coding directions in RD. But importantly, the ping-pong effect can be mitigated

by introducing an auxiliary coding dimension to eliminate antipodal neurons [7], increasing

the firing threshold, or by simply removing the problematic excitatory connections that sup-

port the ping-pong effect [28], and then our analysis still holds.

And finally for completeness, while in our analysis we considered encoding the particular

constant input signal x(t) = 1, we can see how our analysis can also apply to slowly time-varying
signals by considering encoding an input signal x(t) = a, where a is an arbitrary O(1) positive

constant. Repeating the derivations presented in our analysis, but with the input x(t) = a, yields

an approximate upper-bound on the readout error σreadout, analogous to Eq 24, for when a

slowly-varying signal has value a. For the LIF model, the current Ii(t) (Eq 6) obtains an addi-

tional factor of a, and consequently the lower limit in the integral for the mean number of spu-

rious spikes λ (Eq 22) becomes T � a d

t
. Intuitively, a small input current (small a) results in

fewer membrane potentials reaching threshold during the spike propagation delay, and thus

fewer spurious spikes occur; and vice-versa for a large input current (large a). As a corollary,

the optimal noise level increases monotonically with a, as additional noise is only beneficial

insofar as it counteracts increased pathological synchronization. Thus, for example, one could

use our analysis to calculate a single noise level that performs well overall for an arbitrary

slowly-varying input signal by averaging across the signal’s distribution, or one could intro-

duce an adaptive mechanism that dynamically tunes the noise level to optimal, depending on

the network’s estimate x̂ðtÞ. However, importantly, we note that if one chooses to simply fix

the noise level to the optimal noise level associated with a particular input value, say e.g., a =

amax, then our approximate upper bound for the readout error (Eq 24, with x(t) = amax used in

preceding derivations) still upper-bounds the readout error for when the input signal is less

than amax—for values less than amax, there is simply more noise than is necessary to optimally

desynchronize the network. Hence, the optimal noise level associated with amax facilitates the

aforementioned readout error bound for any slowly-varying input signal bounded by amax.

Other forms of heterogeneity. We studied the soft-threshold and membrane noise as

specific mechanisms that can provide beneficial heterogeneity in spike-times which can
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prevent pathological synchronization leading to excess spurious spikes. However, other mech-

anisms may provide such a beneficial heterogeneity as well. As a first example, consider again

coding for D-dimensional signals. In high dimension D� 1, one can choose the neural coding

directions in the predictive coding framework [7] such that few neurons are similarly-tuned.

For example, if each neuron were allocated a random coding direction inRD, the typical cosine

angle between the tuning, or coding directions, of any pair of neurons would be Oð1=
ffiffiffiffi
D
p
Þ,

while number of neurons could become exponential in D before the maximal cosine angle

between the coding directions of any pair of neurons exceeds a given O(1) threshold. With

such a choice, the size Neff of the effective subpopulation actively competing to correct the

error in any particular direction becomes small, because few neurons are similarly tuned—

there are fewer redundantly-coding neurons and thus a lesser propensity for spurious spikes,

which improves coding fidelity. However, we note that details such as refractory period

become important here, because the minimal subpopulation that codes nearest the direction

of the error cannot spike continuously, thus other neurons with nearby coding directions

must be recruited, expanding the active subpopulation. The beneficial effects of reduced

redundancy for coding high-dimensional signals in the presence of delays has been observed

in simulations [28], and extending our results to treat the details of particular choices of neural

coding directions is an interesting future direction.

Many other sources of additional heterogeneity exist. For example, synaptic failures [1] pro-

vide a tunable source of noise—synapses are in general unreliable, but redundant synapses can

be added to increase reliability, or different synapse morphologies can be used to achieve dif-

ferent levels of reliability. Indeed, synaptic failures have been observed to benefit coding in the

presence of delays [11]. Modified spiking dynamics can also foster heterogeneity, such as the

L2 penalty described in [7, 11, 12] where neurons self-reset themselves more strongly than

they inhibit others, encouraging more diverse neural activity. Heterogeneous temporal filters

have been shown to benefit efficient coding in spiking neural networks as well [29]. Imprecise

connectivity, i.e., adding a frozen noise to the connectivity in Eq 5, can also provide a beneficial

heterogeneity via chaotic fluctuations [30, 31] and has been observed to do so in the rate-ver-

sion of the predictive coding framework [15]. Other biophysical details, such as refractory peri-

ods, distribution of transmission delays, distribution of synaptic dynamics, distribution of leak

λV, and per-neuron membrane noise levels, could all serve to provide spike-timing heterogene-

ity in a manner that prevents excess synchronization and spurious spikes. Our work provides a

foundation upon which these mechanisms can be further studied in an analytic framework.

More generally, our work reveals a conceptual framework whereby spike-timing heterogene-

ity, originating from either single neuron noise, imprecise connections, network level chaos,

or other sources, can endow spiking neural networks with superior computational capabilities

in the presence of transmissions delays, by preventing the build up of pathological synchrony.
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