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Background: Poor interferon gamma (IFNy) production during respiratory syncytial virus (RSV) is associated with
prolonged viral clearance and increased disease severity in neonatal mice and humans. We previously showed that
intra-nasal delivery of IFNy significantly enhances RSV clearance from neonatal lungs prior to observed T-lymphocyte
recruitment or activation, suggesting an innate immune mechanism of viral clearance. We further showed that alveolar
macrophages dominate the RSV-infected neonatal airways relative to adults, consistent with human neonatal autopsy
data. Therefore, the goal of this work was to determine the role of neonatal alveolar macrophages in IFNy-mediated

Methods: Clodronate liposomes, flow cytometry, viral plaque assays, and histology were used to examine the role of
alveolar macrophages (AMs) and the effects of intra-nasal IFNy in RSV infected neonatal Balb/c mice. The functional
outcomes of AM depletion were determined quantitatively by viral titers using plaque assay. lliness was assessed by

Results: AM activation during RSV infection was age-dependent and correlated tightly with IFNy exposure. Higher
doses of IFNy more efficiently stimulated AM activation and expedited RSV clearance without significantly affecting
weight gain. The presence of AMs were independently associated with improved RSV clearance, whereas AM depletion
but not IFNy exposure, significantly impaired weight gain in RSV-infected neonates.

Conclusion: We show here for the first time, that IFNy is critical for neonatal RSV clearance and that it depends, in part,
on alveolar macrophages (AMs) for efficient viral clearing effects. Early reductions in viral burden are likely to have
profound short- and long-term immune effects in the vulnerable post-natally developing lung environment. Studies
are ongoing to elucidate the pathologic effects associated with early versus delayed RSV clearance in developing

Background

Neonates, more than older children and adults have an
increased risk for bronchiolitis and pneumonia, due in
part, to the anti-inflammatory environment that sup-
ports post-natal lung development. Respiratory syncytial
virus (RSV) is the most common respiratory virus in
neonates and young children worldwide causing an
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estimated 3.4 million lower respiratory tract infections
and approximately 200,000 deaths annually [1]. Nearly
all children are infected with RSV by three years of age,
but not all children develop severe disease [2, 3]. In
addition to known risk factors associated with disease
progression, including low birth weight, premature birth,
and congenital heart disease, [4] recent clinical studies
by Devincenzo’s group and others have tied high RSV
titers to increased severity of disease and/or length of
hospital stay [5-8].
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The conditions present when a T cell encounters anti-
gen for the first time are essential to subsequent immun-
ity, often determining the nature of the response to
infection. Alveolar macrophages (AMs) play an import-
ant role in establishing these initial conditions through
cytokine production, recruitment of lymphocytes, and
antimicrobial activity. However, these functions vary sig-
nificantly in neonates compared to older children and
adults and are often further influenced by invading path-
ogens. Though infants are prone to Th2-type cytokine
responses left over from fetal life, they are capable of
Thl-type immunity [9]. Other factors known to contrib-
ute to neonatal Th2 immunity are low levels of mature
T cells and IFNy, which when exposed to high burdens
of viral antigen lead to Th2 immunity, producing such
cytokines as IL-4, IL-5, and IL-13 [10, 11]. By regulating
the cytokine environment through early, in vivo delivery
of IENy, studies in neonatal models of murine leukemia
virus have shown that immune responses can be shifted
to a Type I pathway with enhanced viral clearance [12].

Interferon gamma (IFNY) is a potent type II interferon
known to stimulate direct antimicrobial effects among
macrophages including the up-regulation of antigen pro-
cessing and presentation [13]. [FNy-stimulated macro-
phages secrete TNFa, IL-12 and other inflammatory
cytokines, which facilitate the trafficking of T cells and
NK cells to the site of inflammation [13]. Though its
limited production in the early months after birth is
thought to protect post-natal lung development, [14] el-
evated levels of IFNy in the serum are associated with
milder RSV disease, whereas detection of Th2-type cyto-
kines, IL-4 and IL-5, are typically associated with greater
disease severity [15-17]. Polymorphisms in IFNy gene
expression during neonatal RSV infection are linked to
increased severity of illness, duration of stay in the in-
tensive care unit (ICU), and frequency of otitis media
[18]. Moreover, influenza- versus RSV-infected neonates
produce markedly more IFNy, suggesting that reduced
production is likely linked, at least in part, to RSV infec-
tion [19]. Autopsy data of lung sections taken from
human neonates who died with severe RSV infection
show insulfficient recruitment of Thl and Th2 cytokine-
producing lymphocytes, including CD4 and CD8 T cells
as well as natural killer (NK) cells [19, 20], suggesting
that impaired recruitment of IFNy-producing cells are
associated with increased disease severity.

In mouse models of RSV infection, local delivery of
IFNy has demonstrated both acute and long-term bene-
fits in neonatal RSV infection. These include faster viral
clearance as well as protection against RSV-mediated
airway hyper-responsiveness (AHR) [21, 22]. This study
aimed to determine if AMs can be therapeutically stimu-
lated in a neonatal mouse model of RSV infection using
inhaled IFNy to enhance initial viral clearance, promote
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T cell immunity, and improve functional outcomes. Our
lab has published data showing that neonatal mice
produce negligible IFNy in response to RSV with a cor-
responding delay in viral clearance compared to IFNy-
producing adults [23]. We further show that activation
of AMs and pulmonary DCs are significantly enhanced
upon delivery of intranasal IFNy with expedited RSV
clearance early in infection without eliciting weight loss
commonly associated with the systemic delivery of IFNy
[23, 24]. Despite enhanced activation of innate immunity
following i.n. IFNy, the recruitment of CD4 and CD8 T
cells was unexpectedly reduced in RSV-infected neonatal
mice compared to age-matched controls [23].

Materials and methods

Ethics

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
Mice were housed at The University of Pittsburgh Division
of Laboratory Animal Resources. These animal experi-
ments were approved by The University of Pittsburgh
Institutional Animal Care and Use Committee (IACUC),
approved protocol number 14023340 and mice were han-
dled according to IACUC guidelines. All efforts were made
to minimize animal suffering.

Mice and viral preparation

Pathogen-free breeder BALB/c] breeder mice and IFNy re-
ceptor knock out (IFNyR KO) mice were purchased from
The Jackson Laboratory (Bar Harbor, ME) at 5-7 weeks of
age and maintained in pathogen-free facilities. Females
were bred as previously described, [23] and pups from the
resultant pregnancies were treated experimentally at 2—7
days of age, as mice less than 7 days of age are considered
neonates. Additional pathogen-free BALB/c] female and
male mice were purchased from The Jackson Laboratory
at 8 weeks of age for experimental and control purposes
as described below. Line 19 RSV was provided by Dr.
Martin Moore, Emory University, Atlanta, GA. RSV line
19 and viral lung titers were prepared as previously
described [23]. Briefly, RSV was passed through 4 rounds
of plaque purification; after a single plaque was isolated, it
was propagated in HEp-2 cells (American Type Culture
Collection), then titered by standard hematoxylin-eosin
(H&E) plaque assay, as previously described [25]. Viral
stocks were snap-frozen and stored at —80 °C. Viral stocks
and HEp-2 cell lines were routinely monitored for myco-
plasma and other contaminants using the Plasmo Test
Mycoplasma Detection Kit (InvivoGen) and the LookOut*
Mycoplasma PCR Detection Kit according to manufac-
turer’s instructions. Lung titers were determined, as previ-
ously described, within one month of sterile removal and
storage of infected lungs at —80 °C [25].
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Clodronate liposome delivery

To deplete alveolar macrophages, clodronate liposomes
(Clip) (5 pl/g of 5 mg/ml suspension) were administered
intranasally (i.n.) to 2-day-old mice under 2 % isoflurane
anesthesia beginning day -1 post-infection, then daily
until the mice were euthanized for sample collection.
On days 1, 3, and 5 when IFENy was co-administered, the
doses of CLip and rIFNy were separated by > 6 h.

Interferon gamma treatment

Recombinant-murine interferon gamma (IFNy) (16 ng/g
or 60 ng/g, Peprotech, NJ) was administered in. to 2-7
day old mice under 2 % isoflurane anesthesia on 1, 3, and
5 days post-infection. The total volume administered to
adults was 50 pl and 10-20 pl to neonates. For the phar-
macokinetic experiment, a single dose of 16 ng/g was
administered i.n. to RSV-naive mice at time zero and they
were subsequently euthanized using 100 % isoflurane at 0,
05,1,2,4,6,8,12, 18, 24 and 48 h post-dose.

RSV infection

Neonatal mice were infected with 5 x 10° pfu/g to 3 x 10°
pfu/g of RSV L19 as previously described; [26] mock in-
fected controls received identical volumes of cell lysate
(supernatant from lysed cells that remained uninfected) or
PBS. Animals were anesthetized prior to infection using
2 % isoflurane. Left lung was collected and snap frozen in
alcohol/dry ice for subsequent quantification of lung titers,
as previously described [25]. Bronchoalveolar lavage
(BALF) and first wash were harvested and stored separ-
ately for flow cytometry or cytokine analysis, respectively.
Right lungs were collected and immediately processed for
analysis using flow cytometry or cytokine analysis as
described below.

Real-time polymerase chain reaction

Left lungs were snap frozen in liquid nitrogen for qRT-
PCR as previously described [23]. Briefly, mRNA was
harvested using Mini Qiagen Kit (Life Technologies,
NY) and quantified using a NanoDrop® spectrophotom-
eter (Invitrogen, NY). The mRNA was reverse tran-
scribed to ¢cDNA using a Superscript III First-strand
synthesis Supermix for qRT-PCR kit (Life Technologies,
NY) and quantified on a 7500 ABI Fast RTPCR system
(Life Technologies). Pre-mixed Taqman primer and
probes using a Fam/Tamara reporter/quencher combin-
ation were purchased from ABI specific for Gob5A.
Results are represented as a relative increase from media
only or from media + IFNy, using the delta, delta ct
method indicating fold change over the house keeping
gene (GAPDH). Data are compared to control wells
treated with media only using a paired 7-test for 3—4
wells per group per mouse.
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Flow cytometry

Flow cytometry was used to evaluate surface protein
expression in BALF and lung digest (LD) as previously
described [23]. Right lungs were enzyme digested as pre-
viously described [27]. Briefly, lung tissue was minced,
incubated with DNase and collagenase for 1 h at 37 °C,
then pushed through a 70 micron mesh screen. RBCs
were then removed from both BALF and LD with a
hypertonic lysis buffer, cells were counted, and non-
specific binding was blocked with anti-CD16/32 (BD
Biosciences). Staining was performed with murine-
specific fluorochrome-conjugated antibodies and fixed in
0.5-1 % paraformaldehyde prior to analysis with an
LSRII or LSR Fortessa flow cytometer (BD Biosciences)
within 12 h. Within the population of large granular
cells, CD11b-PerCpCy™5.5 and CD11c-APC (BD Biosci-
ences, San Jose, CA) or CD11c-PECy7 (Biolegend, San
Diego, CA) were compared in dot plot quadrants, AMs
were defined as CD11c + CD11b-, and activation of AMs
was determined by the expression of major histocom-
patibility complex (MHC) class II (MHC II; I-a%)-FITC..
Data was analyzed using FlowJo software (Tree Star Inc.
Ashland, OR).

Histopathology

At 8 days post-infection (dpi), right lungs were gravity
filled (25 cm from meniscus to catheter) with 10 % for-
malin after flushing the respiratory system with phos-
phate buffered saline (PBS). Lungs were preserved for at
least 48 h in 10 % formalin at 4 °C. The lungs were
paraffin-embedded and stained processed at the Trans-
plant Pathology Research Laboratory of University of
Pittsburgh (Pittsburgh, PA). Terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) and peri-
odic acid-Schiff (PAS) stains were used to identify cells
undergoing apoptosis and mucus accumulation, respect-
ively. Slides were examined and quantified by two indi-
viduals blinded to treatment group. PAS-staining was
scored according to previously published methods [23].

Collection and processing of biological samples

Right lungs were collected, weighed and immediately
snap-frozen in liquid nitrogen. Samples were stored
at -80° C until they were processed for protein quantifica-
tion and cytokine analysis as previously described [28].
Briefly, frozen lungs were homogenized in cold Tissue
Protein Extraction Reagent (T-PER, Thermo Scientific)
and protease inhibitor (HALT Protease Inhibitor Cocktail,
Thermo Scientific) (1 mL T-PER + 10 ul HALT protease
inhibitor cocktail used for every 100 pg of frozen lung tis-
sue), then centrifuged at 9000 g for 10 min at 4° C. The
supernatant was collected and total protein was quantified
by bicinchoninic acid assay (BCA assay, Thermo Scientific
Pierce) per manufacturer’s instructions. The remaining
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supernatant was stored at —80 °C for cytokine analysis.
IFNY concentrations in lung homogenate and first wash
samples were analyzed by a murine multiplex cytokine kit
(Bio-Rad, Hercules, CA). Homogenized lung samples were
diluted to a total protein concentration of 500 pug/ml using
a 1:1 mixture of T-PER and sample diluent (provided by
manufacturer). Samples of first wash were added directly
to the plate without dilution. The plates were read using a
Luminex® 200™ Total System machine (Luminex Corp,
Austin, Tx); data was analyzed using the LDS1.7 Software.

Pharmacokinetic analysis

Lung IFNy concentration-time data after a single in.
IFNYy dose was analyzed by non-compartmental analysis
(NCA). The terminal elimination rate constant, ke, was
estimated by log-linear regression of at least three time
points visually assessed to be in the terminal phase of
each lung concentration-time plot. The terminal phase
(elimination) half-life, t;,5, was calculated as In2/k.. The
area under the lung concentration versus time curve,
AUCy_,.., was also calculated. Using the linear trapez-
oidal rule, [29] AUC,s ... was extrapolated to infinity by
calculating Cjg/ke;. The AUC from time zero to infinity
was calculated as the sum of AUC, and Cj,g /K. Other
pharmacokinetic parameters calculated include IFNy
total body clearance, estimated as Dose/AUC. The esti-
mated neonatal dose capable of achieving adult AUC
values was calculated by dividing the adult AUC,_,.. by
neonatal total body clearance. The new neonatal dose
was then calculated on a per gram basis by dividing dose
by the average weight of a 3—5 day-old neonate.

Statistical analysis

Data are expressed as the mean + SEM of at least three
mice per group. Statistical analysis was performed using
GraphPad Prism 5 software (La Jolla, CA). A two-way
ANOVA was used to compare differences among data
collected at multiple time points between >2 neonatal
groups or between neonatal groups receiving multiple
treatments followed by a Bonferroni post-test. For ana-
lysis of multiple groups of neonates at a single time
point a 1-way ANOVA was used with a Tukey-Kramer
post-test or a Kruskal Wallis test for nonparametric data.
A two-way repeated measures ANOVA was used to
compare differences in weight gain for neonates in the
AM depletion study.

Results

Signaling through the IFNyR is required for efficient viral
clearance

We first sought to determine whether an absence of
IFNy signaling would alter viral clearance. To test this,
viral clearance capacity was determined in IFNYR
knock-out (IFNYRKO) mice compared to wild-type
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(WT) pups, both on a BALB/c background, with or
without intranasal (i.n.) delivery of IFNy as described in
the methods (Fig. 1). Viral quantification by viral plaque
assay at 4 dpi demonstrates that IFNy does not kill RSV
directly, but requires interaction with the IFNYR to elicit
its anti-viral effects. No difference in viral titers between
KO and WT pups confirms negligible production of en-
dogenous IFNy in early RSV infection, while reduced RSV
titers in IFNy-treated, WT controls suggests that intact
IFNY receptors are required for efficient RSV clearance.

Age-dependent activation of AMs can be enhanced by i.n.
IFNy

To determine the effect of age on RSV-mediated upregu-
lation of MHC class II on CD11c +b- alveolar macro-
phages (AMs), cells were isolated from the BALF of
BALB/c mice infected at different ages or treated with
in. IFNy. When compared to mock-infected, age-
matched controls, AMs from mice infected at 2—4 days
of age (Fig. 2a) did not become activated. However,
when neonatal mice were infected at 6-7 days of age,
MHC class II expression on CD11c+ CD11b- cells sig-
nificantly increased by 10dpi (Fig. 2b) suggesting that
RSV-mediated AM activation depends on age at the time
of infection. Moreover, the increase in MHC class II on
CD11c + CD11b- cells was preceded by an increase in
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Fig. 1 Inhaled IFNy contributes to RSV clearance. Pup BALB/c or
IFNYRKO mice were infected with RSV L19. Pups were treated with
16 ng/g of IFNy or equal volumes of PBS on 1 and 3 dpi. Left lungs
were harvested to quantify RSV using H&E plagque assays. * indicates
p < 0.05 using a Kruskal-Wallis non-parametric analysis with Dunn’s
multiple comparison test. Data represent the means and individual
replicates for 2 3 mice per group and 2 separate experiments
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Fig. 2 IFNy exposure correlates with age-dependent AM activation. Neonatal Balb/c mice were infected with RSV L19 at 2 days (a) or 7 days (b)
of age. Some mice were treated with 16 ng/g of i.n. IFNy on 1, 3, and 5 dpi (a). BALF was harvested to quantify AM activation by flow cytometry
(a-b) and IFNy concentrations were measured and reported as the change from uninfected, age-matched controls (c). Data represent = 5 mice
per group and 2 separate experiments. * Indicates significant differences between RSV+ (+/— IFNy) and RSV- groups and # between RSV+/IFNy +and
RSV+ groups based on a 2-way ANOVA with Bonferroni post-test; p < 0.05. Dot plots are representative samples from 7dpi, (the first time point in which
MHC class Il expression significantly increased in the RSV+/IFNy + group) of at least five mice per group for RSV-/IFNy- (d), RSV+/IFNy- (f),
and RSV+/IFNy + (h). Each dot plot has a corresponding histogram representing MHC class Il+ expression on CD11c+CD11b- cells with

IFNy concentrations in RSV- compared to mock-
infected animals in BALF at 7dpi (Fig. 2c), which did not
occur in neonatal mice infected at 2—4 days of age sug-
gesting that RSV-mediated AM activation is age-
dependent and may correlate with IFNy.

The effects of i.n. IFNy administration can be seen in
the dot plots and histograms representing 7 dpi BALF
samples. Large cells are characterized as CD11c + b- in
mock-infected (Fig. 2d) and RSV-infected neonates
(Fig. 2f). Neonatal AMs did not respond to RSV as evi-
denced by the lack of MHCII class II expression follow-
ing infection (Fig. 2e, g). In contrast, RSV-infected
neonates treated with i.n. IFNy showed a marked shift in
airway cells from CD11c + CD11b- to a larger population

of cells that were CD11c + CD11b+, a population shown
to have greater antigen presentation in the context of
MHC class II expression and often characterized as den-
dritic cells (DCs) (Fig. 2h). In the RSV+/IFNYy + group,
large cells that remained CD11c + b- also efficiently up-
regulated MHC class I+ expression (37 %) compared to
PBS-treated controls (3 %) (Fig. 2i).

Pharmacokinetic differences result in age-dependent AM
activation

Based on the age-dependent associations between IFNy
exposure with AM activation and viral clearance, we
next sought to determine the effect of age on the IFNy
area under the concentration-time (AUC) curve.
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Following a single 16 ng/g dose of in. IFNy, AUCs
averaged 3.6 times greater in adults versus neonatal
mice (Fig. 3a). This was associated with significant in-
creases in the expression of MHC class II on adult
compared to neonatal CD11lc + CD11b- cells through
48 h (Fig. 3b). To optimize neonatal IFNy AUCs, a
non-compartmental pharmacokinetic approach, as de-
scribed in our methods, estimated a new 60 ng/g
dose of i.n. I[FNy would be required to achieve adult-
level AUCs (280 ng*hr/ml) in the neonatal mice.
Thus, we predicted that 60 ng/g of in. IFNy would
generate faster and greater expression of MHC class
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Fig. 3 Age-dependent IFNy pharmacokinetics result in differential
AM activation. AUCs were determined for uninfected pup and adult
BALB/c mice following a single i.n. dose of IFNy (16 ng/g) through
intense sampling from LD over 48 h (a). Biologically, this translated to
significantly greater activation of AMs (b) in adults beginning at 8 h
and continuing through 48 and 24 h, respectively. Data represent = 3
mice per group and 2 separate experiments. * Indicates significant
differences based on a 2-way ANOVA with a Bonferroni post-test,
between groups at the indicated time points; p < 0.5
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II on CDI11c+ CD11b- cells, with corresponding en-
hancement of RSV clearance.

IFNy dose responsiveness correlates with improved AM
activation and enhanced viral clearance

To test the effect of IFNy dose on AM activation and
viral clearance, RSV-infected neonatal mice receiving
PBS only were compared to those treated with 16 or
60 ng/g of IFNy. Significant differences in IFNy BALF
levels occurred as soon as 4dpi and dissipated over time
reflecting the end of IFNy dosing at 5 dpi (Fig. 4a). Des-
pite its potential for toxicity, neither the 16 ng/g nor the
60 ng/g IFNy groups demonstrated significant impair-
ment in weight gain compared to PBS-treated controls
over the course of the study (Fig. 4b), suggesting min-
imal pulmonary absorption. These findings are consist-
ent with unpublished data generated in our lab showing
negligible IFNYy levels in the serum of 4-day-old BALB/c
mice following a single i.n. dose of IFNy.

To determine the effect of IFNy dose on total lung
macrophage (LM) activation in RSV-infected neonatal
lungs, the activation profile of neonatal LMs from LD
was examined. At each time point tested, the 60 ng/g
dose increased LM activation significantly more than
pups treated with 16 ng/g or PBS alone (Fig. 4c).
LMs from mice receiving 16 ng/g also significantly
increased LM activation at 7 and 10 dpi compared to
PBS-treated mice (Fig. 4c) but not at 4dpi, suggesting
a stronger activation signal may be required for initial
neonatal LM activation.

To determine the functional effect of optimizing i.n.
IENy, RSV clearance was quantified by viral plaque
assay. By 4 dpi, RSV clearance was greatest in the
60 ng/g group followed by the 16 ng/g of [FNy com-
pared to PBS; however, only the group receiving
60 ng/g demonstrated enhanced RSV clearance at 7
dpi (Fig. 4d). By 10 dpi, 80 % (4/5) of animals in both
IFNy groups had undetectable viral loads while only
50 % (2/4) of neonates in the PBS group had similarly
undetectable virus.

Low dose IFNy is protective in the RSV-infected neonatal
airway

To determine the functional consequences of achiev-
ing higher, adult-like IFNy AUCs in the neonatal air-
way during RSV infection, mucus production was
determined in RSV-infected mice treated with 16 or
60 ng/g of IFNy or PBS alone; [FNYRKO mice were
included as an additional control group to assess
mucus production in the absence of IFNy signaling
(Fig. 5a-e). Airway mucin scores were determined as
previously described [23]. Mucus production was evi-
dent in representative RSV-infected neonatal lung sec-
tions (Fig. 5a, b). Conversely, mucus production was
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absent in uninfected neonatal mice (Fig. 5c), those
treated with 16 ng/g of IFNy (Fig. 5d) and mucus
was markedly reduced in neonates that received
60 ng/g of IFNy (Fig. 5e). Based on the role of IL-13
in mediating mucus production, the ratio of IL-13 to
IFNy was compared in neonates treated with in.
IENY versus those receiving PBS only (Fig. 5f). As in-
fection progressed, the ratio of IL-13 to IFNy ex-
panded such that by 7 dpi, IL-13 was significantly
greater than IFNy in RSV-infected neonates. However,
the ratio remained balanced in IFNy-treated neonates.
The reduced expression of Gob5 in IFNy-treated pups
at 9 dpi compared to PBS-treated animals reiterates
the importance of IFNy in mitigating mucus overpro-
duction in the RSV-infected neonatal lung (Fig. 5g).

To determine the effect of i.n. IFNy on RSV-mediated
apoptosis in the neonatal lung, TUNEL staining was per-
formed at 8 dpi on lung sections from neonatal mice
that were A) mock-infected; B) RSV-infected; C) RSV-
infected and treated with 16 ng/g of i.n. IFNy; or D)
RSV-infected and treated with 60 ng/g of in. IFNy
(Fig. 6). Figure 6 shows representative lung section from
each mouse per group. RSV-infected (Fig. 6b) lungs had
significant increases in TUNEL positive staining compared
to uninfected lungs (Fig. 6a). Interestingly, both 16 ng/g
(Fig. 6¢) and 60 ng/g (Fig. 6d) IFNy-treated groups had re-
duced TUNEL staining compared to RSV-infected lungs
at 8 dpi, which is graphically represented in Fig. 6e.

Depletion of neonatal alveolar and lung macrophages
using clodronate liposomes

Based on previously performed pilot studies in our lab,
daily dosing of i.n. CLip was shown to sufficiently reduce
the AM population in RSV-infected neonatal mice. CLip
treatment began -1 dpi in 2 day-old mice; dosing con-
tinued daily with either CLip or PBS; pups then received
in. IFNy (16 ng/g) or PBS on days 1, 3, and 5 dpi. Re-
gardless of i.n. IFNy treatment, AM numbers in both the
BALF and lung digest were significantly reduced with
CLip at 4 and 8 dpi (Fig. 7). The AM population was re-
duced by 84 and 91 % at 4 and 8 dpi, respectively
(Fig. 7a, b). Moreover, total LMs harvested from the LD
were significantly reduced by 57 and 55 % at 4 and 8
dpi, respectively, following CLip treatment (Fig. 7c, d).

IFNy and AMs play a significant role in eradicating RSV
from neonatal airways

The functional effects of AM depletion and in. IFNy
treatment were tested following RSV infection via viral
plaque assay. At 4 dpi, CLip (-)/IFNy (+) animals had
the lowest viral titers, which were significantly lower
than CLip (-)/IFNy (-) and CLip (+)/IFNy (-) treated
animals (Fig. 8a). The CLip (-)/IFNy (+) group had
lower viral titers than the CLip (+)/IFNy (+) group but
the difference was not significant. The CLip (+)/IEN (+)
group had significantly lower viral titers than CLip (+)/
IFNy (-) treated animals. These results suggest that
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for 5 mice per group and 3 separate experiments

IFNy treatment played a larger role in reducing viral
burdens than did depletion of AMs. To evaluate the
contribution of each treatment independently, we ana-
lyzed viral titers by 2-way ANOVA. This analysis con-
firmed our hypothesis that IFNy treatment was primarily
responsible for the differences in viral titers. In fact,
IENy treatment accounted for 45 % of the variability;
however macrophage depletion also significantly con-
tributed to differences in viral titers, accounting for 10 %
of the variability. Bonferroni post-hoc analysis revealed
that the significant effect of macrophage depletion (CLip
treatment) was primarily a result of the differences in
viral titers of CLip (+) vs. CLip (-) animals that were not
treated with IFNy.

At 8 dpi, CLip (+)/IFNy (-) animals had the highest
viral burden which was significantly higher than both
CLip (-)/IFNy (-) and CLip (-)/IFNy (+) animals
(Fig. 8b). However, viral titers of CLip (+)/IFNy (-) ani-
mals were not significantly higher than CLip (+)/IFNy

(+) animals demonstrating that the viral clearing effects
of IFNy was lost by 8 dpi in the absence of AMs. In fact,
treatment with IFNy accounted for only 5 % of the vari-
ability observed. The presence or absence of AMs played
a critical role in RSV clearance, accounting for 43 % of
the variability. Regardless of IFNy treatment, neonates
whose AM populations were eliminated with CLip had
RSV viral titers that were nearly a log fold higher than
CLip (-) neonates at 8 dpi.

The potential for biological toxicity resulting from
either CLip or IFNy treatment was analyzed by calculat-
ing the neonates’ ability to gain weight over time. Inter-
estingly, CLip treatment but not IFNy significantly
impaired the ability of neonates to gain weight (Fig. 8c).
Visual inspection of the charted daily weights revealed a
separation of the groups beginning at 4 dpi. Regardless
of IFNy treatment, the daily percent change in weight
began to slow in CLip (+) neonates when compared to
CLip (-) neonates beginning at 4 dpi and continued
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until the final time point. At 7 dpi, both CLip (+) groups
demonstrated significantly impaired weight gain when
compared to CLip (-)/IFNy (-) neonates.

Discussion

Since the formalin-inactivated RSV vaccine trials of the
late 1960’s [22, 23], RSV-mediated pathology has been
tightly linked to the host immune response [6, 13-15, 33].
Studies showing that ribavirin, a drug that blocks viral rep-
lication, does not effectively improve clinical outcomes
such as hospital length of stay or time on mechanical

ventilation [27, 38] has encouraged theories supporting
RSV-mediated immunopathology. However, mounting
evidence indicates that viral clearance kinetics plays an
important role in disease severity [3, 4]. A recent study
involving RSV-infected children <2 years of age, demon-
strated that a faster rate of RSV clearance was independ-
ently associated with shorter hospitalization [7]. Due to
the fact that RSV replicates several times less efficiently in
mouse models than in humans, debates continue over
whether immature host immunity versus viral load con-
tributes to severity of disease [4, 7].
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We previously reported that i.n. IFNy reduces the bur-
den of RSV L19 in neonatal mice [23]. We further
showed a preponderance of AMs in RSV-infected neo-
natal compared to adult airways throughout infection
[23]. Based on our studies and those in human neonates
demonstrating the dominance of AMs during RSV infec-
tion [19, 20], we tested the hypothesis that i.n. IFNy en-
hances RSV clearance through activation of immature
neonatal AMs. Using IFNYRKO mice, we showed that
IENy significantly contributes to viral clearance in neo-
natal mice. To determine how immature AMs correlate
with poor IFNy exposure, we infected neonates at 2—4
or 7 days of age and analyzed AM activation in associ-
ation with IFNy production. In mice infected at 2—4
days of age, virtually no IFNy production was detected
which was consistent with an absence of AM activation
[23]. Only when IENy was given exogenously did AM
activation increase in this age cohort. However, when
neonates were infected at 7 days of age, AMs became ac-
tivated during RSV infection, though it was significantly
delayed and reduced compared to RSV-infected adults.

Moreover, it was preceded by a fleeting, but significant in-
crease in IFNy that was not observed in the younger co-
hort of mice indicating that in the neonatal lung, AM
exposure to IFNy was likely important for their activation.

Based on these age- and IFNy-mediated increases in
AM activation, we sought to better understand and
immunokinetically manipulate the relationship between
IFNy exposure and AM activation in an effort to hasten
viral clearance and in turn, minimize RSV-mediated
pathology. Specifically, we examined the relationships
between IFNy exposure and its correlation with mucus
production and apoptotic cellular debris among RSV in-
fected neonates treated with in. IFNy or PBS controls.
We previously showed that expression of the suppressive
cytokine TGF-f1, is upregulated in the lungs of neonatal
compared to adult mice [30]. Therefore, in our immuno-
kinetic analysis, we targeted a higher IFNy exposure in
neonatal animals than is typically observed, in anticipa-
tion of a lower AM activation threshold brought about,
not only by RSV itself, but by elevated levels of TGF- p1.
Additionally, it was assumed that neonates are equally
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difference between control (CLip-/IFNy-) and CLip treatment groups (CLip+/IFNy +and CLip+/IFNy-) using repeated measures ANOVA (p < 0.05)

efficient in their IFNy signaling pathway as compared to
adults, once IFNy binds its receptor on AMs. This as-
sumption was challenged by Marodi et al. who showed
that IFNy receptor-mediated signaling in neonatal mac-
rophages harvested from cord blood compared to those
from adult macrophages were reduced in regard to
Candida killing, as well as in the release of superoxide
anion [31]. By performing a pharmacokinetic analysis in
which both neonates and adults received the same
weight-based dose of IFNy, we showed that the IFNy
AUC of adults was 3.6 times larger than that of neo-
nates. Larger IFNy exposure in the adults resulted in
expedited and enhanced MHC class II expression on
AMs in adults compared to neonates. The large age-
based differences in IFNy exposure was not a result of
differential IFNy metabolism but was most likely an
artifact of the neonate’s larger lung to body size ratio.
Taking this into consideration, a non-compartmental
model analysis was used to determine a new neonatal
dose of IFNy that would achieve more adult-level AUCs.
We predicted the new neonatal IFNy dose of 60 ng/g
would not only expedite viral clearance, but would also
modulate associated risk factors linked to skewed Th2
pathology, such as mucus production. The data

presented here shows the capacity of IFNy to induced
AM activation and RSV clearance in a clear, dose-
dependent manner without provoking weight loss. To
determine the extent to which AMs contributed to
RSV clearance, we then depleted neonatal AMs using
clodronate liposomes, which further demonstrated
that AMs significantly contribute to viral clearance in
the neonatal lung.

Low levels of IFNy in the BALF are consistently asso-
ciated with greater disease severity in neonates [32] yet
it is unclear what IFNY’s protective role is. Consistent
with this finding is data published by Cohn et al. demon-
strating that mucus production is inhibited by IFNy in
an adult mouse model [33] and our previously published
data showing greater mucus production in RSV-infected
neonatal mice in which there is minimal IFNy produc-
tion compared to RSV-infected adult mice [23]. Consist-
ent with previous findings, these data show here for the
first time, reductions in goblet cell formation (as indi-
cated by PAS staining) in RSV+ neonatal lungs treated
with inhaled IFNy (16 ng/g and 60 ng/g) when com-
pared to untreated RSV+ pups. Mounting evidence con-
tinues to support the role of IFNy as a regulator of
mucus production [34-36]. Determining its precise
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mechanism in decreasing mucus production during neo-
natal RSV infection is an ongoing focus of research in
our laboratory.

RSV non-structural proteins, NS1 and NS2, have been
shown to impair early cellular apoptosis. It is speculated
that this is advantageous to the virus; allowing RSV to
spread from one cell to another throughout the airway
[37]. Other data support the idea that RSV sensitizes
cells to tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL)-mediated apoptosis by upregulating the
expression of death-receptors 4 and 5 [38]. The
sensitization is tempered however by early increases in
Mcl-2, a member of the anti-apoptotic Bcl-2 family,
which acts to delay the effects of TRAIL-mediated sig-
naling and delays apoptosis in infected epithelial cells
[39]. We reasoned, then, that IFNy, a well-established
and appreciated inducer of cellular apoptosis [13] may
be associated with less severe RSV disease clinically [37],
due to its facilitation of apoptosis thereby limiting the
spread of the virus. To test the hypothesis that IFNy in-
terferes with RSV-mediated impairment of apoptosis, we
examined the effect of i.n. IFNy on apoptosis in RSV in-
fected neonatal mice. Surprisingly, RT-PCR data showed
that in. IFNy elicited no change in caspase 3 or 8 ex-
pression by 4 or 7 dpi in RSV infected neonates treated
with 60 ng/g of IFNy compared to PBS-treated controls
(Unpublished data), despite enhanced viral clearance.
However, significant reductions in TUNEL-positive cells
in groups receiving i.n. IFNy suggest possible enhanced
clearance of apoptotic cells rather than IFNy-mediated
changes in apoptosis. Studies are ongoing to determine
the role of IFNy in mitigating the clearance of apoptotic
cellular debris in the neonatal airway.

We postulate that IFNy may be augmenting mecha-
nisms of viral resistance in airway epithelial cells that
dramatically reduce the viral burden at the onset of in-
fection. IFNy treatment was independently associated
with significantly lower viral titers at our earliest time
point, 4 dpi, suggesting that IFNy treatment reduced the
initial viral burden. High levels of IFNy exposure prior
to RSV infection have been shown to dramatically in-
hibit RSV replication in adult BALB/c mice [40]. Add-
itionally, exposure of a human airway epithelial cell line
(A549) to IFNy for 48 h prior to RSV infection reduced
2-day post-infection viral titers when compared to IL-4
treated or control cells. This reduction was associated
with the upregulation of antiviral proteins, such as IFIT1
and Mx1 [41]. Ongoing studies are investigating the
contributions of IFNy-treated airway epithelial cells to
reduced RSV infectivity.

Finally, to our knowledge this is the first study,
using a neonatal animal model, to examine the role
of AMs in the clearance of RSV through the i.n. ad-
ministration of CLip. We demonstrated that AMs
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play a significant role in RSV clearance and that
delayed viral clearance is associated with reduced
weight gain in a neonatal murine model of RSV.
Although AM-mediated regulation of weight gain re-
quires further investigation, impaired weight gain in
CLip versus PBS-treated pups highlights the import-
ance of AMs during neonatal RSV infection. Mice do
not develop clinical symptoms of RSV but a failure to
appropriately gain weight suggests that the animals
experienced detrimental effects from dramatically re-
duced viral clearance. As previously mentioned, clin-
ical data from human neonates <2 years of age found
that faster RSV viral clearance was associated with
shorter hospitalizations [5]. Future studies will investi-
gate the histological effects of AM depletion in RSV-
infected neonatal mice. We hypothesize that neonatal
mice depleted of AMs have an abundance of necrotic
debris and mucus obstructing their airways.

We have provided phenotypic and functional analysis
of the role of IFNy in neonatal RSV infection and fur-
thered the understanding of AMs’ role in neonatal dis-
ease. These studies demonstrated the age-dependent
development of AMs and the direct correlation of IFNy
in the neonatal AM response during RSV infection. Spe-
cifically, neonatal AMs display acute [FNy dose respon-
siveness whereby higher doses of IFNy are capable of
overcoming the delay between IFNy exposure and AM
activation observed with lower IFNy doses. Histological
analysis of neonates infected with RSV and treated with
IENy revealed the crucial role that it plays in reducing
mucus production and decreasing the number of apop-
totic cells in the airway. Lastly, AMs play a significant
role in RSV clearance. Impaired RSV clearance as a
result of AM depletion correlates with poor weight gain
in neonatal mice. These findings warrant further investi-
gation into the AM-dependent and independent effects
of IENY in neonatal RSV disease.

Together these data indicate that early IFNy exposure
is critical to both reductions in viral burden and preven-
tion of severe pathology in the neonatal airway. These
data further demonstrate that in. IFNy plays a critical
role in reducing RSV burden early in infection and that
neonatal AMs are crucial in coordinating efforts to elim-
inate RSV and return neonatal lungs to homeostasis.
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