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While lakes occupy less than 2% of the total surface of the Earth, they play a

substantial role in global biogeochemical cycles. For instance, shallow lakes

are important sites of carbon metabolism. Aerobic respiration is one of the

important drivers of the carbon metabolism in lakes. In this context, biotur-

bation impacts of benthic animals (biological reworking of sediment matrix

and ventilation of the sediment) on sediment aerobic respiration have pre-

viously been underestimated. Biological activity is likely to change over

the course of a year due to seasonal changes of water temperatures. This

study uses microcosm experiments to investigate how the impact of biotur-

bation (by Diptera, Chironomidae larvae) on lake sediment respiration

changes when temperatures increase. While at 58C, respiration in sediments

with and without chironomids did not differ, at 308C sediment respiration in

microcosms with 2000 chironomids per m2 was 4.9 times higher than in

uninhabited sediments. Our results indicate that lake water temperature

increases could significantly enhance lake sediment respiration, which

allows us to better understand seasonal changes in lake respiration and

carbon metabolism as well as the potential impacts of global warming.
1. Background
Bioturbation is one of the least studied drivers of sediment respiration in lakes [1].

Bioturbation is defined as “all transport processes carried out by animals that

directly or indirectly affect sediment matrices. These processes include both

particle reworking and burrow ventilation” [2]. Bioturbation by freshwater

animals, especially chironomid larvae (Diptera, Chironomidae), mayfly larvae

(Ephemeroptera, Ephemeridae) and tubificid worms (Oligochaeta, Tubificidae)

is capable of increasing the respiration of freshwater sediment by up to five

times [3,4]. Only a small portion of this increase has been found to result from

the respiration of the bioturbating animals themselves (approx. 10–20%), with

the remainder being attributed to the enhancement of sediment bacterial aerobic

metabolism [3,5]. Chironomid larvae are also known as bloodworms (Diptera,

Chironomidae) [6] as they possess haemoglobin and are red-coloured. Represen-

tatives of the family Chironomidae are among the most important freshwater

bioturbators. They have complex and long-lasting impacts on nutrient cycling

at the sediment–water interface due to sediment-redistribution, modification of

sediment microstructure, burrow ventilation, sediment oxidation (bioirrigation)

and enhanced bacterial activity in the sediment (figure 1) [7,8]. Owing to their
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Figure 1. The impacts of chironomid larvae’s (Diptera, Chironomidae) biotur-
bation on sediment biogeochemistry. (Online version in colour.)
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large densities especially in eutrophic water bodies, their bur-

rowing and ventilation activities can dramatically impact

freshwater biogeochemistry [6]. For example, a volume equiv-

alent to the total water volume of the shallow Lake Müggelsee

(Germany, mean depth 5 m) is pumped by chironomids

through their burrows once a week [6].

High water temperatures in temperate regions frequently

cause algal blooms, resulting in organic matter inputs

into benthic ecosystems which can be beneficial for filter

feeders and detritus-collecting benthic organisms such as

Chironomus plumosus L., 1758 that are able to tolerate low

oxygen concentrations due to their capability of oxyregulation

and respiration in low oxygen environments [9]. Furthermore,

warm summer water results in faster development, shorter life

cycles, additional generations per year and higher repro-

duction rates—all resulting in higher animal densities and

intensified turnover [10,11]. Although bioturbation of chiron-

omids is temperature-dependent [1], previous studies largely

ignored the influence of water temperature on their bioturba-

tion [2,12]. Only few studies [9,10] have acknowledged that

respiration of chironomid larvae themselves can be correlated

with temperature [11]. It is commonly accepted that the loco-

motory activity of chironomid larvae increases with rising

temperature. Pumping rates of larvae, which are important

for ventilation of the burrows and larval respiration, also

increase with rising temperatures [1,13]. Therefore, we

hypothesize that temperature-enhanced chironomid densities

in the benthic zone and their increased bioturbation activity

may result in increased sediment aerobic respiration.

To test this hypothesis, we conducted lake sediment micro-

cosm experiments with different larval densities (0, 1000,

2000 larvae m22) and exposed them to a range of temperatures.

The experiments deployed the resazurin–resorufin smart bior-

eactive tracer system to investigate the differences of respiration

between set-ups with different densities and temperatures

[14,15]. Decay of the bioreactive tracer resazurin is proportional

to environmental respiration (especially sediment respiration
under oxic conditions) (r2 ¼ 0.88–0.99) [15]. Thus, resazurin

can be used for the relative assessment of temperature-

dependent differences in sediment respiration. Moreover, as

we have shown in previous research [5], resazurin is not suscep-

tible to respiration of apneustic aquatic animals (those receiving

oxygen by means of diffusion through the water-impenetrable

cuticle, such as chironomid larvae). Hence, the application of

the smart tracer system allows the sediment respiration impacts

of chironomid bioturbation to be quantified independently

from their own respiration. Thus, we can separate the impacts

of these two processes, which until recently presented an endur-

ing problem in attempts to quantify bioturbation impacts on

sediment respiration [4].
2. Material and methods
Experiments were conducted in cylindrical glass microcosms

with a total volume of 566 ml (20 cm high, diameter 6 cm), contain-

ing 200 g of sediment from Lake Müggelsee (Berlin, Germany;

sediment: black, muddy, organic-rich, water content 90+ 3 (arith-

metic mean+ s.d., n ¼ 3), loss of ignition 76.7+2.26 (arithmetic

mean+ s.d., n ¼ 3), total phosphorus 2.7+0.5 mg (g DW)21

(DW, dry weight), total nitrogen 10.1–16.8 mg (based on Kozerski

& Kleeberg [16] and own measurements of the sediment DW,

LOI)) and 250 ml bank filtrate from the same lake, which was

obtained from waterworks in the vicinity of the lake. Overlying

water in the microcosm was constantly aerated to assure homo-

geneous mixing and continuously oxic conditions in the water

column overlying the sediments. All chironomid larvae used

in the experiments belonged to the widely abundant species

Chironomus plumosus L., 1758. All animals were of similar age

(4th instar) and comparable size (20–22 mm). They were used in

three different densities, with 0, 3 and 6 larvae per microcosm

corresponding with zero, medium and high larvae density of

1000 and 2000 m22. These densities correspond to in situ analysis

of Lake Müggelsee sediment in 2014–2015 (n ¼ 8), which revealed

densities of 500 to 2000 specimens per m2; numbers are also in line

with previous observation in the same lake [1]. Microcosm exper-

iments in this study were conducted in a climate chamber (Binder

kbf 720) at 5, 10, 15, 20 and 308C.

Because of the relatively short duration of the experiment

(duration of 8 days from the animal placement in the microcosms

to the end of the experiment), no mortality was recorded

(animals were counted before and after the experiment). We

monitored temperature in the microcosms before and during

the measurements. Animals were acclimatized to each respective

temperature for 5 days prior to the start of the experiment. Also

we considered that we had to have stable redox conditions in the

sediment before starting the experiment. We have observed that

oxic interfaces visible as light reddish brown coloration in sedi-

ments usually form between 24 and 36 h, well below the 5

days long pre-experimental phase, which was hence assumed

to be sufficient.

At each temperature four replicates (microcosms) were

conducted for each larval density.

Resazurin is a bioreactive tracer; its decay is proportional to

aerobic respiration in the system (average r2 ¼ 0.986) [14,15].

Resazurin and its daughter compound resorufin are fluorescent.

We used a GGUN-FL30 fluorometer (Albilla Sarl, Switzerland)

to quantify the fluorescent compounds in this experiment. The

raz/rru smart tracer system provides a reliable proxy for

oxygen consumption in the system as it directly measures the

amount of aerobic respiration itself instead of analysing oxygen

uptake in the water column [14]. Hence the raz/rru smart

tracer system is well suited for respiration measurements in

non-sealed microcosms, avoiding artefacts and shortcomings
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Figure 2. (a) The impact of increasing chironomid larval densities on sediment respiration at different temperatures, with raz being the concentration of resazurin
and rru the concentration of resorufin, and ln(rru/raz þ 1) indicating resazurin turnover (n ¼ 8 for each density and temperature). Differences between sediment
respiration rates for different larval densities and at different temperatures are indicated by the slopes (sl) of linear regression lines. (b) The water temperature
regulates the impact of chironomid larvae’s bioturbation on sediment respiration. The slopes of the regression lines from (a), showing the impact of larval density on
respiration at a given temperature, are plotted against experimental temperatures. (Online version in colour.)
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that are frequently observed in methods involving the analysis of

oxygen consumption in sealed systems. The fluorescence-based

detection of the raz/rru smart tracer system is highly sensitive

to turbidity and concentration changes of particulate organic

carbon. Thus, we filtered the samples before analysis (30 mm

cellulose acetate syringe filter, pore diameter ¼ 0.45 mm) [14].

Samples for measuring resazurin turnover rates were taken

from each microcosm 5 and 8 h after tracer injection (with

measurements taken immediately after injection used as baseline).

We assessed the difference in raz/rru turnover between treat-

ments, using ANCOVA; ln(rru/raz þ 1) was used as response

and temperature was used as covariate.

3. Results
The microcosm experiments revealed that respiration differ-

ences between bioturbated and non-bioturbated sediments
increased with rising temperature (figure 2a). At 58C, the

difference in sediment respiration between bioturbated and

non-bioturbated microcosms was statistically not significant

(ANCOVA, p . 0.05). At 108C and above, respiration differ-

ences between non-bioturbated and chironomid-bioturbated

sediments were statistically significant, and in fact increased

with rising temperatures. Maximum differences between

non-bioturbated and bioturbated sediment respiration were

observed at 308C, with respiration in microcosms with

1000 larvae m22 being 4.4 times higher than in non-bioturbated

sediments. Respiration in microcosms with 2000 larvae m22

exceeded that of non-bioturbated sediments by six times.

While temperature-dependent respiration increases were

highlysignificant in microcosms with 1000 and 2000 larvae m22

( p , 0.05) (figure 2a), there was no statistically significant

relationship found for non-bioturbated microcosms ( p . 0.05).
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4. Discussion
The results of our experiments confirm the findings of pre-

vious studies, which reported increases of 20–300% in

sediment respiration due to bioturbation. While direct respir-

ation of chironomids is considered to be lower than the

respiration of the bioturbated sediments [5,6,9–12], some

authors have attributed up to 20% of the total respiration to

chironomid respiration itself [4]. As mentioned above, the

novel smart tracer system applied for measuring system

respiration is not affected by chironomids’ respiration;

hence, for the first time we believe, increased respiration

rates shown in the present study can be attributed solely to

bioirrigation-impacted sediment respiration [5].

In order to analyse how the impact of larval density on

sediment respiration scales with water and sediment tempe-

ratures, the change in resazurin turnover ln(rru/raz þ 1) per

larva (as indicated by the slopes of linear regressions in

figure 2a) was compared against the investigated temperature

range (figure 2b). As indicated by a strong positive correlation

(r2 ¼ 0.76), increasing temperatures significantly enhance the

impact of chironomid bioturbation on sediment respiration,

i.e. there are strong seasonal changes of sediment respiration

in bioturbated sediments due to seasonal changes of lake

temperatures, often covering ranges of more than 208C.

While the projected rise of temperatures of surface waters

due to climate change is much lower than the range tested by

us, as our data show, even a modest rise of lake water tempera-

tures of a few degrees might impact bioturbation. Further

investigations are required in order to clarify this matter.
This study reveals that high densities of chironomids in

shallow lakes can significantly intensify sediment respiration,

in particular, in warm and well-oxygenated systems. This

effect is most pronounced in shallow, non-stratified lakes.

In deeper lakes, increasing water temperatures will rather

extend the duration of thermal stratification, causing the

water above the sediment to become anoxic for longer

periods and thus reduce chironomid activities such as

burrow ventilation [14].
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14. González-Pinzón R, Haggerty R, Myrold DD. 2012
Measuring aerobic respiration in stream ecosystems
using the resazurin-resorufin system. J. Geophys.
Res. 117, G00N06. (doi:10.1029/2012JG001965)

15. Haggerty R. 2013 Analytical solution and simplified
analysis of coupled parent-daughter steady-state
transport with multirate mass transfer. Water
Resour. Res. 49, 635 – 639. (doi:10.1029/
2012WR012821)

16. Kozerski HP, Kleeberg A. 1998 The sediments and
benthic-pelagic exchange in the shallow lake
Muggelsee (Berlin, Germany). Int. Rev. Hydrobiol.
83, 77 – 112. (doi:10.1002/iroh.19980830109)

http://dx.doi.org/10.1899/11-043.1
http://dx.doi.org/10.3354/meps09506
http://dx.doi.org/10.1890/14-1160.1
http://dx.doi.org/10.1890/14-1160.1
http://dx.doi.org/10.1038/srep27329
http://dx.doi.org/10.1007/s10452-009-9259-2
http://dx.doi.org/10.1007/978-94-011-0715-0_6
http://dx.doi.org/10.1007/978-94-011-0715-0_6
http://dx.doi.org/10.1038/ismej.2009.62
http://dx.doi.org/10.4319/lo.2004.49.5.1549
http://dx.doi.org/10.1007/BF00019284
http://dx.doi.org/10.1007/BF00019284
http://dx.doi.org/10.1111/j.1469-185X.2011.00206.x
http://dx.doi.org/10.1007/BF00017624
http://dx.doi.org/10.1007/BF00017624
http://dx.doi.org/10.1029/2012JG001965
http://dx.doi.org/10.1029/2012WR012821
http://dx.doi.org/10.1029/2012WR012821
http://dx.doi.org/10.1002/iroh.19980830109

	Bioturbation enhances the aerobic respiration of lake sediments in warming lakes
	Background
	Material and methods
	Results
	Discussion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


