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SUMMARY

Attention-deficit/hyperactivity disorder (ADHD) is increasingly being diagnosed
in both children and adults, but the neural mechanisms that underlie its distinct
symptoms and whether children and adults share the same mechanism remain
poorly understood. Here, we used a nested-spectral partition approach to study
resting-state brain networks of ADHDpatients (n = 97) and healthy controls (HCs,
n = 97) across the lifespan (7–50 years). Compared to the linear lifespan associa-
tions of brain segregation and integration with age in HCs, ADHD patients have a
quadratic association in the whole-brain and in most functional systems, whereas
the limbic system dominantly affected by ADHD has a linear association. Further-
more, the limbic system better predicts hyperactivity, and the salient attention
system better predicts inattention. These predictions are shared in children and
adults with ADHD. Our findings reveal a lifespan association of brain networks
with ADHD and provide potential shared neural bases of distinct ADHD symp-
toms in children and adults.

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurological disorder in childhood

(Association, 2013) and is clinically diagnosed with age-inappropriate hyperactivity/impulsivity and inatten-

tion. Approximately 40–60% of children with ADHD have persistent symptoms in adulthood, and a recent

finding also reported a significant percentage of ADHD in adults (Agnew-Blais et al., 2016). Although adults

with ADHD demonstrate brain structures and functions different from those of children with ADHD (Cor-

tese et al., 2012; Guo et al., 2020; Frodl and Skokauskas, 2012; Wu et al., 2019), their core clinical descrip-

tions are essentially the same (Association, 2013). Meanwhile, because of clinical heterogeneity and sub-

jective psychiatric diagnoses (Franke et al., 2018; McCarthy et al., 2013), it is still challenging to

accurately diagnose ADHD (Volkow and Swanson, 2013). The lifespan exploration of the neural mecha-

nisms of ADHD and linking neural signatures to clinical symptoms are promising approaches for devel-

oping more objective and individual-specific diagnoses.

In a worldwide meta-analysis on brain anatomies across the lifespan (4–63 years) (Hoogman et al.,

2017), ADHD patients were found to have smaller volumes in several regions than healthy controls

(HCs), such as the accumbens, amygdala and hippocampus (Hoogman et al., 2017). These anatomical

alterations were only apparent in children and disappeared in adults, which suggests a maturation

delay during childhood (Al-Amin et al., 2018; Ambrosino et al., 2017; Hoogman et al., 2017; Nickel

et al., 2017; Shaw et al., 2007, 2013; Van Dessel et al., 2020). However, Samea et al. found no significant

alterations in the regional activation level (Fateme et al., 2019), and whether a delay of maturation in

brain functional organization in children parallels anatomical immaturity is still controversial. For

example, functional integration (i.e., global cooperation between different systems) in normal brain

networks is positively correlated with age (Betzel et al., 2014; Chan et al., 2014; Muetzel et al., 2016),

but both decreased and increased integration have been reported in children with ADHD relative to

HCs (Lin et al., 2013; Qian et al., 2019; Shappell et al., 2021; Wang et al., 2009). Meanwhile, it also re-

mains unclear how brain functional organization correlates with age in adults with ADHD. The above

questions require a lifespan exploration of functional brains in ADHD patients. In a frontocentral

event-related potential (ERP) study, ADHD patients (18–59 years) had a quadratic correlation between

NoGo P3 amplitude and age, different from the linear correlation in HCs (Kakuszi et al., 2020). It is thus

suspected that the brain functional organization of ADHD patients may also have a quadratic associa-

tion with age across the lifespan.
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Table 1. Demographic, clinical and neuropsychological features of ADHD patients and healthy controls

ADHD-200 (age 7–19) UCLA (age 20–50)

ADHD HC ADHD HC

N/female 57/18 57/30 40/20 40/20

Age 10.78 G 2.37 10.72 G 2.25 32.05 G 10.41 31.28 G 9.23

Hyperactivity 21.81 G 6.33 15.40 G 3.84 21.12 G 4.58

Inattention 26.75 G 5.19 18.54 G 3.85 24.32 G 2.76

Total symptom 48.17 G 6.18 33.94 G 6.04 45.45 G 4.81

FD 0.14 G 0.05 0.14 G 0.11 0.15 G 0.09 0.16 G 0.12
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Hyperactivity and inattention are the major clinical symptoms of ADHD, and these symptoms are thought

to have different neural bases (Qian et al., 2019). Sudre et al. observed that persistent inattention symptoms

are tied to anomalous connectivity in the default mode network (DMN) (Sudre et al., 2017). Sanefuji et al.

found that the symptoms of the hyperactive subtype of ADHD are related to the corticostriatal network,

whereas the symptoms of the inattentive subtype of ADHD are associated with the right ventral attention

network (Sanefuji et al., 2017). However, as age and ADHD symptoms jointly affect brains (Sripada et al.,

2014b), the lifespan association of brain functional organization with age is supposed to be affected by

ADHD, and the corresponding dominant ADHD effects are thus expected to signify the underlying neural

bases for hyperactivity or inattention. Meanwhile, children and adults with ADHD demonstrate different

brain functions relative to HCs (Cortese et al., 2012; Guo et al., 2020), but whether they share the same

mechanisms of hyperactivity and inattention is still unknown.

To address the above questions, neural signatures that link the brain to ADHD symptoms across the life-

span need to be extracted. Normal brain functions depend not only on the sufficiently segregated process-

ing in specialized systems but also on the effective global integration among them (Shine, 2019). Functional

segregation and integration in brain functional connectivity (FC) networks have been shown to be reliable

biomarkers for cognitive functions (Cohen and D’Esposito, 2016), and their abnormalities have been linked

to brain disorders (Harlalka et al., 2018; Lord et al., 2017; Shine, 2019), including ADHD (Machida and John-

son, 2019). Thus, it is expected that the segregation/integration features may be associated with ADHD

symptoms across the lifespan. However, the graph measures of segregation and integration (e.g., modu-

larity and the participant coefficient) are based on the modular partition at a single level in brain networks

(Newman, 2006), which does not allow the detection of segregated and integrated processing across mul-

tiple scales. Recently, we developed a nested-spectral partition (NSP) method to detect hierarchical mod-

ules in brain networks according to the eigenmodes and described segregation and integration across

multiple levels (Wang et al., 2019). Hierarchical segregation and integration have been demonstrated to

be better neural signatures of cognitive functions than classical signatures (Wang et al., 2021a, 2021b).

We thus expected that an NSP-based analysis could better reveal the neural biomarkers that underlie

distinct ADHD symptoms across the lifespan.

Therefore, in this work, we studied hierarchical segregation and integration in brain FC networks and

explored lifespan associations with distinct ADHD symptoms. Hierarchical modules in FC networks were

analyzed using resting-state functional magnetic resonance imaging (fMRI) datasets of children and adults

with ADHD and HCs with a wide range of ages (7–50 years). We first extracted the lifespan associations of

brain FC networks with age in the ADHD and HC groups and studied the alterations of network segregation

and integration related to ADHD in different age ranges. Second, we identified the dominant effects of age

and ADHD on different functional systems and investigated their heterogeneous functional patterns across

the lifespan. Finally, we tested whether brain systems differentially affected by ADHD or age could selec-

tively predict distinct ADHD symptoms and whether these predictions are specific in ADHD patients rela-

tive to HCs.

RESULTS

The data for 97 ADHD patients and 97 age/sex-matched HCs were extracted from three centers (Table 1),

and the clinical scores for hyperactivity, inattention and total symptoms were collected to describe the

severity of ADHD symptoms (Bilder et al., 2020). Resting-state FC networks (N = 100 regions) were
2 iScience 25, 104673, July 15, 2022
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constructed for each participant using the Pearson correlation coefficient (Schaefer et al., 2018) and were

further multisite corrected (see STAR Methods). Functional segregation and integration components (i.e.,

HSe and HIn) were computed using the NSP method (Wang et al., 2019). At the whole-brain level, HSe and

HIn were negatively correlated across the subjects in both groups (Figure S1), and a higher HSe or smaller

HIn reflected stronger network segregation. Because the shorter length of an fMRI series biased the

network to more segregation (Bassett et al., 2011; Wang et al., 2021a), group-averaged segregation

and integration components were calibrated to the corresponding values of the stable FC network

that was constructed by concatenating all fMRI time series of all participants in each group (Wang

et al., 2021a). This combination of concatenation across a long enough time and calibration generated

the fMRI length-independent network measures for all participants in each group and has been found to

be advantageous in linking the brain to cognitive abilities (Wang et al., 2021a). Pertinently, calibrated

segregation and integration components for each region (i.e., Hi
Se and Hi

In, i = 1/N) were also extracted

to reflect the regional contribution to overall network segregation and integration (see STAR Methods

for details).

Quadratic lifespan associations of brain functional networks with age in ADHD patients

The likelihood ratio test (LRT) was used to identify the lifespan associations between brain network segre-

gation/integration and age (Table S1), and the bootstrapping statistics also provided similar results

(Table S2). In the HCs, we found a linear association between brain functional organization and age (Fig-

ure 1A). Across the lifespan (7–50 years), the global integration component HIn was positively correlated

with age (p = 0.048), and the segregation component HSe was negatively related to age (p = 0.019, see Fig-

ure 1A), which indicates increased network integration on the global scale of the normal brain with age, and

this is consistent with the previous result that used single-level module detection (Chan et al., 2014). How-

ever, the ADHD patients had a typically quadratic lifespan association with age in brain FC networks (Fig-

ure 1B). The integration component first increased with age and then decreased after approximately 30

years of age. This quadratic relationship is significant (age2: p = 0.045, see Figure 1B). Meanwhile, the

segregation component first decreased with age and then increased, which is also significant (age2: p =

0.023). Furthermore, we divided each group into three age-binned subgroups roughly termed childhood

(CH, 7–19 years), adulthood (AH, 20–35 years) and old adults (OA, 36–50 years). In the HCs, the OA sub-

group had the highest connectivity density in FC networks, and CH and AH had nearly the same density

(Figures 1C and S2), consistent with the positive correlation of network integration with age. In ADHD pa-

tients, the AH subgroup had the highest connectivity density compared with the CH and OA subgroups

that further manifested the first rising and then declining patterns of network integration with age. There-

fore, on the global scale, the resting-state brain functional network in ADHD patients had an abnormally

quadratic association between network integration and age, which is different from the linear relationship

in HCs.

ADHD-related network alterations in children and adults

Previous works have reported inconsistent effects of ADHD on brain network segregation and integration

in children or adults (Chan et al., 2014; Lin et al., 2013; Qian et al., 2019; Shappell et al., 2021; Wang et al.,

2009). When taking all participants into consideration, ADHD patients had a higher integration component

on the global scale (Figure 1D, p = 0.026) but an insignificant alteration in the segregation component (p =

0.432). Notably, the inverted U-like association of functional organization with age in ADHD patients

implies different alterations of brains in children and adults. In children, ADHD patients had a higher inte-

gration component and smaller segregation component (p = 0.078 and 0.442, Figure 1D), and these alter-

ations on the global scale were significant in a separate analysis of data from the two sites (multisite

corrected, Figure S4). Similarly, adults with ADHD had a higher integration component and smaller segre-

gation component than HCs, and these alterations were insignificant (p = 0.172 and 0.766, see Figures 1D

and S3B). There was also no significant difference between ADHD children and ADHD adults in the integra-

tion component (p = 0.717) and segregation component (p = 0.265).

Thus, the alterations in ADHD patients may be located in local regions. In all participants, the regions with

significant alterations of Hi
In and Hi

Se related to ADHD were mainly located in the control and DMN systems

(all p< 0.05, uncorrected, Figure 1E). More importantly, most of these regions did not reveal a significant

ADHD-related alteration if we considered connectivity degrees in the whole-brain FC network (Figure S5).

However, while a subnetwork was formed by these regions with significantly altered integration or segre-

gation components, we found that the regions with a significantly increased degree of connectivity within
iScience 25, 104673, July 15, 2022 3
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Figure 1. Abnormal lifespan associations between brain functional networks and age in ADHD patients

(A and B) Lifespan associations of network segregation and integration components with age in (A) HC participants and (B) ADHD patients. These fitting

models were determined by LRT and bootstrapping (see Tables S1 and S2).

(C) Averaged FC networks for different subgroups with different age ranges visualized using BrainNet Viewer (Xia et al., 2013) with a binarizing threshold of

0.55. The connectivity densities were provided (see Figure S2 for more comparisons with other thresholds).

(D) Comparisons of the network integration component HIn and segregation component HSe between the ADHD and HC groups in all participants (ALL),

children (7–19 years) and adults (20–50 years). * MANOVA p< 0.05.

(E and F)Visualizations of the subnetworks in different comparisons. These regions had significant alterations in the integration component or segregation

component (p< 0.05), and they formed subnetworks. A larger node size represents a higher increase in the degree (total FC to the node) of the weighted

subnetwork, and a thicker edge indicates a higher increase in FC. Regions were colored according to their belonging to different systems, and those marked

with regional names had significantly increased degrees within the subnetworks (p< 0.05). In the adults with ADHD, only one region was detected in the DMN

system, which was also robust in a separate analysis of adult data from one site (see Figure S3). DMN - default mode network; LIM - limbic; SAL - salient

attention; DOR - dorsal attention; VIS - visual; CON - control; MOT - somatomotor. PFC - prefrontal cortex, Cing - cingulate, Post-posterior, pCun -

precuneus, SomMot - somatomotor, PFCl - lateral prefrontal cortex, Temp - temporal, Par – parietal, Vis - visual, pCunPCC - precuneus posterior cingulate

cortex, PFCv - ventral prefrontal cortex, PrCv - precentral ventral.
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the subnetwork related to ADHD were distributed in the control and DMN systems (Figure 1E, p< 0.05).

With the same procedure, we defined the subnetwork for children wherein the regions had significantly

altered integration components or segregation components (Figure 1E, p< 0.05). The significant regions
4 iScience 25, 104673, July 15, 2022
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have an increased degree, and they are distributed in the control, dorsal attention, DMN and visual sys-

tems. Only one significant PFC region was detected in the comparison between ADHD adults and HC

adults, which was in the DMN system, and it maintained robust changes in a separate one-site analysis (Fig-

ure S3). Furthermore, we also identified the subnetwork in the comparison between ADHD adults and

ADHD children (Figures 1F and S6). These significant regions in ADHD adults had a higher contribution

to functional integration than in ADHD children (p< 0.05, uncorrected) and a higher degree in the subnet-

work. Nearly all significantly different regions between ADHD adults and ADHD children were located in

the dorsal attention and control systems.

Overall, ADHD-related hyperconnectivity across the lifespan was mainly found in local regions located in

the DMN and control systems, but children and adults had more specific alterations. The abnormalities

in children were mainly located in the control, dorsal attention, DMN and visual systems, but they were

located in the DMN in adults. Crucially, children with ADHD and adults with ADHD had significant differ-

ences in their dorsal attention and control systems.

Heterogeneous effects of ADHD and age on brain functional organization

We next investigated the dominant effects of ADHD and age on functional systems. Using a multiple-

regression approach (see STAR Methods), we evaluated the effect of age and the effect of ADHD on the

integration/segregation components (HIn or HSe) in each functional system. In all patients, age and

ADHD had heterogeneous effects on different functional systems (Figure 2A). For the network integration

component, age had the largest negative effect on salient attention andmotor systems, and ADHD had the

largest effect on the limbic system (Figure 2A). In terms of the network segregation component, age had

the largest positive effect on the salient attention system, and ADHD had the largest effect on the limbic

system (Figure 2A). While performing a principal component analysis (PCA) on the effects of age and ADHD

on network integration and segregation components, we obtained an overall coeffect defined as the dif-

ference between the first component for HIn (explaining 86.4% of the variance) and the first component for

HSe (explaining 80.6% of the variance). A larger positive coeffect indicates a higher effect of ADHD on brain

network integration, and a larger negative coeffect represents a higher effect of age. It is clear to see a

higher effect of ADHD on the limbic system and a higher effect of age on the salient attention and motor

systems (Figure 2B). However, if we performed the analysis separately for the children and adult patients,

then this coeffect exhibited a great difference. In ADHD children, age had the largest effect on the dorsal

attention system, but the effect of age was in the salient attention system for ADHD adults. Meanwhile,

ADHD had a high coeffect on the limbic system in both children and adults.

We found that the heterogeneous effects of ADHD and age on functional systems in children and adults

relate to different lifespan functional patterns. All systems had similar quadratic lifespan associations

with age in the integration and segregation components (Figures 2C and S7), except for the limbic system,

which was statistically tested by LRT and bootstrapping (Tables S1 and S2). The quadratic lifespan associ-

ations of FC with age were mainly located around the salient attention and control systems (Table S3).

Meanwhile, the fitting line of the HIn of the limbic system in ADHD patients was above that for HCs (Fig-

ure 2C), but this difference in the fitting lines between the ADHD and HC groups was insignificant (p =

0.243). We thus further compared the segregation/integration of this system at CH (7–19 years), AH (20–

35 years) and OA (36–50 years) subgroups between the two groups and found that AH ADHD patients

had significantly higher integration than AH HCs (p< 0.05, see Figure S8). Thus, even though the limbic sys-

tem has a similar linear lifespan association with age in ADHD patients and HCs, ADHD-related increased

integration indeed exists.

Therefore, although age and ADHD jointly affect the brain’s resting state in patients, the limbic and salient

attention systems relate to different effects across the lifespan. Children and adults with ADHD share a

dominant effect of ADHD on the limbic system that has a linear lifespan association with age; however,

age dominantly affects the salient attention system in adults but affects the dorsal attention system in

children.

The limbic system better predicts hyperactive symptoms in ADHD patients

Although functional systems were heterogeneously affected by ADHD and age and had different lifespan

associations with age in the ADHD patients, we expected that these heterogeneous lifespan functional pat-

terns signify distinct mechanisms of hyperactivity or inattention. To test this possibility, linking resting-state
iScience 25, 104673, July 15, 2022 5
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Figure 2. Heterogeneous lifespan associations between functional systems and age in ADHD patients

(A) Effect of age and effect of ADHD on network integration (upper panel) and segregation components (lower panel) in

different functional systems.

(B) PCA-based overall coeffect between age and ADHD on brain network integration for all ADHD patients, ADHD

children and ADHD adults.

(C) Lifespan associations of HIn with age in three typical systems (see Figure S7 for HSe). These curves were obtained by

fitting the HIn of HC and ADHD participants with age, and the fitting models were determined by LRT and bootstrapping.

The shadow indicates the confidence interval. The linear fitting models in the limbic system were first obtained, and the

average difference of the predicted values from the fitted models between ADHD and HC groups was calculated. Then,

the permutation test (1000 times) was applied to obtain a distribution of the average differences in a null model, and the p

value was provided.
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brain network properties to ADHD symptoms is urgently needed. In addition to the network integration

and segregation components HIn and HSe, we further measured the heterogeneity of regional integra-

tion/segregation components (i.e., CVIn and CVSe) because the brain requires the heterogeneous activa-

tion of certain regions to achieve task switching (Cortese et al., 2012). The heterogeneities were calculated

for the whole brain and all functional systems. The highly negative correlation between CVIn (or CVSe) and

HIn (or HSe) indicates that brain networks with higher integration/segregation correspond to a more homo-

geneous distribution of the regional integration/segregation component (Figure 3A).

We performedmultiple linear regression models while controlling for sex and age, and the beta estimation

was used to represent the correlation between the ADHD scores and brain measures (see STAR Methods).

In all ADHDpatients, theHIn of the limbic system had the highest correlation with the hyperactive score (see

Figure 3B, b = �0.276, p = 0.020). The negative correlation implies higher hyperactivity for less network

integration. Meanwhile, the CVIn of the visual system was positively correlated with the hyperactive score

(b = 0.254, p = 0.033), which indicates higher hyperactivity for a more heterogeneous distribution of the

regional integration component, matching to less network integration. Thus, it seems consistent that

the limbic and visual systems dominantly affected by ADHD can better predict hyperactivity in ADHD

patients.
6 iScience 25, 104673, July 15, 2022
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Figure 3. The limbic system better predicts hyperactivity in ADHD patients

(A) Definitions of CVIn and CVSe measuring the spreading of the regional HIn and HSe (left panel) and their correspondences to the integration and

segregation components in the whole brain.

(B–E) Beta estimations measuring the correlations between the hyperactive scores and brain measures in ADHD patients, (C) ADHD children, (D) ADHD

adults and (E)healthy children for the whole-brain (ALL) networks and seven functional systems. The significant predictions were provided along with the

p values.
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However, there is another possibility that the limbic system can better predict the hyperactive score in both

ADHD children/adults and HCs. In the children and adults with ADHD, we also found that a higher hyper-

active score was related to less network integration (Figures 3C and 3D). The limbic system had the highest

correlation between CVIn and the hyperactive score in children with ADHD (b = 0.368, p = 0.044) and be-

tween HIn and the score in adults with ADHD (b = �0.416, p = 0.002). In addition, we further collected

the hyperactive score of healthy children (n = 26, 8–16 years, data not available for healthy adults) and

used different brain measures to predict it. Contrary to the ADHD children, healthy children had a positive

correlation between the hyperactive score and network integration, and the best prediction was not in the

limbic system (Figure 3E). Therefore, the limbic system better predicts hyperactivity in ADHD patients,

which is closely related to its dominant effect of ADHD but is independent of age.

The salient attention system better predicts inattention in ADHD patients

Similar to hyperactivity, we next tested whether there is a special system that can better predict inattentive

scores and whether this system is specific in ADHD patients. In ADHDpatients, theCVSe of the salient atten-

tion system was significantly related to the inattentive score (b = 0.233, p = 0.047, Figure 4A), which indi-

cates that higher inattention is associated with a more heterogeneous distribution of the regional
iScience 25, 104673, July 15, 2022 7
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Figure 4. The salient attention system better predicts inattentive scores in ADHD patients

(A–D) Beta estimations between the inattentive scores and brain measures in (A) ADHD patients, (B) ADHD children, (C)

ADHD adults and (D) healthy children for the while-brain (ALL) networks and seven functional systems. The significant

predictions were provided along with the p values.
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segregation component. In children with ADHD, the CVSe of the salient attention system also had the high-

est correlation with the inattentive score (b = 0.555, p = 0.016, see Figure 4B). Importantly, the salient atten-

tion system also better predicted the inattentive scores in adults with ADHD (b = �0.394, p = 0.007, see

Figure 4C), and the negative correlation between CVIn and the inattentive scores indicates higher inatten-

tion for a more homogeneous distribution of the regional integration component. However, in healthy chil-

dren, the inattentive score had a positive correlation with theCVIn of systems (Figure 4D), contrary to that in

ADHD children. The salient attention system cannot predict the score. Because the salient attention system

does not have a consistent dominant effect in ADHD adults and children, these results indicate that the

salient attention system that better predicts inattentive severity was a specific property in ADHD patients

relative to HCs and was independent of the coeffects of age and ADHD.
DISCUSSION

To link the brain functional organizations with ADHD clinical symptoms across the lifespan, we measured

functional segregation and integration based on hierarchical modules in brain FC networks. We first found

a quadratic lifespan association of brain FC networks with age in ADHD patients. Second, we showed that

ADHD was related to abnormal hyperconnectivity of local regions in the DMN and control systems across

the lifespan, and the abnormal regions were mainly located in the control system for children and in the

DMN for adults. Compared to ADHD children, ADHD adults had higher integration in several regions

that were mainly located in the dorsal attention and control systems. Third, the limbic system was domi-

nantly affected by ADHD in both children and adults, and this system had a linear lifespan association

with age. However, age dominantly affected the dorsal attention system in children with ADHD and the

salient attention system in adults with ADHD. Finally, we found that the limbic system better predicted hy-

peractivity, and the salient attention system better predicted inattention. These predictions were consis-

tent and shared between ADHD children and adults. Our results reveal the abnormal lifespan associations

of brain functional networks with age in ADHD patients and provide the potential distinct neural bases of

hyperactive and inattentive symptoms.

Age has complex effects on the segregation and integration of resting brain functional organizations, such

as increased network integration with enhanced average FC (4–7 years) or decreased FC (6–10 years) with

age (Muetzel et al., 2016; Rohr et al., 2018). Several studies have reported that elderly individuals exhibit

higher integration than younger individuals (Betzel et al., 2014; Chan et al., 2014), but decreased integra-

tion was also reported. Another study found that network segregation increases during childhood devel-

opment and peaks in young adulthood (Baum et al., 2017). Here, we found a significantly positive linear

correlation between age (7–50 years) and network integration in HCs, providing further evidence for the

increase of brain network integration with age (Betzel et al., 2014; Chan et al., 2014), which may be
8 iScience 25, 104673, July 15, 2022
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accompanied by an increase in crystallized intelligence and a decrease in fluid intelligence (Barbey, 2018).

In children with ADHD (7–16 years), previous studies have found a decrease in local FCs within the DMN

with age (Bos et al., 2017; Tang et al., 2018), but the FCs in HCs showed inconsistent relations with age

(Bos et al., 2017; Tang et al., 2018). Meanwhile, when using an independent component analysis (ICA), a

component loading appeared to decrease with age in children with ADHD (8–15 years) whereas it ap-

peared to become greater in HCs (Wu et al., 2019). In adults with ADHD (21–60 years), the FC within the

executive control network decreased with age (Soros et al., 2019). These cross-sectional and local FC ex-

plorations are not sufficient to identify the manner in which both age and ADHD affect the network segre-

gation and integration of resting-state brains on a global scale. Here, we found that brain FC networks have

a quadratic correlation with age in ADHD patients across the lifespan relative to the linear association in

HCs. Thus, our work offers the first lifespan evidence that network integration first increases and then de-

creases with age in ADHD patients. Furthermore, this result may be consistent with the ERP result, where

ADHD patients (18–59 years) had a quadratic association of NoGo P3 amplitude with age, different from

the linear relationship in HCs (Kakuszi et al., 2020). On the other hand, a worldwide lifespan meta-analysis

reported the delayed maturation of brain volumes in children with ADHD but insignificant structural alter-

ations in adults with ADHD (Hoogman et al., 2017). Our results further indicate that the functional alter-

ations may not parallel the structural abnormalities in ADHD patients.
Across the lifespan, ADHD has different effects on brain FC networks in children and adults. Generally,

ADHD has been hypothesized to be a DMN-dysconnectivity disorder (DeLa Fuente et al., 2013; Gracia-Tab-

uenca et al., 2020; Marcos-Vidal et al., 2018; Mostert et al., 2016; Sudre et al., 2017; Sutcubasi et al., 2020),

which embraces the abnormalities of the DMN in ADHD and its return to normal functioning after treatment

with methylphenidate (Peterson et al., 2009). Indeed, aberrant FC within the DMN was present in children

and adults with ADHD (Guo et al., 2020; Sutcubasi et al., 2020), but the alterations were inconsistent (Barber

et al., 2015; Bos et al., 2017; Cortese et al., 2012; Iravani et al., 2021; Mattfeld et al., 2014; Qian et al., 2019;

Sripada et al., 2014a). An insignificant connectivity change within the DMN was also observed in children

with ADHD (Mostert et al., 2016). In the lifespan study, a meta-analysis combining children and adults

with ADHD reported significantly altered FCs distributed in the DMN and control systems (Sutcubasi

et al., 2020), and we also found that ADHD patients had functionally abnormal regions in the DMN and con-

trol systems, and these regions have increased integration contribution (or degree) compared to HCs. Our

results partially match those of previous studies (Bos et al., 2017; Duffy et al., 2021; Qian et al., 2019), and

those inconsistencies in ADHD children and adults may be related to the global signal regression, multisite

correction, medication, course of disease, severity, hyperactive/inattentive subtypes, etc. (Zhou et al.,

2019). Because the DMN is highly active during rest but becomes deactivated during task performance

(Raichle et al., 2001; Spreng et al., 2020), the DMN hypothesis proposed that owing to poor deactivation

during tasks (Sripada et al., 2014a), the DMN is less able to effectively transition from a baseline to an active

state (Sonuga-Barke and Castellanos, 2007). Our results imply that the hyperconnected DMN at rest in

ADHD patients lost its segregation ability to flexibly transition to task states. Meanwhile, the control system

plays a key role in regulating the functions of other networks (Gao et al., 2019) and is associated with ADHD-

related mind wandering (Vatansever et al., 2018) and symptom remission (Francx et al., 2015). In a longitu-

dinal follow-up study, persistent ADHD was related to higher FC within the control system, which was

further increased for remitting ADHD (Francx et al., 2015). Here, we found that in all ADHD patients, the

control system had regions with significantly increased integration contribution (or degree), but this was

not related to ADHD symptoms. This higher integration may compensate for the ADHD deficit (Johnson,

2012) and may be an efficient mechanism to suppress ADHD symptoms (Francx et al., 2015).
Even though a previous study reported that children with ADHD and adults with ADHD shared altered FCs

within the DMN and between the DMN and ventral attention network (Fair et al., 2010; Guo et al., 2020;

McCarthy et al., 2013; Sripada et al., 2014b), we did not find any shared abnormal regions. According to

neurodevelopmental theory (Halperin and Schulz, 2006), ADHD remission is driven by improved prefrontal

top-down control. A longitudinal follow-up study reported that increased FC within the control system cor-

responds to less severe ADHD symptoms (Francx et al., 2015). Here, the control system could not predict

clinical symptoms in ADHD patients. The abnormal regions were located in the DMN system in ADHD

adults and were distributed in the control, dorsal attention and visual systems in ADHD children. Our results

suggest the neural mechanism transition of ADHD from widespread abnormalities in children to more

concentrated abnormalities in adults. These results also indicate the intrinsic difference between ADHD

adults and ADHD children. Compared to ADHD children, we found a smaller inattentive score in ADHD
iScience 25, 104673, July 15, 2022 9
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adults (p = 0.013) and a higher integration contribution of regions in the dorsal attention and control sys-

tems during rest. Thus, enhanced executive control functions may contribute to the remission of ADHD

symptoms.

Children/adolescents (7.2–21.8 years) with ADHD were found to have a functional maturation lag in the

DMN (Sripada et al., 2014b), and young ADHD rats (4–6 weeks) had a lag in limbic regions (Ha et al.,

2020). Here, we found that the limbic system dominantly affected by ADHD can better predict hyperactivity

in ADHD patients, but not in HCs. From the perspective of cognitive function, the limbic system involves a

set of regions in the paleocortex, which supports a variety of functions related to emotion regulation and

motivation meditation and has been known to be associated with ADHD (Guo et al., 2020; Ha et al., 2020;

Hoogman et al., 2017; Jadidian et al., 2015). The normal development of limbic circuitry underlies the

reduction in impulsive choices from early adolescence to mid-adulthood (Christakou et al., 2011), and

the immature limbic system confidently predicts hyperactivity (Baribeau et al., 2019; Hart et al., 2014; Nickel

et al., 2017; Van Dessel et al., 2020). Sanefuji et al. also found that the hyperactive subtype is related to the

corticostriatal network that is involved to some extent in limbic cortices (Sanefuji et al., 2017). However,

whether the functional pattern of the limbic system is closely correlated with hyperactivity across the life-

span is unclear. Our result provides further knowledge that abnormalities in the limbic system are also asso-

ciated with the increase in hyperactive choice across the lifespan (Hart et al., 2014).

The salient attention system (also called the ventral attention system) was dominantly affected by age in ADHD

adults but not in ADHD children. However, this system can better predict inattention in both children and adults

with ADHD and was not related to the inattentive scores in healthy children. This result indicates that the salient

attention system is closely related to the inattentive score uniquely in ADHD patients rather than in HCs. Mean-

while, the predictions revealed that brains with more homogeneous integration components or more hetero-

geneous segregation component distributions in the salient attention system correspond to higher inattention.

Indeed, to achieve task switching, the brain needs to activate certain regions of the salient attention system and

suppress others (Cortese et al., 2012), which may generate higher heterogeneity in the integration component.

Thus, our results indicate that a more homogeneous integration component or a more heterogeneous segre-

gation component in the salient attention systemat restmay contribute to inefficient task switching that requires

the manipulation of attention. From the perspective of cognitive function, the salient attention system was

thought to enable brains to direct attention toward salient stimuli by excluding irrelevant noise, which supports

automatic ‘‘bottom-up’’ forms of attention (Cortese et al., 2012; Kessler et al., 2016). The dysfunction of the

salient attention system was thus believed to cause attention deficits related to ADHD (Cortese et al., 2012;

Franke et al., 2018; Guo et al., 2020; McCarthy et al., 2013; Shaw et al., 2013; Sonuga-Barke and Castellanos,

2007; Sutcubasi et al., 2020). For example, compared to the combined and hyperactive subtypes of ADHD,

the predominantly inattentive subtype is more specifically related to an abnormal salient attention system (Or-

instein and Stevens, 2014), such as increased FC in the right salient attention system (Sanefuji et al., 2017). Mean-

while, the salient attention system is a typical task-positive network that modulates the dynamic switching be-

tween the DMN and control systems (Uddin, 2015). Abnormal communications among the salient attention,

DMN and control systems may induce inattention (Qian et al., 2019; Sonuga-Barke and Castellanos, 2007).

Thus, even though we did not observe significant changes in the salient attention system related to ADHD,

the significantly abnormal DMN and control systems may contribute to the close mapping between the salient

attention system and inattention in ADHD patients. In particular, children with ADHD had abnormalities in the

control system, but adults with ADHDhad abnormal DMN.Our resultsmay suggest discriminative neuralmech-

anisms of inattention in children and adults with ADHD, wherein inattentive symptoms are indirectly driven by

abnormalities in the control system in children but indirectly driven by the DMN in adults.

Accordingly, a hierarchical module analysis enabled the discovery of functional systems that revealed het-

erogeneous lifespan associations with age and robustly predicted the hyperactive and inattentive symp-

toms of ADHD patients. The identified functional circuits provide insight into the neurobiological mecha-

nisms that support the important clinical components of ADHD shared in children and adults, which may, in

turn, have implications for the development of more objective and accurate diagnostic standards and

contribute to the ability to distinguish between the hyperactive and inattentive ADHD subtypes.
Limitations of the study

The sample size is relative small for the lifespan (7–50 years) investigation. We found that the limbic system

was significantly different between the two groups during AH (20–35 years), but this system showed a linear
10 iScience 25, 104673, July 15, 2022
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lifespan association with age that was insignificantly different from that in HCs. Larger sample size may

contribute to identifying more significant alteration of the limbic system in ADHD patients. Meanwhile,

the standard Schaefer atlas does not contain the subcortical structures of the limbic system (e.g., amyg-

dala), and this system has the smallest number of voxels and most of them lie in areas likely to be contam-

inated with susceptibility artifacts. This limitation may be related to the insignificant difference in the life-

span associations with age between ADHD patients and HCs. Finally, though we revealed the abnormal

lifespan association of brain functional networks in ADHD patients, it is still unknown how the ADHD affects

the development of brain functional organization. A longitudinal study would be necessary to address this

question.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Healthy adults University of California,

Los Angeles project

https://openneuro.org/datasets/ds000030

Attention deficit and hyperactivity

disorder adults

University of California,

Los Angeles project

https://openneuro.org/datasets/ds000030

Healthy children ADHD-200 project http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html

Attention deficit and hyperactivity

disorder children

ADHD-200 project http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html

Software and algorithms

MATLAB R2016a MathWorks https://github.com/TobousRong/ADHD
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Changsong Zhou (cszhou@hkbu.edu.hk).
Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the Key resources table. All original code has been deposited at https://github.com/TobousRong/ADHD

and is publicly available as of the date of publication. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The data for 57 children with ADHD and 57 healthy children were extracted from the Peking University Cen-

ter and New York University (NYU) Child Study Center in the ADHD-200 project (Table 1). The data for 40

ADHD adults and 40 healthy adults were collected from the University of California, Los Angeles (UCLA)

project (Bilder et al., 2020). In the Peking and UCLA datasets, the ADHD Rating Scale IV (ADHD-RS) was

used to evaluate the clinical scores of hyperactivity/impulsivity, inattention and total symptoms, and in

the NYU data, the Conners’ Parent Rating Scale-Revised, Long version (CPRS-LV) was used to obtain the

ADHD scores. Here, the ADHD-RS scores were used to study the relationship between brain networks

and ADHD symptoms. Adults with ADHD had smaller total symptom scores and inattentive scores than

children with ADHD (MANOVA, p = 0.044 and 0.013), and there was an insignificant difference in hyperac-

tivity (p = 0.614).
METHOD DETAILS

Data selection

We chose all 40 ADHD adults in the UCLA dataset with the repetition time [TR] = 2 s. To control the effect of

TR on the results, we first selected ADHD children data from the ADHD-200 project with the same TR = 2 s,

including the datasets from Peking University, Bradley Hospital/Brown University (BBU) and New York Uni-

versity (NYU) Child Study Center. Then, we further filtered the data where ADHD children had clinical

scores, and the BBU data were excluded because of the absence of clinical scores (see the Phenotypic

Quick-Fix.csv and Complete Test Set Phenotypic.csv files at the following website: http://fcon_1000.

projects.nitrc.org/indi/adhd200/index.html#). Thus, the final number of ADHD children was 57.
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Because the length of the fMRI data affects the results of stable functional networks (Bassett et al., 2011;

Wang et al., 2021a), we controlled the same number for ADHD patients and HCs. Specifically, in the

UCLA adult dataset, we first fixed the ratio of males to females as the ADHD group and then randomly

chose 40 HCs. In the ADHD children dataset, we first chose all HCs (42 children) provided in the Phenotypic

Quick-Fix.csv and Complete Test Set Phenotypic.csv files and then randomly selected 15 more HCs from

the NYU dataset.

MRI scanning parameters

All resting-state fMRI data has the same TR = 2s. In the Peking dataset, the data were acquired using a 3T

MRI scanner (Siemens) in an 8-min period in which the participants were awake in the scanner. A total of 240

volumes of images were obtained (TR/TE: 2000/30 ms, Flip angle 90� degree, matrix size: 64 3 64, voxel

size: 3.1 3 3.1 3 3.5 mm3; FOV = 220 3 220 mm2, slices 33). The procedure allowed the eyes to be either

closed or open during the resting state fMRI. In the NYU dataset, the data were acquired using a 3T MRI

scanner (Siemens) in an 8-min period in which the participants were awake in the scanner. A total of 180

volumes of images were obtained (TR/TE: 2000/15 ms, Flip angle 90 degree, voxel size:

3.0 3 3.0 3 4.0 mm3; FOV = 240 3 240 mm2, slices 33). During acquisition, participants were asked simply

to remain still, close their eyes, think of nothing systematically and not fall asleep. A black screen was pre-

sented to them. And in the UCLA dataset, the data were acquired on a 3T Siemens Trio scanners (Siemens)

at UCLA. Functional MRI data were collected using a T2*-weighted echoplanar imaging (EPI) sequence

with the following parameters: slice thickness = 4 mm, 34 slices, TR = 2 s, TE = 30 ms, flip angle = 90�, matrix

64 3 64, FOV = 192 mm, oblique slice orientation.

MRI data processing

An analysis of Functional NeuroImages (AFNI) (http://afni.nimh.nih.gov/afni/) and the FMRIB Software Li-

brary (FSL) (http://www.fmrib.ox.ac.uk/fsl/) were used to preprocess the resting-state fMRI data (Biswal

et al., 2010; Wang et al., 2019). The mean framewise displacement (FD) was significantly smaller than the

suggested value (0.3 mm) (Drysdale et al., 2017), and there was no significant difference in the FD between

the ADHD and HC groups (two-sample t-test, p = 0.605). Echoplanar imaging (EPI) images were motion-

and slice-time corrected and spatially smoothed using a Gaussian kernel of 6 mm full-width at half-

maximum (FWHM). The fMRI signal was further filtered with a bandpass of 0.01Hz <f< 0.1 Hz. Additionally,

several sources of nuisance covariates were eliminated using a linear regression as follows: 1) 6 rigid body

motion correction parameters and 2) the signal from the white matter and the signal from a ventricular re-

gion of interest. The global whole-brain signal was not removed because the use of global signal regres-

sion as a pre-processing step in resting-state fMRI analyses remains controversial and is not universally rec-

ommended (Schölvinck et al., 2010).

Resting-state brain FC

We used the Schaefer atlas, which is based on the transitions of FC patterns (Schaefer et al., 2018), to par-

cellate the brain into N = 100 regions of interest (ROIs). This resolution of the atlas has also been used in a

recent ADHD study (Shappell et al., 2021). The BOLD signals of voxels belonging to one region were aver-

aged to obtain the regional fMRI data. To overcome the effect of different lengths on the results, the length

of the BOLD signal was controlled to be the same and lasted for 304 s (152 frames). The Pearson correlation

coefficient was used to compute the FC between any two regions. Here, stable FCs within groups and in-

dividual static FCs were separately constructed. First, the fMRI time series were concatenated among all

participants in each group, and stable FCs were obtained. Second, for each participant, the total fMRI se-

ries was used to construct the individual static FC. Finally, the negative correlations in the FCmatrices were

set to zero, and the diagonal elements were kept at one. Here, the mean percentage of positive connec-

tivity in the individual FC matrices in the HC group was 91.86% and was 93.33% in the ADHD group.

Following previous studies (Shappell et al., 2021; Wang et al., 2021a), negative connectivity was excluded.

This operation also contributes to clarifying the statistical relationship between brain networks and ADHD

symptoms (see Figure S9 for more discussion).

Harmonization of multisite datasets

Our datasets were extracted from three different centers; thus, the multisite effect should be properly

considered. ComBAT software was used to harmonize the static FC (Fortin et al., 2018). In this software,

there are mainly two control setting parameters, namely, the batch vector and biological variables. The
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batch vector specifies the scanner of the data, and biological variables indicate the information that should

be protected during the removal of scanner effects, i.e., sex, ADHD diagnosis and age in this study.

Hierarchical modules of FC networks

The NSP method was applied to identify the segregation and integration of brain FC networks based on

eigenmodes (Wang et al., 2021a, 2021b). Using eigen-decomposition, eigenvectors U and eigenvalues

L of FC matrix C were sorted in descending order of L. NSP detected the hierarchical modules of the

FC networks with the following procedures (see Figure S10):

1. The 1st mode had the same sign of eigenvector values for all regions and was regarded as the first

level with one module (i.e., whole-brain network).

2. In the 2nd mode, the regions with positive eigenvector signs were assigned to a module, and the re-

maining regions with negative signs formed the secondmodule. This mode was regarded as the sec-

ond level with two modules.

3. According to the positive or negative eigenvector sign of the regions in the 3rd mode, eachmodule in

the second level could be further partitioned into two submodules to form the third level. Succes-

sively, the FC network could be partitioned into modules of multiple levels as the order of functional

modes increased.When each module contained only a single region at a given level, the partitioning

process was stopped. In addition, the regions within a module at a specific level may have the same

sign of eigenvector values in the next level; then, the module was indivisible, which had no effect on

the subsequent iterative process. During the partitioning process, the module number

Miði = 1;/;NÞ and modular size mjðj = 1;/;MiÞ at each level were recorded.
Hierarchical segregation and integration in brain FC networks

Different from classical segregation and integration based on modules at a single level (Newman, 2006),

the hierarchical segregation and integration components of brain FC networks were defined across multi-

ple levels (Wang et al., 2021a). The first level in the FC network had a single large module, which corre-

sponded to the global network integration with the largest eigenvalue L. The second level with two

modules supported the local integration within each module and the segregation between them, which

required a decreased eigenvalue. With an increasing mode order, more modules reflected deeper levels

of the segregated process, accompanied by smaller eigenvalues L. The segregation and integration com-

ponents at each level can be defined as (Wang et al., 2021a)

Hi = L2
i Mi

�
1 � pi

��
N (Equation 1)

with

pi =

P
j

��mj � N=Mi

��
N

: (Equation 2)

Here, N is the number of regions, and pi is a correction factor for the heterogeneous modular size and re-

flects the deviation from the optimized modular size mj = N=Mi in the i-th level. The global integration

component is thus taken from the first level:

HIn = H1=N; (Equation 3)

and the segregation component is summed from the 2nd - Nth levels:

HSe =
XN

i = 2

Hi=N: (Equation 4)

At the whole-brain level, HSe and HIn were negatively correlated across subjects in both groups (Figure S1).

Based on the orthogonal and standard eigenvectors, the network integration and segregation compo-

nents in each level could be mapped to each region j:

Hj
In = H1U

2
1j and Hj

Se =

�����
XN

i = 2

HiU
2
ij : (Equation 5)

where Uij is the eigenvector value for the j-th region at the i-th level. The segregation and integration of a

functional system can be obtained by averaging the corresponding components of the regions in this
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system. Then, the distributions of the regional segregation/integration components were measured with

the coefficient of variance:

CVIn =
sHj

In

HIn

and CVSe =
sHj

Se

HSe

: (Equation 6)

Here, sHj
In
and sHj

Se
are the standard variances among regions across the whole brain or any functional sys-

tem, and HIn and HSe represent the corresponding averages. These measures based on NSP are more

powerful in linking brain networks to distinct ADHD symptoms than a classical FC analysis (Figure S11).
fMRI length calibration

Aproportional calibration strategy was used to overcome the bias of brain FCnetworks to higher segregation in

shorter fMRI series (Bassett et al., 2011; Wang et al., 2021a). The group-stable segregation and integration

components, i.e., HS
In and HS

Se, could be calculated from each stable FC matrix built from concatenated fMRI

time series. The vectors of segregation (or integration) components from individual static FC networks for all

participants in each group are HIn = ½HInð1Þ;HInð2Þ;/;HInð97Þ� and HSe = ½HSeð1Þ;HSeð2Þ;/;HSeð97Þ�, which
were calibrated to H0

InðnÞ = HInðnÞ3HS
In=CHInD and H0

InðnÞ = HSeðnÞ3HS
Se=CHSeD for the n-th participant. Here, CD

represents the average across all participants. This calibration was separately performed in each group. Then,

the calibration of regional segregation and integration was also performed. For region j of the n-th participant,

the calibrated segregation and integration components areHj0

Se = Hj
Se=HSeðnÞ3H0

SeðnÞ andHj0
In = Hj

In=HInðnÞ3
H0

InðnÞ, where the relative contribution of each region to network segregation/integration remained consistent.
Effects of age and ADHD

We built different multiple-regression models to obtain the effects of age and ADHD on the brain (Sripada

et al., 2014b). In all patients, the regression model was

H = b1 3 age2 + b2 3ADHD + b3 3 age+ b4 3 sex + b5 3 FD + ε: (Equation 7)

Here, H is the brain measure, and ε is the residual. In this model, the brain measures were affected by age,

ADHD symptoms, sex and head motion (FD). The parameter b1 measures the effect of age, and b2 stands

for the effect of ADHD. To maintain consistency, this model was also applied to the limbic system even

though it had a linear lifespan association with age (see Tables S1 and S2).

In children or adults with ADHD, the network segregation and integration components were linearly related

to age. Thus, the regression model was

H = b1 3 age+ b2 3ADHD + b3 3 sex + b4 3 FD + ε (Equation 8)

This model does not consider the nonlinear effect of age on brain functional organization. The above

models were separately fitted for HIn and HSe in each functional system. Thus, each model has the b1

and b2 series for each measure in seven systems. Then, a PCA of these estimation coefficients was per-

formed, and the subtraction difference between the first components for integration and segregation com-

ponents was obtained to measure the coeffect of age and ADHD on the participants’ brains.
QUANTIFICATION AND STATISTICAL ANALYSIS

The linear regression model y�x+FD and quadratic regression model y�x2+x+FD were applied to fit the

lifespan association with age. The LRT was used to identify which model was chosen. If the p value of LRT

was smaller than 0.05, then we chose the quadratic regression model; otherwise, the linear regression

model was used. Bootstrapping also provided similar results. A multivariate analysis of covariance (M-

ANOVA) was used to assess the alterations induced by ADHD in Figures 1C–1F, controlling for sex, age

and FD. A linear regression model was conducted to examine the relationships between distinct ADHD

symptoms and brain measures in Figures 3 and 4. These statistical tests were performed in R.
18 iScience 25, 104673, July 15, 2022
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