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A B S T R A C T   

Though significant efforts are in progress for developing drugs and vaccines against COVID-19, limited thera-
peutic agents are available currently. Thus, it is essential to undertake COVID-19 research and to identify 
therapeutic interventions in which computational modeling and virtual screening of lead molecules provide 
significant insights. The present study aimed to predict the interaction potential of natural lead molecules against 
prospective protein targets of SARS-CoV-2 by molecular modeling, docking, and dynamic simulation. Based on 
the literature survey and database search, fourteen molecular targets were selected and the three targets which 
lack the native structures were computationally modeled. The drug-likeliness and pharmacokinetic features of 
ninety-two natural molecules were predicted. Four lead molecules with ideal drug-likeliness and pharmacoki-
netic properties were selected and docked against fourteen targets, and their binding energies were compared 
with the binding energy of the interaction between Chloroquine and Hydroxychloroquine to their usual targets. 
The stabilities of selected docked complexes were confirmed by MD simulation and energy calculations. Four 
natural molecules demonstrated profound binding to most of the prioritized targets, especially, Hyoscyamine and 
Tamaridone to spike glycoprotein and Rotiorinol-C and Scutifoliamide-A to replicase polyprotein-1ab main 
protease of SARS-CoV-2 showed better binding energy, conformational and dynamic stabilities compared to the 
binding energy of Chloroquine and its usual target glutathione-S-transferase. The aforementioned lead molecules 
can be used to develop novel therapeutic agents towards the protein targets of SARS-CoV-2, and the study 
provides significant insight for structure-based drug development against COVID-19.   

1. Introduction 

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) is 
responsible for Coronavirus disease-2019 (COVID-19), formerly known 
as nCoV-2019, which was first reported in the city of Wuhan, China in 
December 2019 [1]. Globally, 116 million confirmed cases and 2.58 
million deaths have been reported as of the first week of March 2021 as 
per the latest reports of the World Health Organization (WHO) [2]. The 
WHO declared COVID-19 as a pandemic due to the impact of a global 
outbreak, and the severity of the infection caused by SARS-CoV-2 [3]. It 
is one of the challenging outbreaks the world has ever experienced, and 

most of the developed countries are at the risk of community outbreaks 
[4–6]. While there were several asymptomatic cases reported, the 
infection mainly characterized by the symptoms such as fever, muscle 
and body aches, cough, sore throat, shortness of breath for about 5–6 
days after the infection, whereas, it causes a severe form of pneumonia 
in the elderly and immune-compromised people that resulted in 
worldwide panic leading to an international concern [7–10]. Presently, 
more than 90% of the deaths are reported due to COVID-19, and the 
major countries with high mortality rates reported include the United 
States of America, India, Brazil, Russian Federation, The United 
Kingdom, France, Spain, Italy, Turkey, Germany, Colombia and 
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Argentina [2]. Currently, there are limited therapeutic agents available 
for the treatment of COVID-19, which demonstrates the severity of the 
infection. Thus, it is essential to undertake COVID-19 research and to 
screen putative drug targets and lead molecules for the development of 
therapeutic strategies towards COVID-19. 

The surface spike proteins (S), membrane proteins (M), envelope 
proteins (E), main protease-replicase polyproteins (rep and protein 1a), 
and few non-structural proteins (nsp6, nsp8, and nsp10) are responsible 
for the pathogenesis mechanism of coronavirus [10]. Spike glycopro-
teins protruding on the surface of the virus mediates the viral entry into 
the host cells [11,12]. Five regions were identified in spike proteins 
(residues 274–306, 510–586, 587–628, 784–803, and 870–893) that 
represent the regions associated with the high rate of an immune 
response [13]. The nucleoprotein such as replicase polyprotein and 
RNA-dependent RNA polymerase (RdRp) played a pivotal role in the 
virus replication and form a ribonucleoprotein complex with the viral 
RNA through the N-terminal domain (N-NTD) of protein N. The mem-
brane protein involved in the protein-protein interactions required for 
assembly of coronaviruses, and determined as a protective antigen in 
humoral responses which functions as an ion channel [14]. Replicase 
polyproteins such as main protease (Mpro) and papain-like protease 
(PLpro) are involved in the cleavage of polyproteins, and non-structural 
proteins (nsp) are involved in the assembly of replicase-transcriptase 
complex (RTC) [14–16]. Therefore, these proteins can be considered 
as potential targets to develop therapeutic agents against SARS-CoV-2. 

The drugs that were suggested in the treatment of COVID-19 include 
Hydroxychloroquine, Chloroquine, Ritonavir, Lopinavir, and Remdes-
vir, which are used for the treatment of Malaria, AIDS, Ebola, and 
Influenza [17,18]. Hence, there is a need to screen more reliable ap-
proaches to combat the infections caused by SARS-CoV-2. Computa-
tional biology studies are one of the promising approaches to reduce the 
time and cost of various stages of drug discovery when compared to the 
conventional methods of drug development. The major approaches of 
computational biology in drug discovery include molecular modeling of 
potential targets, computer-aided virtual screening of novel lead mole-
cules, and molecular dynamic simulation studies of the target-lead 

complexes. These methods can be used to screen potential lead mole-
cules against SARS-CoV-2. Several studies have demonstrated that the 
bioactive molecules from natural sources can be used to treat several 
viral infections because the natural compounds possess fewer side ef-
fects, ideal drug likeliness, pharmacokinetic and toxicity properties, and 
their binding potential to the molecular targets [19,20]. 

The present study aimed to predict the binding potential of selected 
natural leads against multiple protein targets of SARS-CoV-2 when 
compared to the binding of two currently suggested drugs to their usual 
targets by computational virtual screening, molecular modeling, and 
dynamic simulation studies. 

2. Materials and methods 

2.1. Identification of probable molecular targets 

The drug targets of SARS CoV – 2 were identified based on the 
literature survey, database search, and knowledge on their role in 
pathogenicity especially mediating host cell and replication of RNA. The 
major targets involved in the virulence mechanism of SARS-CoV-2 are 
spike glycoproteins, replicase, membrane proteins, envelope proteins, 
and non-structural proteins. A total of fourteen probable drug targets, 
namely protein S, E, M5, rep, 1a, 7a, 3a, nsp6, nsp7, nsp8, 9b, nsp10, 
nsp12, and receptor-binding domain (RBD) were identified as potential 
molecular targets. Out of fourteen targets identified, the three- 
dimensional (3D) structures of S, E, M5, rep, 1a, Protein7a, Protein9b, 
nsp7, nsp8, nsp12, and RBD are available in their native forms. The 
structural details of the selected targets are shown in Table 1. The 3D 
structures of spike glycoprotein available in post-fusion (PDB: 1WYY; 
resolution: 2.2 Å) [22], open state (PDB: 6VYB; resolution 3.2 Å) [10] 
and closed state (PDB: 6VXX; resolution 2.8 Å) [10] were retrieved from 
protein data bank (PDB) [21]. Similarly, the structures of the main 
protease (Mpro) (PDB: 1Q2W; resolution 1.8 Å) [23], Mpro (PDB: 5RE4; 
resolution 1.88 Å) [24], membrane protein (chain C, F) (PDB: 3I6G; 
resolution 2.201 Å) [25], envelope protein (PDB: 2MM4) [26], Pro-
tein7a (PDB: 1XAK; resolution 1.8 Å) [27], Protein9b (PDB: 2CME; 

Table 1 
The structural description of eleven probable drug targets (with known 3D structures) that are involved in the virulence and pathogenesis of SARS-CoV-2.  

PDB 
ID 

Name of the protein Chain Resolution R-Value Free R-Value Work Experimental 
method 

Secondary 
structure 

References 

1WYY Post-fusion hairpin conformation of 
the spike glycoprotein 

A, B 2.2 Å 0.249 0.210 X-ray 
diffraction 

66% helical Duquerroy 
et al., 2005 

6VYB SARS-CoV-2 spike ectodomain 
structure (open state) 

A, B, C 3.2 Å Aggregation 
state: Particle 

Reconstruction 
method: Single 
particle 

Electron 
Microscopy 

16% helical, 
25% beta sheet 

Walls et al., 
2020 

6VXX Structure of the SARS-CoV-2 spike 
glycoprotein (closed state) 

A, B, C 2.8 Å Aggregation 
state: Particle 

Reconstruction 
method: Single 
particle 

Electron 
Microscopy 

16% helical, 
25% beta sheet 

Walls et al., 
2020 

1Q2W X-Ray Crystal Structure of the SARS 
Coronavirus Main Protease 

A, B 1.86 Å 0.249 0.194 X-ray 
diffraction 

24% helical, 
28% beta sheet 

Bonanno et al., 
2003 

5RE4 Crystal Structure of SARS-CoV-2 
main protease in complex with 
Z1129283193 

A 1.88 Å 0.266 0.199 X-ray 
diffraction 

26% helical, 
28% beta sheet 

Fearon et al., to 
be published 

3I6G Newly identified epitope Mn2 from 
SARS-CoV M protein complexed 
withHLA-A*0201 

C, F 2.201 Å 0.246 0.205 X-ray 
diffraction 

26% helical, 
39% beta sheet 

Liu et al., 2010 

2MM4 Structure of a Conserved Golgi 
Complex-targeting Signal in 
Coronavirus Envelope Proteins 

A – Conformers 
Calculated: 200 

Conformers 
Submitted: 15 

NMR 65% helical Li et al., 2014 

1XAK Structure of the sars-coronavirus 
orf7a accessory protein 

A 1.8 Å 0.275 0.223 X-ray 
diffraction 

48% beta sheet Nelson et al., 
2005 

2CME The crystal structure of SARS 
coronavirus ORF-9b protein 

A 2.8 Å 0.289 0.266 X-ray 
diffraction 

3% helical, 44% 
beta sheet 

Meier et al., 
2006 

6M17 The 2019-nCoV RBD/ACE2-B0AT1 
complex 

E, F 2.9 Å Aggregation 
state: Particle 

Reconstruction 
method: Single 
particle 

Electron 
Microscopy 

3% helical, 23% 
beta sheet 

Yan et al., 2020 

6M71 SARS-Cov-2 RNA-dependent RNA 
polymerase in complex with 
cofactors 

A, B. 
C, D 

2.9 Å Aggregation 
state: Particle 

Reconstruction 
method: Single 
particle 

Electron 
Microscopy 

47% helical, 
17% beta sheet 

Gao et al., 2020  
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resolution 2.8 Å) [28], ribosome binding protein (RBD) (PDB: 6M17; 
resolution 2.9 Å) [29], RNA dependent RNA polymerase (RdRp) (PDB: 
6M71; resolution 2.9 Å) [30] with chain A (non-structural protein 12; 
nsp12), chain B and D (non-structural protein 7; nsp7), and C 
(non-structural protein 8; nsp8) were selected as a drug target. 

2.2. Model building and validation 

Out of fourteen identified targets, the 3D structures of three proteins 
namely Protein3a, nsp6, and nsp10 were not reported in their native 
forms. Thus, the amino acid sequences of Protein3a (UniProt ID: 
P59632), nsp6 (UniProt ID: P59634), and nsp10 (UniProt ID: P0C6U8) 
were retrieved from UniProt KB [31], and the 3D structures of these 
proteins were predicted from the basic amino acid sequences by ab initio 
(de novo) modelling by C–I-Tasser [32]. The 3D models of three targets 
were energy minimized by ModRefiner [33]. The secondary structures 
of the hypothetical models were assessed by STRIDE [34]. The hypo-
thetical models were analyzed and computationally validated by ProSa 
[35], Verify3D [36], ProCheck [37], ERRAT [38], and ANOLEA [39] in 
terms of the reliability, model quality, stereochemical quality (Ram-
achandran plot), quality factor (error function), structural and force 
field parameters, respectively. 

2.3. Identification and virtual screening of natural lead molecules 

Based on the relevance of natural compounds in medicinal chemistry 
research, the lead molecules present in various natural sources like 
plants and microorganisms with antiviral properties were identified by 
literature survey and database search. The details of these compounds 
are shown in Supplementary Material, Table S1. A total of ninety-two 
natural compounds were identified, and their 3D structures were 
retrieved from PubChem [40] and Chemspider [41] databases in.sdf 
and. mol formats, respectively (Supplementary Materials, Table S1). The 
retrieved sdf files were converted into.pdb by Open Babel [42]. The drug 
likeliness, pharmacokinetics (adsorption, distribution, metabolism, 
excretion -ADME), and toxicity properties were predicted using the 
molecular descriptors, filters, and statistical models available at Pre-
ADMET [43] and SwissADME [44]. The molecular filters used to predict 
drug likeliness included Lipinski’s rule of five [45], Comprehensive 
Medicinal Chemistry (CMC) rule, Egan’s rule [46], MDL Drug Data 
Report (MDDR) like rule [47], World Drug Index (WDI) like rule, Ghose 
filter [48], lead-like rule [49] and bioavailability score [50]. The sta-
tistical models such as blood-brain barrier (BBB) [51], caco2 cell 
permeability [52], human intestinal absorption (HIA) [53], lipophilicity 
[54], and water solubility [55] were predicted by PreADMET and 
SwissADME. The statistical models such as daphnia toxicity, Ames test 
[56], algae test, hERG inhibition, carcinogenicity in rats and mice, 
Minnow and Medaka fish toxicity and mutagenicity in terms of 
TA100_NA (-S9), TA1535_10RLI (-S9), TA100_10RLI (þS9), and 
TA1535_NA (þS9) strain of Salmonella typhimurium were used to predict 
the toxicity features. The molecules that qualified the features required 
for drug likeliness, pharmacokinetics, and toxicity were selected. 

2.4. Molecular docking studies 

Four potential molecules that qualified the drug-likeliness, ADME, 
and toxicity properties were selected, and the binding potentials of these 
molecules to fourteen selected targets of SARS CoV-2 were predicted 
using molecular docking by AutoDock tools and AutoDock Vina [57]. 
The binding sites of selected target proteins were predicted by Depth 
[58] and CastP [59]. The protein targets were prepared by adding polar 
hydrogen atoms and Gasteiger partial charges. The ligands were pre-
pared by setting the number of torsions and detecting the root atoms. 
The ligand and receptor files were written in. PDBQT format. The grid 
box for each target was prepared based on the dimensions of x, y, z 
coordinates of the binding pocket, and the configuration file was 

prepared. Each ligand molecule was docked against the selected target, 
and the output log files were prepared. Out of various docked confor-
mations, the best-docked poses of the complexes were selected based on 
the binding energy (kcal/mol), cluster RMSD, number of hydrogen 
bonds, and other weak interactions, which stabilized the docked com-
plexes. The binding energies associated with the interaction between 
natural molecules and selected targets were compared with the binding 
energy of the interaction between Chloroquine and Hydroxychloroquine 
towards their usual targets namely glutathione S transferase (PDB: 
1OKT) of Plasmodium falciparum and human angiotensin-converting 
enzyme (ACE)-2 (PDB: 1R42), respectively. The results of these 
docked complexes were considered as the control for the comparison of 
the binding potential of natural molecules and the selected targets. 

2.5. Molecular dynamic simulation studies 

The molecular dynamic (MD) simulation studies were performed to 
confirm the stabilities of the best-docked complexes of ligands and their 
targets along with the interaction of Chloroquine and glutathione S 
transferase. The MD simulation was performed by the Desmond module 
of Schrödinger’s suite [60]. The protein-ligand complexes were sub-
jected to pre-processing and hydrogen bond assignment was performed 
with standard parameters. The simulation system was prepared by uti-
lizing the system builder. TIP3P was selected as the solvent model, and 
the boundary conditions were defined by an orthorhombic box with 
minimized volume encapsulating the complex. OPLS3e was used as a 
force field, and the system neutralized by adding Cl− or Na+ ions based 
on the total charges of the system. The MD simulations were performed 
at 300 K using the constant number of particles, pressure, and temper-
ature (NPT) ensembles for 100 ns at an interval of 1 ns? The model was 
unfitted for 10ns before performing the MD simulation. The time-step 
adjusted to 2 fs (fs), a short-range cut-off with a radius of 9.0 Å opti-
mized, and no restraints were pre-defined. The simulation showed a 
temperature increase of 10K per time-step after the solvation of the 
binding pocket. The changes in RMS and protein-ligand contacts during 
simulation were generated by the simulation interaction diagram tool. 

The trajectories of RMSD and RMSF of proteins and ligands were 
estimated using the following formula: 

RMSDX =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
rt

i(tx) − ri
(
tref

))2

√
√
√
√

Where N is the number of atoms in the atom selection; tref is the refer-
ence time, (first frame used as reference, time t = 0); and r’ is the po-
sition of the selected atoms in frame x after superimposing on the 
reference frame, where frame x is recorded at time tx. 

RMSFi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
T

∑T

t=1
<

(
r′
(t) − ri

(
tref

))2

√
√
√
√ >

Where, T is the trajectory time over which the RMSF calculated, tref is 
the reference time (time t = 0); r is the position of an atom in the 
reference at time tref, and r’ is the position of atom at time t after 
superimposing on the reference frame. 

The protein-ligand RMSD, protein and ligand RMSF, protein-ligand 
contacts, ligand properties, and ligand torsion profile trajectories were 
analyzed using the simulation interaction diagram tool. 

2.6. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) 
calculations 

The calculation of model affinities of each docked complex (protein- 
ligand interactions) after a minimal simulation period of 1ns performed 
by GROMACS [61–63] using CHARMM36 all-atom force field. CGenFF 
(Force field generator) was used to assign the parameters and charges to 
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ligand to generate an index file. A solvation dodecahedron box gener-
ated with TIP3P solvent, and ions were added to neutralize the system 
charges. The energy minimization was carried out at 0.5 ns? Equili-
bration of the number of particles, volume, and temperature (NVT) 
ensemble was carried out before producing molecular dynamics of 1 ns? 
The trajectory files generated were used as the input files. The calcula-
tion of energy by MMPBSA carried out using the following command: 

g_mmpbsa -f traj.xtc -s topol.tpr -n index.ndx -mme -mm energy_MM. 
xvg 

The output was reported in terms of binding energy (kcal/mol). 

3. Results and discussion 

3.1. Prospective molecular targets 

Fourteen target proteins namely protein S, M, E, rep, 1a, 3a, 7a, 9b, 
nsp6, nsp7, nsp8, nsp10, nsp12, and RBD were identified based on an 
extensive literature survey and database search. Eleven targets 
possessed native structures (Table 1), and three targets, which lack the 
3D structures were computationally modeled (Table 2). Spike glyco-
protein S (PDB: 1WYY, 6VXX, 6VYB) was identified to be one of the most 
important targets due to its involvement in mediating host transfer by 
attaching the virion to the cell surface, and interacting with the host, and 
promote the infection [64,65]. The post-fusion conformation of the 
spike glycoprotein is a hairpin structure comprised of two heptad re-
peats that are stabilized by Asparagine and Glutamine residues, and 
form hydrogen bonds between the two heptad domains. The open and 
closed conformations of the surface spike glycoprotein act as an 
important part of interaction with the host cell surface and, three human 
Angiotensin-Converting Enzyme 2 (hACE2) motifs were observed in the 
closed conformation, thus, the conformation is important for the inter-
action with hACE2 at host cell surface initiating the viral entry [10]. The 
receptor-binding domain of the membrane protein interacted with the 
human cellular receptor hACE2 that recognizes SARS CoV-2 [29]. The 
membrane protein M is involved in morphogenesis, envelope membrane 
protein E induces apoptosis by activating host inflammasome, and 
replicase protein rep involved in transcription and replication of viral 
RNA, which contain proteinases that cleave the polyprotein [66,67]. 
Replicase polyprotein 1a is a proteinase that cleaves the N and C- ter-
minal of replicase polyprotein and involved in suppressing the host gene 
expression [68]. RNA-dependent RNA polymerase consists of three 
non-structural proteins namely nsp7, nsp8, and nsp12 [30]. Protein3a 
induces apoptosis [69], protein 7a involved in the viral replication in 
cell culture [70], Protein9b is a lipid-binding protein, non-structural 
protein6 (nsp6) initiates induction of autophagosomes, non-structural 
protein8 (nsp8) acts as primase in the viral replication and 
non-structural protein10 (nsp10) involved in viral mRNA cap methyl-
ation [71–73]. Therefore, based on the functional role and virulence 
mechanisms, these proteins were considered to be putative molecular 
targets for drug screening in the present study. 

3.2. Hypothetical model building and validation of selected targets 

The 3D structures of target proteins such as Protein3a, non-structural 
protein6, and non-structural protein10, which lack native structures 
were computationally predicted. The sequence size of Protein3a, 6, and 
10 were 274, 63, and 139 amino acids, respectively. The 3D structures of 
these sequences were predicted by C–I-Tasser, which utilizes deep- 
convolutional neural-network-based contact-map prediction [32]. 

The theoretical model of Protein 3a is shown in Fig. 1a. The energy of 
the modeled protein predicted by Anolea was found to be 1716e/kt, and 
energy was minimized to 879e/kt by ModRefiner (Table 2). The sec-
ondary structure of modeled protein comprised of 26.18, 29.82, 10.18, 
33.82 alpha-helices, beta-sheet, beta turns, and coils, respectively Ta
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(Fig. 1b). Ramachandran plot of the model suggested that 69%, 35.8%, 
and 5.2% residues were located in the most favored region, additionally 
allowed region, and outlier region of the plot, respectively (Fig. 1c). The 
stereo-chemical validation in terms of z-score obtained from ProSA was 
found to be − 4.88, which is comparable to the z-score of experimental 
structures (Fig. 1d). The VERIFY3D plot indicated that 63.64% of the 
residues possessed a 3D-1D score of ≥ 0.2, suggested a good quality 
model (Fig. 1e). The Z-score predicted by WHATIF showed a value of 
− 6.042 (Table 2). The overall quality of the model is predicted to be 
30.71 (Fig. 1f). Thus, based on the computational validation, it is sug-
gested that the hypothetical model of Protein 3a showed good stereo-
chemical validity, secondary structural alignment, and potential energy, 
which can be used as a molecular target. 

The hypothetical model of nsp6 visualized by PyMol is illustrated in 
Fig. 2a. The energy of the protein model was minimized from 366e/kt to 
359e/kt by ModRefiner. The secondary structure of the model 
comprised 70.4, 9.84, 8.20, and 11.48% alpha-helices, beta-sheet, beta 
turns, and coils, respectively (Fig. 2b). A Ramachandran plot of the 
model is shown in Fig. 2c, which revealed that 89.3%, 9.1%, 1.6% of the 
residues were present in the most favored region, additionally allowed 
regions, and outlier regions of the plot, respectively. The stereo- 
chemical validation by ProSA in terms of Z-score was found to be 

− 3.33, a score closer to the z-score of native structures (Fig. 2d). The 
plot obtained by VERIFY3D indicated that 50.82% of the residues 
showed a 3D-1D score of ≥ 0.2 (Fig. 2e). The Z-score predicted by 
WHATIF was found to be − 5.67 (Table 2). The overall model quality was 
found to be 39.62 (Fig. 2f). From the computational prediction, it was 
evident that the hypothetical model demonstrated structural and ste-
reochemical qualities, thus, the model can consider as a potential mo-
lecular target. 

Similarly, the hypothetical model of nsp10 is shown in Fig. 3a. The 
energy of the protein model was minimized from − 636e/kt to − 740e/kt 
(Table 2). The secondary structure of the modeled protein comprised 
19.4, 25.9, 11.51, and 43.17% of alpha-helices, beta-sheet, beta turns, 
and coils, respectively (Fig. 3b). Ramachandran plot of the model pre-
dicted by ProCheck showed that 68.8, 27.9, and 3.2 residues were 
located in the favored, allowed, and outlier regions, respectively 
(Fig. 3c). The stereo-chemical quality obtained from ProSA was found to 
be − 4.05 in terms of Z-score, which was in the range of the z-score of the 
experimental structures (Fig. 3d). The plot of the theoretical model 
obtained by VERIFY3D indicated that 70.5% of the residues were found 
to be a 3D-1D score of ≥ 0.2 (Fig. 3e). The Z-score predicted by WHATIF 
showed a value of 0.334 (Table 2). The quality of the model validated by 
ERRAT showed that a quality factor of 93.6 (Fig. 3f). Therefore, the 

Fig. 1. Computational modeling and model validation of Protein3a (a) Theoretical model of the target protein modeled using C–I-Tasser, (b) Secondary structure 
prediction of the theoretical model by STRIDE (c) Ramachandran plot assessment of the modeled residues of the target protein obtained by ProCheck (d) Stereo- 
chemical validation of the theoretical model in terms of z-score obtained from ProSA (e) The residues qualifying the 3D-1D score predicted by Verify 3D (f) The 
quality factor of the model obtained by the output plot of error function predicted by ERRAT. 
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computational validation showed that the 3D model of nsp10 was ideal 
in terms of stereochemical and structural stabilities, and the model can 
be considered as a target for the lead screening. 

3.3. Computational screening of natural lead molecules 

The virtual screening of 92 natural compounds from PubChem and 
ChemSpider databases showed that 48 of them were qualified for the 
drug-likeliness predicted by various filters available at PreADMET and 
SwissADME. The predicted drug-likeliness of natural lead molecules is 
shown in Supplementary Material, Table S2. When 48 lead molecules 
were subjected to ADME prediction, 16 compounds demonstrated ideal 
skin and caco2 cell permeabilities, human intestinal absorption, blood- 
brain barrier penetration, gastrointestinal absorption, lipophilicity, 
and water-solubility. The ADME features of the selected molecules are 
shown in Supplementary Material, Table S3. When sixteen molecules 
that qualified the ADME properties were screened for toxicity predic-
tion, four molecules were qualified the toxicity features such as carci-
nogenicity, mutagenicity, algae and fish toxicity, and hERG inhibition. 
Thus, out of 92 molecules screened by in silico approach, four molecules 
were qualified for drug-likeliness, ADME, and toxicity features. The 
selected molecules were Hyoscyamine, Rotiorinol-C, Scutifoliamide-A, 
and Tamaridone, which are present in Datura stramonium, Chaetorium 
cupreum, Piper scutifolium, and Tamarix dioica, respectively. These nat-
ural compounds were prioritized as the lead molecules, and their 

interactions towards fourteen molecular targets of SARS-CoV-2 were 
computationally modeled and validated. 

3.4. Molecular docking studies 

The binding potential of selected natural lead molecules namely 
Hyoscyamine, Rotiorinol-C, Scutifoliamide-A, and Tamaridone towards 
fourteen molecular targets (S, M, E, rep, 1a, 3a, 7a, 9b, nsp6, nsp7, nsp8, 
nsp10, nsp12, and RBD) of SARS-CoV-2 were predicted by molecular 
docking. The best-docked conformations generated were analyzed and 
scrutinized based on binding energy (kcal/mol), the number of 
hydrogen bonds and other stabilizing interactions, and cluster RMSD. 
The binding potentials of four selected natural molecules to the priori-
tized targets of SARS-CoV-2 were predicted by molecular docking 
studies are shown in Table 3. 

Hyoscyamine ([(1S,5R)-8-methyl-8-azabicyclo [3.2.1] octan-3-yl] 
(2S)-3-hydroxy-2-phenyl-propanoate), an alkaloid derivative and anti-
cholinergic, derived from Datura stramonium (Jimson weed) is known to 
inhibit receptors in smooth and cardiac muscle, the sino-atrial and atrio- 
ventricular node for a slow ventricular response during atrial fibrillation 
[74,75]. The molecular docking studies suggested that Hyoscyamine 
showed good binding potential towards the spike glycoprotein in the 
post-fusion, closed state, and open state conformations with the binding 
energies of − 8.14, − 6.0, and − 5.7 kcal/mol, respectively. The inter-
acting residues present in the binding cavity of post-fusion conformation 

Fig. 2. Computational modeling and model validation of Protein6 (a) Theoretical model of the target protein modeled using C–I-Tasser, (b) Secondary structure 
prediction of the theoretical model by STRIDE (c) Ramachandran plot assessment of the modeled residues of the target protein obtained by ProCheck (d) Stereo- 
chemical validation of the theoretical model in terms of z-score obtained from ProSA (e) The residues qualifying the 3D-1D score predicted by Verify 3D (f) The 
quality factor of the model obtained by the output plot of error function predicted by ERRAT. 
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of spike protein were identified to be Ser924, Thr925, Gly928, Asp932, 
Gln1161, ILe1164, Asn1168 (Chain A) and Ser924, Thr925, Gly928, 
Gln1161, Ile1164 (Chain B). The interaction stabilized by two hydrogen 
bonds with Asn1168 of Chain A (Fig. 4a). It was observed that these 
residues located at one of the binding sites as predicted by the Castp and 
Depth servers. Similarly, Trp104, Ile119, Val126, Ile128, Tyr170, 
Ser172, Ile203, and Val227 were identified to be the major residues in 
the binding site of the open state conformation of spike protein, and the 
interaction stabilized by a hydrogen bond (Fig. 4b). The main interact-
ing residues at the binding site of the closed state conformation were 
identified to be Leu335, Pro337, Phe338, Gly339, Asp364, and Val367 
(Fig. 4c). Thus, it is clear that the conformations play a vital role in the 
binding of the ligand, and maximum interactions were observed be-
tween the post-fusion conformation of the spike glycoprotein and the 
lead molecule in comparison with other conformations. The binding 
energy of the docked complex of Hyoscyamine and replicase polyprotein 
1a was estimated to be − 6.1 kcal/mol, and the interacting residues were 
Glu156, Met165, Asp187, Arg188, Gln189, and Gln192 along with a 
hydrogen bond (Fig. 4d). Similarly, the lead molecule showed binding 
energy of − 5.4 kcal/mol towards the RBD of the membrane protein. The 
main interacting residues present in the binding cavity were found to be 
Thr376, Val407, Ala411, Val433, and Tyr508 (Fig. 4e). Hyoscyamine 
showed binding energy of − 0.7 kcal/mol (interacting residue: Gly) to-
wards membrane protein (Fig. 4f), and the lead molecule exhibited the 
binding energy of − 2.2 kcal/mol towards the envelope protein. Lys63 
and Asn64 were found to be the main interacting residues (Fig. 4g). The 

binding energy of the docked complex of replicase polyprotein1a and 
Hyoscyamine was estimated to be − 6.0 kcal/mol. The main interacting 
residues were found to be Trp218, Asn221 and Leu271, which formed a 
hydrogen bond (Fig. 4h). The binding energies of the docked complexes 
of Protein 3a, 7a, and 9b and ligand were estimated to be − 5.3, − 4.4, 
and − 4.4 kcal/mol, respectively. The interacting residues of protein 3a 
included Phe56, Ile63, Lys66, Tyr189, and Glu191 (Fig. 4i). Similarly, 
interacting residues of protein 7a included Tyr3, Tyr5, His47, Gln61 
(Fig. 4j), and the residues present in the binding cavity of protein 9b 
were found to be Arg68, Ala69, and Phe70 (Fig. 4k). The binding en-
ergies of ligand and nsp7, nsp8, and nsp12 of RdRp were estimated to be 
− 5.3, − 5.9, and − 5.4 kcal/mol, respectively. The nsp7 interacted with 
the lead molecule via Thr46, Phe49, and Val53 (Fig. 4l). Similarly, the 
interacting residues present at the binding site of nsp8 were observed to 
be Leu128, Val130, Thr141, and Tyr149 (Fig. 4m), and the interacting 
residues present in the binding pocket of nsp12 were found to be 
Phe412, Phe415, Phe440, and Phe843 (Fig. 4n). The binding energy 
associated with the interaction between ligand and non-structural pro-
tein 6, and 10 were estimated to be − 5.2 and − 6.1 kcal/mol, respec-
tively. The interacting residues present at the binding site were 
identified to be Asp6, Phe7, Leu15, Leu40, and Ile60 (Fig. 4o). Similarly, 
the interacting residues present in the binding pocket of non-structural 
protein 10 were identified to be Ile55, Cys74, Tyr76, His83, Asp91, 
Leu112, Thr115, and Val116 along with a hydrogen bond (Fig. 4p). 
Thus, the interaction modeling of natural lead Hyoscyamine towards the 
selected targets of SARS-CoV-2 suggested that the highest binding 

Fig. 3. Computational modeling and model validation of Protein10 (a) Theoretical model of the target protein modeled using C–I-Tasser, (b) Secondary structure 
prediction of the theoretical model by STRIDE (c) Ramachandran plot assessment of the modeled residues of the target protein obtained by ProCheck (d) Stereo- 
chemical validation of the theoretical model in terms of z-score obtained from ProSA (e) The residues qualifying the 3D-1D score predicted by Verify 3D (f) The 
quality factor of the model obtained by the output plot of error function predicted by ERRAT. 
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Table 3 
The binding potential of selected natural lead molecules towards the probable drug targets of human SARS-CoV-2 predicted by molecular docking studies.  

Protein name PDB ID Ligand names Ligand structure Binding 
affinity 
(Kcal/mol) 

RMSD 
(Å) 

Interacting residues Hydrogen bonds 

Spike 
glycoprotein 

1WYY Hyoscyamine 
Pubchem ID: 
154417 
Source: Datura 
stramonium 

− 8.14 0.0 Ser924, Thr925, Gly928, 
Asp932, Gln1161, ILe1164, 
Asn1168 (Chain A), Ser924, 
Thr925, Gly928, Gln1161, 
Ile1164 (Chain B) 

Asn1168: 2 

Spike 
glycoprotein- 
Closed state 

6VXX − 5.7 0.0 Leu335, Pro337, Phe338, 
Gly339, Asp364, Val367 

0 

Spike 
glycoprotein- 
Open state 

6VYB − 6.0 0.0 Trp104, Ile119, Val126, 
Ile128, Tyr170, Ser172, 
Ile203, Val227 

Ser172: 1 

Membrane 
protein 

3I6G − 0.7 0.0 Gly0 0 

Envelope small 
membrane 
protein 

2MM4 − 2.2 0.0 Lys63, Asn64 0 

Replicase 
polyprotein 1 
ab 

1Q2W − 6.1 0.0 Glu156, Met165, Asp187, 
Arg188, Gln189, Gln192 

Gln192 

Replicase 
polyprotein 1a 

5RE4 − 6.0 0.0 Trp218, Asn221, Leu271 Trp218: 1 

Protein 7a 1XAK − 4.4 0.0 Tyr3, Tyr5, His47, Gln61 0 
Protein 9b 2CME − 4.4 0.0 Arg68, Ala69, Phe70 0 
Receptor binding 

domain of 
membrane 
protein 

6M17 − 5.4 0.0 Thr376, Val407, Ala411, 
Val433, Tyr508 

0 

Non-structural 
protein 7 

6M71_C − 5.3 0.0 Thr46, Phe49, Val53 0 

Non-structural 
protein 8 

6M71_B, D − 5.9 0.0 Leu128, Val130, Thr141, 
Tyr149 

0 

Non-structural 
protein 12 

6M71_A − 5.4 0.0 Pro412, Phe415, Phe440, 
Phe843, 

0 

Non-structural 
Protein 6 

Hypothetical 
model 

− 5.2 0.0 Asp6, Phe7, Leu15, Leu40, 
Ile60 

0 

Non-structural 
Protein 10 

Hypothetical 
model 

− 6.1 0.0 Ile55, Cys74, Tyr76, His83, 
Asp91, Leu112, Thr115, 
Val116 

His83:1 

Protein 3a Hypothetical 
model 

− 5.3 0.0 Phe56, Ile63, Lys66, 
Tyr189, Glu191, 

0 

Spike 
glycoprotein 

1WYY Rotiorinol C 
Pubchem ID: 
11703984 
Source: 
Chaetorium 
cupreum 

− 9.82 0.0 Arg4, Lys5, Tyr126, 
Gln127, Arg131, Asp289 
and Glu290 

5, Lys5, Gln127, 
Asp 289, Glu290 
(A chain) Glu127 
(B chain) 

Spike 
glycoprotein- 
Closed state 

6VXX − 6.2 0.0 Arg34, Thr208, Pro209, 
Leu212, Pro217, Gln218, 
Phe220 

Phe220: 1 

Spike 
glycoprotein- 
Open state 

6VYB − 6.3 0.0 Thr33, Phe59, Asp287 0 

Membrane 
protein 

3I6G − 0.6 0.0 Gly0 0 

Envelope small 
membrane 
protein 

2MM4 − 2.2 0.0 Lys63, Asn64 0 

Replicase 
polyprotein 1 
ab 

1Q2W − 7.0 0.0 Phe3, Lys5, Arg131, 
Trp207, Phe291, Ile286, 
Asp289 

Trp207: 1 

Replicase 
polyprotein 1a 

5RE4 − 6.7 0.0 Lys137, Thr199, Tyr239, 
Leu286, Leu287, Glu288, 
Asp289 

Tyr239, Asp289: 
3 

Protein 7a 1XAK − 5.4 0.0 Tyr3, His47, Arg57, Thr59 0 
Protein 9b 2CME − 5.0 0.0 Ser56, Leu65, Glu66, 

Ala67, Arg68, Ala69, 
Phe70, Ser72 

Ser56: 1 

Receptor binding 
domain of 
membrane 
protein 

6M17 − 6.1 0.0 Cys336, Phe338, Gly339, 
Ala363, Asp364, Val367, 
Ser371, Ser373, Phe374, 

Ser373: 1 

Non-structural 
protein 7 

6M71_C − 5.9 0.0 Lys2, Asp5, Thr9, Thr46, 
Phe49, Val53, Met52 

0 

6M71_B, D − 6.0 0.0 Tyr135: 1 

(continued on next page) 
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Table 3 (continued ) 

Protein name PDB ID Ligand names Ligand structure Binding 
affinity 
(Kcal/mol) 

RMSD 
(Å) 

Interacting residues Hydrogen bonds 

Non-structural 
protein 8 

Pro133, Asp134, Tyr135, 
Trp182, Pro178 

Non-structural 
protein 12 

6M71_A − 6.6 0.0 Arg181, Gln184, Asn213 0 

Non-structural 
protein 6 

Hypothetical 
model 

− 5.6 0.0 Gln8, Lys38, Lys42, Leu44 Lys42: 1 

Non-structural 
Protein 10 

Hypothetical 
model 

− 6.8 0.0 Ile55, His83, Lys96, Val116 His83:1 

Protein 3a Hypothetical 
model 

− 6.3 0.0 Phe28, Val29, Arg68, 
Ala72, Val90 

0 

Spike 
glycoprotein 

1wyy Scutifoliamide A 
Chemspider ID: 
23311285 
Source: Piper 
scutifolium 

− 6.4 0.0 Asn910, Ala940, Thr943, 
Leu944, Gln947, Asn951, 
Leu1178, Leu1181, 
Glu1183 

0 

Spike 
glycoprotein- 
Closed state 

6VXX − 5.4 0.0 Leu118, Val120, Phe135, 
Leu141, Leu241 

0 

Spike 
glycoprotein- 
Open state 

6VYB − 6.6 0.0 Phe823, Asn824, Val826, 
Pro863, Pro1057, His1058 

Asn824: 1 

Membrane 
protein 

3I6G − 0.7 0.0 Gly0 0 

Envelope small 
membrane 
protein 

2MM4 − 0.8 0.0 Ly63 0 

Replicase 
polyprotein 1 
ab 

1Q2W − 6.9 0.0 Arg4, Lys5 and Phe291 (A 
chain), Lys 5 (B chain) 

1; Lys5 (B chain) 

Replicase 
polyprotein 1a 

5RE4 − 6.8 0.0 Val212, Arg217, Leu220, 
Gln256, Ile259, Asp263 

0 

Protein 7a 1XAK − 5.6 0.0 Gln6, Cys8, Val9, Thr12, 
Leu16, Lys17 

Val9, Lys17: 2 

Protein 9b 2CME − 4.4 0.0 Ala58, Arg68, Ala69, 
Phe70, Ser72 

0 

Receptor binding 
domain of 
membrane 
protein 

6M17 − 5.9 0.0 Gln493, Tyr495, Gly502, 
Tyr505 

Gln493, Gly502: 
2 

Non-structural 
protein 7 

6M71_C − 5.9 0.0 Asp5, Thr9, Thr46, Phe49, 
Glu50, Val53 

Thr9: 1 

Non-structural 
protein 8 

6M71_B, D − 6.0 0.0 Leu128, Met129, Pro133, 
Thr141, Tyr149 

0 

Non-structural 
protein 12 

6M71_A − 6.1 0.0 Asp484, Ile488, Gln573, 
Ser578, Ala581 

0 

Non-structural 
Protein 6 

Hypothetical 
model 

− 5.5 0.0 Leu16, Ile17, Arg20, Thr21 Arg20: 1 

Non-structural 
Protein 10 

Hypothetical 
model 

− 5.6 0.0 His83, Leu92, Asn114, 
Thr115, Val116 

Val116: 2 

Protein 3a Hypothetical 
model 

− 5.4 0.0 Cys130, Trp131, His150, 
His204, His227 

0 

Spike 
glycoprotein 

1wyy Tamaridone 
Pubchem ID: 
15345466 
Source: Tamarix 
dioica 

− 7.2 0.0 Asp931, Asn935, Lys1162, 
Asp1165, Asn1168, 
Lys1172 

1; Asn935 

Spike 
glycoprotein- 
Closed state 

6VXX − 7.3 0.0 Ala520, Phe559, Phe562, 
Gln563, Gln564, Phe565, 
Gly566, Arg567 

Gln564, Phe565, 
Arg567: 4 

Spike 
glycoprotein- 
Open state 

6VYB − 6.8 0.0 Thr732, Thr778, Ser780, 
Pro863, His1058 

Ser730: 2 

Membrane 
protein 

3I6G − 0.8 0.0 Gly0 0 

Envelope small 
membrane 
protein 

2MM4 − 3.1 0.0 Lys63, Asn64 Asn64: 1 

Replicase 
polyprotein 1 
ab 

1Q2W − 6.3 0.0 Gly11, Lys12, Glu14, 
Gly15, 

Gly11: 1 

Replicase 
polyprotein 1a 

5RE4 − 7.0 0.0 Leu87, Lys137, Thr190, 
Tyr237, Tyr239, Leu285 

Tyr237: 1 

Protein 7a 1XAK − 5.7 0.0 Val9, Thr12, Val14, Arg65 0 
Protein 9b 2CME − 5.6 0.0 Arg68, Gln71, Ser72 0 
Receptor binding 

domain of 
6M17 − 6.5 0.0 Thr345, Arg346, Ser349, 

Lys441, Lys444, Asn448, 
Asn450, Tyr451 

Lys444: 1 

(continued on next page) 
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potential observed towards the spike glycoprotein in the post-fusion 
conformation with a binding energy of − 8.14 kcal/mol, and several 
stabilizing interactions were observed in comparison with other selected 
molecular targets. 

Rotiorinol-C ((9R,9aR)-3-acetyl-9-hydroxy-6-[(1E,3E,5S)-7-hy-
droxy-3,5-dimethylhepta-1,3-dienyl]-9a-methyl-9H-furo [3,2-g] iso-
chromen-2-one), an azaphilone derived from the fungus Chaetomium 
cupreum (Dark-walled mold), which is known to exhibit antimicrobial 
activities [76]. Rotiorinol-C showed the binding potential to the spike 
glycoprotein in the post-fusion, closed state, and open state conforma-
tions with the binding energies of − 6.5, − 6.2, and − 6.3 kcal/mol, 
respectively. The main residues present in post-fusion conformation 
were included Gln931, Asn936, Asn942, Val1157, Asn1159, Gln1161, 
Asn1168, and Lys1172, and the interaction stabilized by two hydrogen 
bonds (Fig. 5a). The interacting residues present in the closed state 
conformation were observed to be Arg34, Thr208, Pro209, Leu212, 
Pro217, Gln218, and Phe220. The lead molecule interacted with Phe220 
by a hydrogen bond (Fig. 5b). Similarly, the major interacting residues 
present at the binding site of the open state conformation of spike 
glycoprotein were identified to be Thr33, Phe59, and Asp287 (Fig. 5c). 
Rotiorinol-C showed higher interaction with the post-fusion conforma-
tion of the spike glycoprotein when compared to the open and closed 
state conformations. The binding energy of the docked complex of 
replicase polyprotein 1 ab and the lead molecules were estimated to be 
− 9.82 kcal/mol, and the major residues involved in the binding were 
observed to be Arg4, Lys5, Tyr126, Gln127, Arg131, Asp289, and 
Glu290. The interactions were stabilized by five hydrogen bonds 
(Fig. 5d). The interaction of lead and receptor-binding domain of the 
membrane protein showed the binding energy of − 6.1 kcal/mol, and the 
major residues involved in the binding were observed to be Cys336, 
Phe338, Gly339, Ala363, Asp364, Val367, Ser371, Ser373, and Phe374. 
A hydrogen bond formed between the ligand and Ser373 of the 
receptor-binding domain (Fig. 5e). The docked complexes were 
demonstrated the binding energies of − 0.6 and − 2.2 kcal/mol towards 
the membrane protein (Fig. 5f) and envelope protein (Fig. 5g), respec-
tively. The binding energy of the docked complex of ligand and replicase 
polyprotein1a was estimated to be − 6.7 kcal/mol. The major interacting 
residues involved in the interaction were found to be Lys137, Thr199, 
Tyr239, Leu286, Leu287, Glu288, and Asp289. The interactions were 
stabilized by three hydrogen bonds (Fig. 5h). The binding energies 
associated with the interaction of lead molecule and Protein 3a, 7a, and 
9b were estimated to be − 6.3, − 5.4, and − 5.0 kcal/mol, respectively. 
The major interacting residues present at the binding site of protein 3a 
were identified to be Phe28, Val29, Arg68, Ala72, and Val90 (Fig. 5i). 
The major interacting residues present in the protein 7a were identified 
to be Tyr3, His47, Arg57, Thr59 (Fig. 5j), and the main interacting 
residues present in protein 9b were included Ser56, Leu65, Glu66, 

Ala67, Arg68, Ala69, Phe70, and Ser72, and the interaction stabilized by 
a hydrogen bond (Fig. 5k). The binding energies of the docked com-
plexes of lead molecules and nsp7, nsp8, and nsp12 of RdRp were esti-
mated to be − 5.9, − 6.0, and − 6.6 kcal/mol, respectively. The major 
residues that interacted with nsp7 were identified to be Lys2, Asp5, 
Thr9, Thr46, Phe49, Met52, and Val53 (Fig. 5l). Similarly, the main 
residues that interacted with nsp8 were found to be Pro133, Asp134, 
Tyr135, Trp182, and Pro178. The interaction stabilized by a hydrogen 
bond (Tyr135) (Fig. 5m). The major interacting residues present at the 
binding site of nsp12 were found to be Arg181, Gln184, and Asn213 
(Fig. 5n). The binding energies associated with the docked complex of 
lead molecules and non-structural proteins 6 and 10 and were estimated 
to be − 5.6 and − 6.8 kcal/mol, respectively. The major interacting res-
idues present in the non-structural protein 6 were observed to be Gln8, 
Lys38, Lys42, and Leu44. The interaction stabilized by a hydrogen bond 
(Fig. 5o). Similarly, the main interacting residues present in the 
non-structural protein10 were identified to be Ile55, His83, Lys96, and 
Val116. The interaction stabilized by a hydrogen bond (Fig. 5p). From 
the interaction modeling, it is clear that Rotiorinol-C showed greater 
binding potential towards the replicase polyprotein (binding energy: 
− 9.82 kcal/mol) when compared to the binding energies of the inter-
action between the ligand and other prioritized targets of SARS-CoV-2. 

Scutifoliamide-A ((2E, 4Z)-5-(1, 3-Benzodioxol-5-yl)-N-isobutyl-2, 4- 
pentadienamide) is commonly present in Piper scutifolium (Pepper) [77]. 
It showed the binding potential to the spike glycoprotein in the 
post-fusion, closed state, and open state conformations with the binding 
energies of − 6.4, − 5.4, and − 6.6 kcal/mol, respectively. The residues 
present at the binding cavity of the post-fusion conformation were 
identified to be Asn910, Ala940, Thr943, Leu944, Gln947, Asn951, 
Leu1178, Leu1181, and Glu1183 (Fig. 6a). The interacting residues 
present in the binding site of the closed state conformation were 
observed to be Leu118, Val120, Phe135, Leu141, and Leu241 (Fig. 6b). 
Similarly, the main interacting residues present in the binding cavity of 
open state conformation were found to be Phe823, Asn824, Val826, 
Pro863, Pro1057, and His1058. The interaction stabilized by a hydrogen 
bond (Fig. 6c). The binding energy of the docked complex of the lead 
molecule and replicase polyprotein 1 ab were identified to be − 6.9 
kcal/mol, and the main interacting residues were identified to be Arg4, 
Lys5, and Phe291 (A chain), Lys 5 (B chain) (Fig. 6d). The binding en-
ergy of the docked complex of the ligand and the receptor-binding 
domain of the membrane protein was estimated to be − 5.9 kcal/mol. 
The major residues that interacted with the ligand were identified to be 
Gln493, Tyr495, Gly502, and Tyr505. The interaction stabilized by 
hydrogen bonds with Gln493 and Gly502 (Fig. 6e). The binding energies 
associated with the docked complexes of the ligand and membrane 
protein, and ligand and envelope protein were estimated to be − 0.7 
(Fig. 6f) and − 0.8 kcal/mol (Fig. 6g), respectively. The binding energy 

Table 3 (continued ) 

Protein name PDB ID Ligand names Ligand structure Binding 
affinity 
(Kcal/mol) 

RMSD 
(Å) 

Interacting residues Hydrogen bonds 

membrane 
protein 

Non-structural 
protein 7 

6M71_C − 5.9 0.0 Lys2, Val6, Thr9, Phe49, 
Met52 

Thr9: 1 

Non-structural 
protein 8 

6M71_B, D − 5.7 0.0 Leu128, Val130, Val131, 
Thr141, Tyr149 

0 

Non-structural 
protein 12 

6M71_A − 6.7 0.0 Lys47, His133, Asn138, 
Lys780 

0 

Non-structural 
Protein 6 

Hypothetical 
model 

− 5.6 0.0 Lys48, Ser50, Leu52, 
Asp53, Gln56 

Leu52: 1 

Non-structural 
Protein 10 

Hypothetical 
model 

− 6.7 0.0 Pro37, Asn105, Asp106, 
Phe110, Lys113, Asn114, 
Tyr126 

Asn105, Asn114: 
2 

Protein 3a Hypothetical 
model 

− 6.6 0.0 Gln213, Val255, Ile263, 
Thr270 

0  
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associated with the complex of the lead molecule and replicase poly-
protein1a was identified to be − 6.8 kcal/mol, and the main interacting 
residues at the binding cavity were identified to be Val212, Arg217, 
Leu220, Gln256, Ile259, and Asp263 (Fig. 6h). The binding energies 
associated with the docked complex of ligand and Protein 3a, 7a and 9b 
were estimated to be − 5.4, − 5.6, and − 4.4 kcal/mol, respectively. The 
main interacting residues present at the binding site of protein 3a were 
identified to be Cys130, Trp131, His150, His204, and His227. The 
interaction stabilized by a hydrogen bond (Fig. 6i). Similarly, the major 
interacting residues present at the binding site of protein 7a were found 
to be Gln6, Cys8, Val9, Thr12, Leu16, and Lys17. The interaction sta-
bilized by two hydrogen bonds (Fig. 6j). The major binding residues 
present in the protein 9b were included Ala58, Arg68, Ala69, Phe70, and 
Ser72 (Fig. 6k). The binding energies of the docked complex of ligand 
and nsp7, nsp8, and nsp12 were estimated to be − 5.9, − 6.0, and − 6.1 
kcal/mol, respectively. The main residues present at the binding site of 

nsp7 included Asp5, Thr9, Thr46, Phe49, Glu50, and Val53. The inter-
action stabilized by a hydrogen bond (Fig. 6l). The residues present at 
the binding site of nsp8 were found to be Leu128, Met129, Pro133, 
Thr141, and Tyr149 (Fig. 6m). The main amino acid residues present at 
the binding site of nsp12 were identified to be Asp484, Ile488, Gln573, 
Ser578, and Ala581 (Fig. 6n). The binding energies associated with the 
docked complexes of the ligand and non-structural proteins 6 and 10 
were estimated to be − 5.5 and − 5.6 kcal/mol, respectively. The inter-
acting residues present in the non-structural protein 6 were observed to 
be Leu16, Ile17, Arg20, and Thr21, and the interaction stabilized by a 
hydrogen bond with Arg20 (Fig. 6o). Similarly, the major interacting 
residues present in the non-structural protein10 were included His83, 
Leu92, Asn114, Thr115, and Val116. The interaction stabilized by two 
hydrogen bonds (Fig. 6p). The computational modeling suggested that 
Scutifoliamide-A showed the profound binding potential to several 
prioritized targets, which showed the highest binding energy to 

Fig. 4. Prediction of the binding potential of Hyoscyamine towards the prioritized molecular targets of SARS-CoV by molecular docking visualized in MGL tools of 
AutoDock. The figure displayed the binding pocket of the ligand-receptor complex. The interacting residues and the ligands are displayed in stick figures. The 
interacting residues and binding energy are labeled (a) Binding of the ligand and post-fusion conformation of spike glycoprotein (binding energy: − 8.14 kcal/mol) (b) 
Binding of the ligand and open state spike glycoprotein (binding energy: − 6.0 kcal/mol) (c) Binding of the ligand and closed state spike glycoprotein (binding energy 
− 5.7 kcal/mol) (d) Binding of the ligand and replicase polyprotein 1 ab (binding energy: − 6.1 kcal/mol) (e) Binding of the ligand and receptor binding domain of 
membrane protein (binding energy: − 5.4 kcal/mol) (f) Binding of the ligand and membrane protein (binding energy: − 0.7 kcal/mol) (g) Binding of the ligand and 
small envelope protein (binding energy: − 2.2 kcal/mol) (h) Binding of the ligand and replicase polyprotein 1a (binding energy: − 6.0 kcal/mol) (i) Binding of the 
ligand and protein3a (binding energy: − 6.1 kcal/mol) (j) Binding of the ligand and protein7a (binding energy: − 4.4 kcal/mol) (k) Binding of the ligand and protein 
9b (binding energy: − 4.4 kcal/mol) (l) Binding of the ligand and non-structural protein7 (binding energy: − 5.3 kcal/mol) (m) Binding of the ligand and non- 
structural protein 8 (binding energy: − 5.9 kcal/mol) (n) Binding of the ligand and non-structural protein12 (binding energy: − 5.4 kcal/mol) (o) Binding of the 
ligand and non-structural protein 6 (binding energy: − 5.2 kcal/mol) (p) Binding of the ligand and non-structural protein 10 (binding energy: − 6.1 kcal/mol). 
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replicase polyprotein 1 ab (− 6.9 kcal/mol) when compared to the 
binding energy of the interaction between Scutifoliamide-A and other 
selected targets of SARS-CoV-2. 

Tamaridone (5,7-dihydroxy-2-(2-hydroxy-4-methoxyphenyl)-6- 
methoxychromen-4-one), a flavone present in Tamarix dioica (Lal jhau/ 
Ban jhau) showed binding potential towards the spike glycoprotein in 
the post-fusion, closed state, and open state conformations with the 
binding energies of − 7.2, − 7.3 and − 6.8 kcal/mol, respectively. The 
interacting residues present in the binding pocket of the post-fusion 
conformation of spike protein were found to be Asp931, Asn935, 
Lys1162, Asp1165, Asn1168, and Lys1172 (Fig. 7a). The interacting 
residues at the binding pocket of the closed state were identified to be 
Ala520, Phe559, Phe562, Gln563, Gln564, Phe565, Gly566, and 
Arg567. The interaction stabilized by four hydrogen bonds (Fig. 7b). 
Similarly, the major residues present in the binding site of the open state 
conformation were identified to be Thr732, Thr778, Ser780, His1058 
and Pro863. The interaction stabilized by a hydrogen bond (Fig. 7c). The 
binding energy of the docked complex of the lead molecule and replicase 
polyprotein 1 ab was estimated to be − 6.3 kcal/mol. The main residues 
involved in the interactions were predicted to be Gly11, Lys12, Glu14, 
and Gly15. The interaction stabilized by a hydrogen bond (Fig. 7d). The 

binding energy associated with the complex of ligand and receptor- 
binding domain of the membrane protein was estimated to be − 6.5 
kcal/mol, and the major interacting residues were identified to be 
Thr345, Arg346, Ser349, Lys441, Lys444, Asn448, Asn450, and Tyr451. 
The interaction stabilized by a hydrogen bond (Fig. 7e). The docked 
complexes of ligand-membrane protein and ligand-envelope protein 
showed binding energies of − 0.8 (Fig. 7f) and − 3.1 kcal/mol (Fig. 7g), 
respectively. The binding energy of the docked complex of the lead 
molecule and replicase polyprotein 1a was estimated to be − 7.0 kcal/ 
mol. The major interacting residues present in the binding site of 
replicase polyprotein 1a were found to be Leu87, Lys137, Thr190, 
Tyr237, Tyr239, and Leu285. The interaction stabilized by a hydrogen 
bond (Fig. 7h). The binding energies associated with the interaction of 
ligand and protein 3a, 7a, and 9b were estimated to be − 6.6, − 5.7 and 
− 5.6 kcal/mol, respectively. The main interacting residues present in 
protein3a were identified to be Gln213, Ile263, Val255, and Thr270 
(Fig. 7i). Similarly, the major interacting residues present at the binding 
site of protein 7a were included Val9, Thr12, Val14, and Arg65 (Fig. 7j). 
The main amino acids that interacted with protein9b were identified to 
be Arg68, Gln71, and Ser72 (Fig. 7k). The binding energies of the docked 
complexes of nsp7, nsp8, and nsp12 of RdRp were estimated to be − 5.9, 

Fig. 5. Prediction of the binding potential of Rotiorinol-C towards the prioritized molecular targets of SARS-CoV by molecular docking visualized in MGL tools of 
AutoDock. The figure displayed the binding pocket of the ligand-receptor complex. The interacting residues and the ligands are displayed in stick figures. The 
interacting residues and binding energy are labeled (a) Binding of the ligand and post-fusion conformation of spike glycoprotein (binding energy: − 6.5 kcal/mol) (b) 
Binding of the ligand and open state spike glycoprotein (binding energy: − 6.3 kcal/mol) (c) Binding of the ligand and closed state spike glycoprotein (binding energy 
− 6.2 kcal/mol) (d) Binding of the ligand and replicase polyprotein 1 ab (binding energy: − 9.8 kcal/mol) (e) Binding of the ligand and receptor binding domain of 
membrane protein (binding energy: − 6.1 kcal/mol) (f) Binding of the ligand and membrane protein (binding energy: − 0.6 kcal/mol) (g) Binding of the ligand and 
small envelope protein (binding energy: − 2.2 kcal/mol) (h) Binding of the ligand and replicase polyprotein 1a (binding energy: − 6.7 kcal/mol) (i) Binding of the 
ligand and protein3a (binding energy: − 6.3 kcal/mol) (j) Binding of the ligand and protein7a (binding energy: − 5.4 kcal/mol) (k) Binding of the ligand and protein 
9b (binding energy: − 5.0 kcal/mol) (l) Binding of the ligand and non-structural protein7 (binding energy: − 5.3 kcal/mol) (m) Binding of the ligand and non- 
structural protein 8 (binding energy: − 5.9 kcal/mol) (n) Binding of the ligand and non-structural protein12 (binding energy: − 6.6 kcal/mol) (o) Binding of the 
ligand and non-structural protein 6 (binding energy: − 5.6 kcal/mol) (p) Binding of the ligand and non-structural protein 10 (binding energy: − 6.8 kcal/mol). 
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− 5.7, and − 6.7 kcal/mol, respectively. The major residues at the 
binding site of nsp7 were found to be Lys2, Val6, Thr9, Phe49, Met52 
with a hydrogen bond formation (Fig. 7l). Similarly, the main interact-
ing residues present in nsp8 were found to be Leu128, Val130, Val131, 
Thr141, and Tyr149 (Fig. 7m). The major interacting residues present in 
nsp12 were found to be Lys47, His133, Asn138, and Lys780 (Fig. 7n). 
The binding energies associated with the ligand and non-structural 
proteins 6, and 10 were estimated to be − 5.7 and − 6.7 kcal/mol, 
respectively. The major interacting residues present in the non- 
structural protein6 were observed to be Lys48, Ser50, Leu52, Asp53, 
and Gln56. The interaction stabilized by two hydrogen bonds (Fig. 7o). 
Similarly, the major interacting amino acids present in non-structural 
protein 10 were identified to be Pro37, Asn105, Asp106, Phe110, 
Lys113, Asn114, and Tyr126. The interaction stabilized by two 
hydrogen bonds (Fig. 7p). Thus, the interaction modeling of Tamaridone 
and fourteen prioritized targets of SARS-CoV-2 suggested that the lead 
showed the highest binding potential to the spike glycoprotein (binding 
energy: − 7.2 kcal/mol) when compared to the binding energies asso-
ciated with the interaction between ligands and other selected targets. 

Similarly, the interaction between two currently suggested drugs 
against COVID-19 and their usual targets were predicted by molecular 
docking studies. The binding energies associated with the interaction 

between Chloroquine and Hydroxychloroquine to their normal drug 
targets namely glutathione S transferase of Plasmodium falciparum and 
human angiotensin-converting enzyme 2 (hACE2), respectively, were 
predicted by molecular docking. The interaction modeling suggested 
that when Chloroquine docked with glutathione S transferase, the 
complex showed binding energy of − 3.71 kcal/mol. The main inter-
acting residues were identified to be Glu90, Leu91, Glu93, Phe94, and 
Asp97 (Fig. 8a and b). The number of interacting residues at the binding 
pockets was less when compared to the interaction of natural molecules 
and the selected targets selected. When Hydroxychloroquine docked 
with human angiotensin-converting enzyme 2 (hACE2), the docked 
conformation showed binding energy of − 1.0 kcal/mol. The complex 
showed that Gln287 interacted with the ligand (Fig. 8c and d) and no 
hydrogen bonds were involved in the interaction. From the molecular 
docking studies, it is clear that the natural lead molecules showed better 
binding to the selected molecular targets based on binding energy (kcal/ 
mol), the number of hydrogen bonds and other weak interactions, and 
the number of amino acids involved in the binding when compared to 
the binding of Chloroquine and Hydroxychloroquine and their usual 
targets. 

Fig. 6. Prediction of the binding potential of Scutifoliamide-A towards the prioritized molecular targets of SARS-CoV by molecular docking visualized in MGL tools of 
AutoDock. The figure displayed the binding pocket of the ligand-receptor complex. The interacting residues and the ligands are displayed in stick figures. The 
interacting residues and binding energy are labeled (a) Binding of the ligand and post-fusion conformation of spike glycoprotein (binding energy: − 6.4 kcal/mol) (b) 
Binding of the ligand and open state spike glycoprotein (binding energy: − 6.6 kcal/mol) (c) Binding of the ligand and closed state spike glycoprotein (binding energy 
− 5.4 kcal/mol) (d) Binding of the ligand and replicase polyprotein 1 ab (binding energy: − 6.9 kcal/mol) (e) Binding of the ligand and receptor binding domain of 
membrane protein (binding energy: − 5.9 kcal/mol) (f) Binding of the ligand and membrane protein (binding energy: − 0.7 kcal/mol) (g) Binding of the ligand and 
small envelope protein (binding energy: − 0.8 kcal/mol) (h) Binding of the ligand and replicase polyprotein 1a (binding energy: − 6.8 kcal/mol) (i) Binding of the 
ligand and protein3a (binding energy: − 5.4 kcal/mol) (j) Binding of the ligand and protein7a (binding energy: − 5.6 kcal/mol) (k) Binding of the ligand and protein 
9b (binding energy: − 4.4 kcal/mol) (l) Binding of the ligand and non-structural protein7 (binding energy: − 5.9 kcal/mol) (m) Binding of the ligand and non- 
structural protein 8 (binding energy: − 6.0 kcal/mol) (n) Binding of the ligand and non-structural protein12 (binding energy: − 6.1 kcal/mol) (o) Binding of the 
ligand and non-structural protein 6 (binding energy: − 5.5 kcal/mol) (p) Binding of the ligand and non-structural protein 10 (binding energy: − 5.6 kcal/mol). 
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3.5. Molecular dynamic simulation studies 

Four potential docked complexes with the minimum binding energy 
(kcal/mol), cluster RMS, and a greater number of stabilizing interactions 
were selected for MD simulation studies. The best-docked conformations 
of spike glycoprotein and Hyoscyamine, replicase polyprotein 1 ab and 
Rotiorinol-C, replicase polyprotein 1 ab and Scutifoliamide A, Spike 
glycoprotein, and Tamaridone were simulated at 100 ns using NVT 
ensemble to confirm the dynamics and stabilities during the binding. 
Similarly, the docked complex of Chloroquine and glutathione-S- 
transferase were simulated, and their binding stabilities were 
compared with the interaction stabilities of the docked complexes of 
natural lead molecules and selected targets. 

The trajectories obtained during the MD simulation of the best- 
docked pose of Hyoscyamine and the post-fusion conformation of the 
spike glycoprotein complex are shown in Fig. 9. The MD simulation 
studies suggested that the RMSD value of the protein showed a deviation 
from 8 to 16 Å at100 ns, which indicated that there were substantial 
changes in the conformation of the target protein during the simulation 
period (Fig. 9a). The variation in the RMSD probably due to the binding 
of Hyoscyamine with the protein, which indicated better interaction and 
stability when compared to the control. The protein RMSF deviated from 
2.0 to 14.0 Å and showed that more than 60% of the residues possessed 
>10 Å. The fluctuations in the protein with the C- and N-terminals are 
depicted in Fig. 9b. The ligand RMSF ranged from 4.0 to 6.0 Å, indicated 
that the fluctuations in their entropic role, and the interactions with the 

Fig. 7. Prediction of the binding potential of Tamaridone towards the prioritized molecular targets of SARS-CoV by molecular docking visualized in MGL tools of 
AutoDock. The figure displayed the binding pocket of the ligand-receptor complex. The interacting residues and the ligands are displayed in stick figures. The 
interacting residues and binding energy are labeled (a) Binding of the ligand and post-fusion conformation of spike glycoprotein (binding energy: − 7.2 kcal/mol) (b) 
Binding of the ligand and open state spike glycoprotein (binding energy: − 7.3 kcal/mol) (c) Binding of the ligand and closed state spike glycoprotein (binding energy 
− 6.8 kcal/mol) (d) Binding of the ligand and replicase polyprotein 1 ab (binding energy: − 6.3 kcal/mol) (e) Binding of the ligand and receptor-binding domain of 
membrane protein (binding energy: − 6.5 kcal/mol) (f) Binding of the ligand and membrane protein (binding energy: − 0.8 kcal/mol) (g) Binding of the ligand and 
small envelope protein (binding energy: − 3.1 kcal/mol) (h) Binding of the ligand and replicase polyprotein 1a (binding energy: − 7.0 kcal/mol) (i) Binding of the 
ligand and protein3a (binding energy: − 6.6 kcal/mol) (j) Binding of the ligand and protein7a (binding energy: − 5.7 kcal/mol) (k) Binding of the ligand and protein 
9b (binding energy: − 5.6 kcal/mol) (l) Binding of the ligand and non-structural protein7 (binding energy: − 5.9 kcal/mol) (m) Binding of the ligand and non- 
structural protein 8 (binding energy: − 6.0 kcal/mol) (n) Binding of the ligand and non-structural protein12 (binding energy: − 6.7 kcal/mol) (o) Binding of the 
ligand and non-structural protein 6 (binding energy: − 5.6 kcal/mol) (p) Binding of the ligand and non-structural protein 10 (binding energy: − 6.7 kcal/mol. 
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target during the binding are shown in Fig. 9c. The protein-ligand in-
teractions throughout the simulation time showed prominent water 
bridges, hydrogen bonds, and hydrophobic interactions (Fig. 9d). The 
molecular interactions that occurred during more than 10% of the 
simulation period are illustrated in Fig. 9e. The simulation studies 
revealed that the ligand binds to the protein with hydrophobic inter-
action with Ile1164 of chain B and a polar interaction with Gln1161 of 
chain A. The interactions between the ligand and the protein are shown 
in Fig. 9f. The trajectories of total contacts between the ligand and target 
such as hydrogen bonds, ionic bonds, water bridges, and hydrophobic 
interactions were found to be constant throughout the simulation. It was 
found that several residues interacted with the ligand throughout the 
trajectory frame in which several residues belonged to chain A and chain 
B, which indicated binding stabilities during the simulation. The 
conformational changes of protein and ligand that occurred during the 
MD simulation are shown in Supplementary Materials Fig. S1. Thus, the 
MD simulation studies suggested that the stabilities of the interaction 
between Hyoscyamine and spike glycoprotein of SARS-CoV-2 were 
better when compared to the stability of the docked complex of chlo-
roquine and its usual target (Fig. 13). Thus, the present study suggested 
that Hyoscyamine can act as a potential lead molecule against the spike 
glycoprotein of SARS-CoV-2. 

The MD simulation trajectories of Rotiorinol-C and the replicase 
polyprotein 1 ab are depicted in Fig. 10. The simulation studies sug-
gested that the target protein showed RMS deviation from 1.8 to 2.7 Å 
during the simulation at 100 ns (Fig. 10a). This variation in RMSD 
probably due to the binding of Rotiorinol-C to the protein target. The 
protein RMSF deviated from 0.6 to 4.8 Å (the majority of the residues 
deviated from 1.2 to 2.8 Å, and 40% of the residues deviated at 3.6 Å) 
indicated the fluctuations in the protein structure during the simulation 
period (Fig. 10b). Similarly, ligand RMSF observed to be fluctuated 
between 0.5 and 2.0 Å due to the variation in entropy caused by the 
receptor-ligand interaction (Fig. 10c). The protein-ligand interaction 
throughout the simulation is shown in Fig. 10c, which depicted that 
hydrogen and hydrophobic interactions played major roles in the 

binding. The interaction that occurred during more than 10% of the 
simulation time is shown in Fig. 10d. The ligand interacted to the protein 
with Phe3 of chain B, electrostatic negative interactions with Glu288, 
Asp289, Glu290 of chain A and Glu288 of chain B, electrostatic in-
teractions with Arg4, Arg131, Lys137 of chain A and Arg4, Lys5 of chain 
B, polar interactions with Gln127 of both the chains. The interactions 
between the ligand and the protein are shown in Fig. 10f. The trajectory 
forces such as hydrogen bonds, ionic bonds, water bridges, and hydro-
phobic interactions during the simulation were evident. The interaction 
contacts were observed to be constant up to 80ns with a minor increase, 
and several amino acids interacted with the ligand throughout the tra-
jectory frame. Arg4, Gln127 of chain A and Lys5, Gln127 of chain B were 
showed constant interaction with the ligand throughout the simulation. 
The structural changes associated with the protein and ligand during the 
MD simulation are shown in Supplementary Materials Fig. S2. Thus, the 
MD simulation suggested that the stability of the interaction between 
Rotiorinol-C and replicase polyprotein 1 ab were greater when 
compared to the interaction of chloroquine and its usual target. Thus, 
this study revealed that Rotiorinol-C can act as one of the potential lead 
molecules towards replicase polyprotein 1 ab of SARS-CoV-2. 

The simulation trajectories of the interaction between 
Scutifoliamide-A and replicase polyprotein 1 ab of SARS-CoV-2 are 
shown in Fig. 11. The RMS trajectories suggested that the protein 
showed a substantial deviation from 5.0 to 45.0 Å at100 ns, which 
indicated the conformational changes in the target protein (Fig. 11a). 
The variation in RMSD of the protein was probably due to the interac-
tion of Scutifoliamide-A and the target. The RMSF of the protein was 
found to be 4.0–28.0 Å, in which more than 40% of the residues showed 
>20 Å (Fig. 11b). The ligand RMSF ranged between 10.0-25.0 Å indi-
cated that the fluctuations corresponding to their variations in entropy 
due to the interaction with the target (Fig. 11c). The protein-ligand 
contacts throughout the simulation are represented in Fig. 11d. Water 
bridges, hydrogen bonds, and hydrophobic interactions were observed 
as the major stabilizing forces. The interactions observed during the MD 
simulation revealed that the ligand binds with the protein by a polar 

Fig. 8. Prediction of the binding of conventional antiviral drugs towards their usual drug targets by molecular docking studies (a) Interaction of Chloroquine with its 
usual targets glutathione S transferase of Plasmodium falciparum (b) Binding affinity of Chloroquine towards glutathione S transferase (binding energy: − 3.7 kcal/ 
mol) illustrated the major residues involved in the interaction with the ligand (c) Interaction of Hydroxy-chloroquine with usual target human angiotensin-converting 
enzyme 2 (hACE2) (d) Binding affinity of Hydroxyl-chloroquine towards hACE2 (binding energy:-1.0 kcal/mol) illustrated the major residues involved in the 
interaction with the ligand. 
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bond at Gln127 (chain A) and positive electrostatic interactions at Arg4 
(chain A) and Lys5 (both chain A and B) (Fig. 11e). The interaction 
between the ligand and the protein is shown in Fig. 11f. The simulation 
trajectories showed that there were stabilizing interactions such as 

hydrogen bonds, water bridges, and hydrophobic interactions. It was 
clear that several residues involved in the interaction in which eight 
residues belonged to chain A and three residues belonged to chain B. 
Lys5 (chain B), Arg4, Lys5, and Gln127 (chain A) played a major role in 

Fig. 9. The binding and stability of the docked complex of natural lead molecule Hyoscyamine and spike glycoprotein of SARS-CoV-2 were studied by molecular 
dynamic simulation at 100 ns. The trajectories obtained during the MD simulation is shown in figure (a) Protein-ligand RMSD: Protein RMSD (Å) is shown on the y- 
axis, and simulation time is given on the x-axis (b) Plot of the protein RMSF: RMSF (Å) is given in the y-axis and atom index is showed in the x-axis (c) Plot of ligand 
RMSF: RMSF (Å) is shown in y-axis and atom index is given in the x-axis (d) The protein-ligand contact is shown in the form of a histogram. The blue, grey, pink, and 
green regions in the histogram represent water bridges, hydrophobic interactions, ionic bonds, and hydrogen bonds respectively (e) The interactions between 
Hyoscyamine and post-fusion conformation of the spike glycoprotein observed during MD simulation (f) The protein-ligand contacts shown in the form of timeline 
representation. The top panel shows the total number of specific contacts between receptor and ligand, and the bottom panel shows the amino acid residues of the 
target, which is interacted with the ligand. 
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the interaction with the ligand. The protein and ligand conformational 
changes during the MD simulation studies are shown in Supplementary 
Material Fig. S3. The MD simulation studies suggested that the 
Scutifoliamide-A-replicase polyprotein 1 ab complex showed stability 
during the simulation, however, there were deviations observed during 
MD simulation. Further, in comparison with the binding of the control 
and its targets, the Scutifoliamide-A-replicase polyprotein 1 ab complex 
showed better interaction. Thus, Scutifoliamide-A can be considered to 
be one of the probable molecules against replicase polyprotein 1 ab of 
SARS-CoV-2. 

The simulation trajectories of Tamaridone and the spike glycoprotein 
in its post-fusion conformation are shown in Fig. 12. The MD simulation 
studies suggested that the protein showed a deviation from 8.0 to 15 Å in 
the RMSD values at 100 ns (Fig. 12a). This variation was probably due to 
the interaction of Tamaridone and glycoprotein that showed confor-
mational changes. The protein RMSF deviated from 3.0 to 16.0 Å 
(Fig. 12b). The ligand RMSF showed a fluctuation between 7.5 and 10.0 
Å, due to the changes in the entropy caused by protein-ligand interaction 
(Fig. 12c). The protein-ligand interactions throughout the simulation are 
shown in Fig. 12d. The forces that stabilized the interactions between 
the receptor and ligand were found to be water bridges, hydrogen, and 
hydrophobic interactions. The molecular interactions that occurred 
more than 10% of the MD simulation are shown in Fig. 12e. Tamaridone 
interacted with the protein by hydrophobic interactions at Val1170 
(chain A) and Tyr1187 (chain B), and polar interactions at Thr923 
(chain A). The contacts between the ligand and protein throughout the 
simulation are shown in Fig. 12f. The trajectories of total contact such as 
hydrogen bonds, water bridges, and hydrophobic interactions between 

the protein and the ligand during the simulation were evident, and 
several residues were involved in the interaction with the ligand 
throughout the trajectory frame. The interacting residues of chain A 
were identified to be Ile916, Ser919, Asp1165, Val1170, and the resi-
dues that make contact with chain B were observed to be Asp932, 
Asn935, and Tyr1187. The structural features of the protein and ligand 
during the MD simulation are shown in Supplementary Material Fig. S4. 
The MD simulation studies suggested that the docked complexes of 
Tamaridone and spike glycoprotein of SARS-CoV-2 showed stability 
throughout the simulation, and the lead molecule demonstrated better 
binding and dynamics when compared to the binding of Chloroquine to 
its usual targets (Fig. 13). Thus, the present study prioritized that 
Tamaridone can also be used as a potential lead molecule towards spike 
glycoprotein of SARS-CoV-2. 

The trajectories of simulation studies of the docked complex of 
Chloroquine and glutathione-S-transferase complex are shown in 
Fig. 13. The simulation results suggested that the RMSD values of the 
protein showed a deviation from 1.6 to 3.2 Å at 100ns indicated that 
there were fewer or no conformational changes during the simulation 
period (Fig. 13a). The variation in the RMSD of the protein was probably 
due to the binding with Chloroquine. The protein RMSF deviated from 
0.8 to 2.3 Å (Fig. 13b). Ligand RMSF deviated from 8.5 to 6.0 Å, which 
indicated the fluctuations corresponding to their entropy in the binding 
(Fig. 13c). The interactions that stabilized the docked complex were 
identified to be water bridges, ionic bonds, hydrogen bonds, and hy-
drophobic interactions, which are shown in Fig. 13d. The molecular 
interactions that occurred during >10% of the MD simulation are 
depicted in Fig. 13e. The analysis revealed that the ligand binds to the 

Fig. 10. The binding and stability of the docked complex of natural lead molecule Rotiorinol-C and replicase polyprotein 1 ab of SARS-CoV-2 studied by molecular 
dynamic simulation at 100 ns? The trajectories obtained during the MD simulation is shown in figure (a) Protein-ligand RMSD: Protein RMSD (Å) is shown on the y- 
axis, and simulation time is given on the x-axis (b) Plot of the protein RMSF: RMSF (Å) is given in the y-axis and atom index is showed in the x-axis (c) Plot of ligand 
RMSF: RMSF (Å) is shown in y-axis and atom index is given in the x-axis (d) The protein-ligand contact is shown in the form of a histogram. The blue, grey, pink, and 
green regions in the histogram represent water bridges, hydrophobic interactions, ionic bonds, and hydrogen bonds respectively (e) The interactions between 
Hyoscyamine and post-fusion conformation of the spike glycoprotein observed during MD simulation (f) The protein-ligand contacts shown in the form of timeline 
representation. The top panel shows the total number of specific contacts between receptor and ligand, and the bottom panel shows the amino acid residues of the 
target, which is interacted with the ligand. 

S. Skariyachan et al.                                                                                                                                                                                                                           



Computers in Biology and Medicine 132 (2021) 104325

18

protein with hydrophobic interactions with Phe94 and Tyr95 and elec-
trostatic interaction with Lys141. The interactions between ligand and 
the protein are depicted in Fig. 13f. The major forces that stabilized the 
binding between the ligand and receptor during the simulation were 
identified to be hydrogen bonds, ionic bonds, water bridges, and hy-
drophobic interactions. The number of residues involved in the inter-
action with the ligand was less in comparison with the interaction of the 
selected natural molecules and targets. It was observed that Phe94 
showed predominant interaction during the first 50 ns, and Tyr95 
showed maximum interaction during the next 50ns of the simulation. 
The conformational changes of the interaction between glutathione-S- 
transferase and chloroquine during the MD simulation are shown in 
Supplementary material, Fig. S5. 

3.6. Binding potential of natural lead calculated by MM-PBSA 

The binding potential of the complexes of natural lead molecules and 
the prioritized targets were confirmed by the energy calculations by 
MM-PBSA approaches. Gromacs force field was used to calculate the 
binding affinities of the molecular targets and ligand complexes. The 
interaction energy of the Chloroquine and its usual target glutathione-S- 
transferase was estimated to be − 33.12 kcal/mol. The binding energies 
of the docked complex of Hyoscyamine and spike glycoprotein, 
Rotiorinol-C and replicase polyprotein 1 ab, Scutifoliamide-A and 
replicase polyprotein, and Tamaridone and spike glycoprotein were 
estimated to be − 48. 25, − 38. 40, − 45. 97 and − 38. 79 kcal/mol, 
respectively. Thus, the energy calculations by MMPBSA showed that the 

interaction of four natural lead molecules towards the prioritized targets 
of SARS-CoV-2 demonstrated better binding interaction compared to the 
binding of Chloroquine and Glutathione-S-transferase. 

From the molecular docking, MD simulation, and energy calculation 
studies, it is clear that the four potential natural lead molecules 
demonstrated better binding energies, stabilities, and dynamics towards 
the prioritized drug targets of SARS-CoV-2 compared to the binding of 
Chloroquine and glutathione-S-transferase. Thus, the present study 
revealed that natural molecules and the prioritized targets can be used 
as potential candidates for the development of therapeutic agents 
against COVID-19. 

Recent studies emphasized that the scope of computer-aided mo-
lecular design towards the lead development and identification of mo-
lecular targets of COVID-19. Studies suggested that natural lead 
compounds screened against the targets of SARS-CoV-2 such as spike 
glycoprotein (S), non-structural proteins (nsp), an envelope protein (E), 
membrane protein (M) provided novel insights for drug repurposing 
approach against SARS-CoV-2 [78]. The interaction studies between 
SARS-CoV spike protein and cell-surface receptor (GRP78) suggested 
that the binding favorable occurred between the regions 480–488 of the 
spike protein and GRP78 [79]. Mpro was identified to be a potential 
drug target by Jin et al. (2020) suggested a mechanism-based inhibitor, 
N3, by virtual screening [80]. Beclabuvir showed significant binding 
towards Mpro with a binding energy of − 10.4 kcal/mol and was used to 
screen novel lead molecules by virtual screening. This drug is presently 
being suggested for clinical trials [81]. Recent studies showed that the 
phytochemicals from Psorothamnus arborescens, Myrica cerifera, and 

Fig. 11. The binding and stability of the docked complex of natural lead molecule Scutifoliamide-A and replicase polyprotein 1 ab of SARS-CoV-2 were studied by 
molecular dynamic simulation at 100 ns? The trajectories obtained during the MD simulation is shown in figure (a) Protein-ligand RMSD: Protein RMSD (Å) is shown 
on the y-axis, and simulation time is given on the x-axis (b) Plot of the protein RMSF: RMSF (Å) is given in the y-axis and atom index is showed in the x-axis (c) Plot of 
ligand RMSF: RMSF (Å) is shown in y-axis and atom index is given in the x-axis (d) The protein-ligand contact is shown in the form of a histogram. The blue, grey, 
pink, and green regions in the histogram represent water bridges, hydrophobic interactions, ionic bonds, and hydrogen bonds respectively (e) The interactions 
between Hyoscyamine and post-fusion conformation of the spike glycoprotein observed during MD simulation (f) The protein-ligand contacts shown in the form of 
timeline representation. The top panel shows the total number of specific contacts between receptor and ligand, and the bottom panel shows the amino acid residues 
of the target, which is interacted with the ligand. 
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Hyptis atrorubens showed binding potential towards Chymotrypsin like 
protease (CL-pro) [82]. SARS-CoV nsp6 has been shown to activate 
autophagy, inducing vesicles, and is known to interact with nsp2, nsp8, 
nsp9, and accessory protein 9b [83]. nsp6 is considered to be one of the 
potential targets to suppress the virulent genes of the pathogen. Enve-
lope (E) proteins were reported to form ion channels, which is mainly 
associated with pathogenesis, and the inhibition of these channels pro-
vided insights for drug discovery. A recent study suggested that Bela-
chinal, Macaflavanone-E, and Vibsanol-B were reported to be potential 
inhibitors of envelope protein [84]. Similarly, another study showed 
that several viral peptides were modeled by computational virtual 
screening for vaccine development [85]. The current study predicted the 
binding potential of four natural lead molecules, namely Hyoscyamine, 
Rotiorinol-C, Scutifoliamide-A, and Tamaridone towards selected mo-
lecular targets of COVID-19, and the hypothesis probably provide 

profound insight for the development of therapeutic agents against pu-
tative targets of SARS-CoV-2. 

The present study provides insight into the molecular mechanism of 
the binding potential of natural phytochemical towards fourteen mo-
lecular targets of SARS-CoV-2 for future investigation. Since there are no 
standard drugs available for the treatment of COVID-19 to compare our 
studies, the interaction models of Chloroquine and Hydroxychloroquine 
and their usual targets were used as the comparative control, and, 
therefore, this prediction could have a variation when it implements at 
the experimental level. Further, the study modeled the binding potential 
of four lead molecules towards the prioritized targets, and due to the 
time and resource constraints, the molecular dynamics simulation, and 
energy calculations were performed only for the best-docked complexes 
that showed minimum binding energies and maximum stabilizing in-
teractions. The molecular dynamics and simulation studies between 

Fig. 12. The binding and stability of the docked complex of natural lead molecule Tamaridone and spike glycoprotein of SARS-CoV-2 were studied by molecular 
dynamic simulation at 100 ns? The trajectories obtained during the MD simulation is shown in figure (a) Protein-ligand RMSD: Protein RMSD (Å) is shown on the y- 
axis, and simulation time is given on the x-axis (b) Plot of the protein RMSF: RMSF (Å) is given in the y-axis and atom index is showed in the x-axis (c) Plot of ligand 
RMSF: RMSF (Å) is shown in y-axis and atom index is given in the x-axis (d) The protein-ligand contact is shown in the form of a histogram. The blue, grey, pink, and 
green regions in the histogram represent water bridges, hydrophobic interactions, ionic bonds, and hydrogen bonds respectively (e) The interactions between 
Hyoscyamine and post-fusion conformation of the spike glycoprotein observed during MD simulation (f) The protein-ligand contacts shown in the form of timeline 
representation. The top panel shows the total number of specific contacts between receptor and ligand, and the bottom panel shows the amino acid residues of the 
target, which is interacted with the ligand. 
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selected natural compounds and other targets can also be modeled to 
obtain significant breakthroughs for the development of potential tar-
gets and lead molecules. Thus, the present study provides an ample 
foundation for future investigation and developing natural lead mole-
cules against multiple targets of SARS-CoV-2. 

4. Conclusion 

At present, COVID-19 is one of the most critical public health con-
cerns with high mortality and morbidity rate worldwide. There are 
limited therapeutic agents available to treat the disease. Thus, there is a 
high emergency to identify potential therapeutic strategies to tackle 
COVID-19. Computer-aided virtual screening is one of the promising 

Fig. 13. The binding and stability of the docked complex of conventional antiviral drug Chloroquine and Glutathione-S-transferase studied by molecular dynamic 
simulation at 100 ns? The trajectories obtained during the MD simulation is shown in figure (a) Protein-ligand RMSD: Protein RMSD (Å) is shown on the y-axis, and 
simulation time is given on the x-axis (b) Plot of the protein RMSF: RMSF (Å) is given in the y-axis and atom index is showed in the x-axis (c) Plot of ligand RMSF: 
RMSF (Å) is shown in y-axis and atom index is given in the x-axis (d) The protein-ligand contact is shown in the form of a histogram. The blue, grey, pink, and green 
regions in the histogram represent water bridges, hydrophobic interactions, ionic bonds, and hydrogen bonds respectively (e) The interactions between Hyoscyamine 
and post-fusion conformation of the spike glycoprotein observed during MD simulation (f) The protein-ligand contacts shown in the form of timeline representation. 
The top panel shows the total number of specific contacts between receptor and ligand, and the bottom panel shows the amino acid residues of the target, which is 
interacted with the ligand. 
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approaches which reduce the time and cost required to develop new 
candidate drugs. This approach can be used to screen lead molecules 
with druggish and pharmacokinetic features that can be transformed 
into experimental levels to develop the therapeutic intervention. The 
natural molecules are known to have inhibitory potential towards 
several viral targets. The present study aimed to screen potential natural 
lead molecules towards multiple prospective molecular targets of SARS- 
CoV-2. Based on the functional and virulence role, fourteen molecular 
targets of SARS-CoV-2 were identified, and eleven of them were 
retrieved from the Protein Data Bank, and three proteins that lack the 3D 
structures, were computationally predicted. By an extensive literature 
survey and database search, ninety-two natural compounds were 
selected. The drug likeliness, pharmacokinetic and toxicity properties of 
selected lead molecules were predicted by various computational 
biology tools. Based on the virtual screening, four potential lead mole-
cules were screened, and the binding potentials of these lead molecules 
towards fourteen targets were modeled by molecular docking. The sta-
bilities of the four best-docked complexes were confirmed by molecular 
dynamic simulation and energy calculation studies. The present study 
suggested that the four lead molecules were qualified for the drug 
likeliness, pharmacokinetics, and toxicity features, and demonstrated 
profound binding with most of the selected targets. Notably, Hyoscya-
mine and Tamaridone towards spike glycoprotein and Rotiorinol-C and 
Scutifoliamide-A towards replicase polyprotein 1 ab of SARS-CoV − 2 
were showed better and significant binding compared to the binding of 
Chloroquine and glutathione S transferase. Thus, the present study 
suggested that these natural lead molecules can be used as potential lead 
molecules against the prospective molecular targets of SARS-CoV-2, and 
the computational prediction probably provides a substantial break-
through in the drug discovery pipeline to develop future therapeutic 
agents against COVID-19 and the prediction can be transformed into the 
experiential level. 
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