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Simple Summary: It is already known that DNA alterations do not fully recapitulate the complex
nature of a tumor or its potential interaction with specific treatments. Therefore, in order to establish
more precise and effective therapeutic approaches for non-small cell lung cancer, tumors will have to
be characterized in a more accurate and comprehensive way. In this regard, transcription profiling
has already demonstrated its utility in further stratifying patients in a much more refined way
than genomic alterations. Examples of this include the definition of intrinsic subtypes in colorectal
cancer, breast, or non-small cell lung cancer tumors based on their expression patterns. Moreover, the
characterization of the activity levels of the pathways involved in tumor progression and development
is bound to better predict the specific response to a certain therapy than isolated biomarkers such as
specific DNA alterations or the expression of single genes. This is especially relevant in the context of
patients not harboring targetable alterations or those developing resistance after treatment.

Abstract: Recent technological advances and the application of high-throughput mutation and
transcriptome analyses have improved our understanding of cancer diseases, including non-small
cell lung cancer. For instance, genomic profiling has allowed the identification of mutational events
which can be treated with specific agents. However, detection of DNA alterations does not fully
recapitulate the complexity of the disease and it does not allow selection of patients that benefit from
chemo- or immunotherapy. In this context, transcriptional profiling has emerged as a promising tool
for patient stratification and treatment guidance. For instance, transcriptional profiling has proven to
be especially useful in the context of acquired resistance to targeted therapies and patients lacking
targetable genomic alterations. Moreover, the comprehensive characterization of the expression level
of the different pathways and genes involved in tumor progression is likely to better predict clinical
benefit from different treatments than single biomarkers such as PD-L1 or tumor mutational burden
in the case of immunotherapy. However, intrinsic technical and analytical limitations have hindered
the use of these expression signatures in the clinical setting. In this review, we will focus on the
data reported on molecular classification of non-small cell lung cancer and discuss the potential
of transcriptional profiling as a predictor of survival and as a patient stratification tool to further
personalize treatments.
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1. Introduction

Lung cancer ranks first in the number of cancer-related deaths worldwide [1]. Lung
cancer patients’ five-year survival rates are strongly related to the tumor stage at the time
of diagnosis, ranging from 59% for local disease to 31.7% for regional disseminated disease,
and down to 5.8% for distant disseminated disease. At the time of diagnosis, 79% of lung
cancer patients show regional or distant dissemination, which subsequently has a dramatic
impact on life expectancy [2].

The 2015 World Health Organization (WHO) Classification of Lung Tumors divides
lung cancer into two main histological types: epithelial and neuroendocrine tumors. Ep-
ithelial tumors, often also called non-small cell lung cancer (NSCLC), account for 80–85%
of all cancer diagnoses and are subsequently subdivided into two major subtypes: non-
squamous cell carcinomas, further divided in lung adenocarcinoma (LUAD) and large cell
carcinoma, and squamous cell carcinomas (LUSC) [3]. The TNM staging criteria has been
widely used for the management of patients with NSCLC, both as a prognostic factor and as
a tool for treatment decision making. Nevertheless, the current system based almost solely
on the tumor histology and morphology is unable to completely explain the complexity
of this pathology. For instance, similar tumors in terms of histology or pathological stage
do not always follow the same clinical behavior or display equal responses to the same
treatment. In fact, between 30 to 55% of early-stage NSCLC patients relapse and die of the
disease despite complete resection with clear resection margins [4].

Technological advances within the last decades have led to a significant improvement
in our understanding of tumor biology through the implementation of large-scale genomic
and transcriptomic analyses. In this way, whole-transcriptome gene expression profiling,
coupled with bioinformatics analyses, has been used to identify distinct NSCLC molecular
subtypes [5]. However, the clinical relevance of those classifications has been questioned
and surpassed by the identification of actionable drivers, which had a major impact on
the molecular classification and treatment landscape of lung cancer, especially in lung
adenocarcinoma.

In this review, we attempt to analyze the current state of transcription-based classifica-
tions in the context of NSCLC and lay the groundwork for future studies aiming to define
a transcriptional classification of NSCLC with clinical value, both as a predictor of survival
and as a patient stratification tool to further personalize treatments. This is particularly
relevant since a significant proportion of patients lack actionable targets and are currently
being treated with chemotherapy alone or in combination with immunotherapy.

2. NSCLC Intrinsic Molecular Subtypes

Gene expression is intimately linked to cellular phenotype and tumor behavior. Mes-
senger RNA (mRNA) expression has been extensively used to distinguish biologically
homogeneous subtypes of a disease. In lung cancer, seminal studies on transcriptional pro-
filing included different morphological types (i.e., lung LUAD, lung LUSC, large cell lung
cancer, and small cell lung cancer) in order to classify them based on their differential gene
expression [6,7]. These studies demonstrated that gene expression profiling can recapitulate
the morphologic classification of NSCLC and that, unlike other morphological subtypes,
lung LUAD could be further subclassified into several transcriptional groups. However,
the lower prevalence of the other histologies, compared to LUAD, could have hindered the
identification of molecularly different subtypes within these morphological entities. As
a consequence, subsequent studies generally focused on one histological type, especially
LUAD or LUSC, due to their higher abundance (Table 1, Figure 1, Tables S1 and S2).
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Table 1. Non-small cell lung cancer gene expression subtypes signatures.

Signature Year Journal Reference Tissue of
Origin

Number of
Genes Identified Subtypes Technology

Bhattacharjee et al. 2001 Proc. Natl. Acad.
Sci. USA [7] LUAD 100 C1, C2, C3, C4 Microarray

Garber et al. 2001 Proc. Natl. Acad.
Sci. USA [6] LUAD 146 AC1, AC2, AC3 Microarray

Beer et al. 2002 Nat. Med. [8] LUAD 4966 Cluster 1, Cluster 2,
Cluster 3 Microarray

Tomida et al. 2004 Oncogene [9] LUAD,
LUSC 829 AD1, AD2, AD3, AD4,

SQ1, SQ2 Microarray

Inamura et al. 2005 Oncogene [10] LUSC 432 SCC-A, SCC-B Microarray

Hayes et al. 2006 J. Clin. Onc. [11] LUAD 2553 Bronchioid, Squamoid,
Magnoid Microarray

Raponi et al. 2006 Cancer Res. [12] LUSC 11,101 Cluster 1, Cluster 2 Microarray

Takeuchi et al. 2006 J. Clin. Onc. [13] LUAD 293 TRU, non-TRU Microarray

Larsen et al. 2007 Carcinogenesis [14] LUSC 6748 Cluster 1, Cluster 2 Microarray

Shibata et al. 2007 Cancer Sci. [15] LUAD 78 Alveolar, Bronchiolar Microarray

Wilkerson et al. 2010
Clin. Cancer Res.
Off. J. Am. Assoc

Cancer Res
[16] LUSC 208 Primitive, Basal,

Secretory, Classical Microarray

Park et al. 2012 PloS ONE [17] LUAD 191 S_C1, F_C2 Microarray

Staaf et al. 2012 BMC Med.
Genomics [18] LUAD 176 AC1, AC2 Microarray

TCGA-LUSC 2012 Nature [19] LUSC 208 Primitive, Basal,
Secretory, Classical RNA-Seq

Wilkerson et al. 2012 PloS ONE [20] LUAD 506 Bronchioid, Squamoid,
Magnoid Microarray

Cheung et al. 2013 Cancer Cell [21] LUAD 249 Alveolar, Distal airway
stem cell-like (DASC) Microarray

Fukui et al. 2013 Eur. Respir. J. [22] LUAD 1829 BC-low, BC-high Microarray

Brambilla et al. 2014
Clin. Cancer Res.
Off. J. Am. Assoc.

Cancer Res
[23] LUSC 139 Classical_1,

Classical_2, PEA, BL Microarray

TCGA-LUAD 2014 Nature [24] LUAD 506 TRU, PI, PP RNA-Seq

Ringnér et al. 2016 Oncotarget [25] LUAD
Consensus
classifica-

tion

CONSENSUS_1,
CONSENSUS_2,
CONSENSUS_3

Consensus

Chen et al. 2017 Oncogene [26] LUAD,
LUSC 700

AD.1, AD.2, AD.3,
AD.4, AD.5a, AD.5b,
SQ.1, SQ.2a, SQ.2b

RNA-Seq +
Other
omics

Hu et al. 2019 Trans. Comput.
Biol. Bioinform. [27] LUAD 30 AD.1, AD.2, AD.3,

AD.4, AD.5a, AD.5b RNA-Seq
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Figure 1. Intrinsic NSCLC transcriptional subtypes. Some of the NSCLC transcriptional subtypes described by different
research groups are clearly comparable, based on prognostic and molecular characteristics (same color shadows). (A)
Transcriptional subtypes described in LUAD. (B) Transcriptional subtypes described in LUSC. In both histologies, the blue
shadow represents a set of tumors with better prognosis and low proliferation-related pathways activity whereas the grey
shadow represents a subset of tumors with worse prognosis and a proliferative and more aggressive behavior.
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2.1. Transcriptional Subtypes in Lung LUAD

Following the evidence of LUAD’s higher molecular heterogeneity, a number of
studies developed between 2001 and 2016 sought to generate a classification of lung
LUAD based on gene-expression profiling [6–9,11,13,15,17,18,20–22,24,25] (Figure 1A,
Table S2). All these studies converged in the identification of a subset of predominantly
well-differentiated LUAD tumors with higher expression of pneumocyte markers and asso-
ciated with better prognosis. Additionally, another group of poorly differentiated tumors
with higher expression of cell proliferation-related genes and associated with poor survival
outcomes was also commonly identified. Nevertheless, the variation in the number of
additionally identified subgroups, unique to each study, has prevented the definition of a
consensus classification (Figure 1).

To date, the most accepted classification was described back in 2006 [11]. Hayes
et al. described three consensus transcriptional subtypes (e.g., bronchioid, squamoid,
and magnoid), combining publicly available gene expression datasets [6–8]. Bronchioid
tumors were more frequent among non-smoking females and showed better survival
outcomes in an early-stage disease context compared to the other groups. Interestingly, this
trend was inverted in late-stage tumors, where magnoid and squamoid subtypes showed
better survival rates. Besides, these subtypes also displayed differentially expressed tran-
scriptional programs involved in different biological processes. In this way, bronchioid
tumors showed higher pneumocyte type II and cisplatin resistance-related gene expression,
whereas squamoid and magnoid tumors were found to be associated with overexpression
of immune system and inflammatory-related genes, respectively. Six years later, in 2012,
these groups were revisited for associations with different genomic alterations, known
to be important for the biology of NSCLC [20]. EGFR alterations were mostly present on
bronchioid tumors, whereas KRAS and TP53 were more common within the magnoid
subtype. In addition, magnoid tumors exhibited the highest chromosomal instability, copy
number alterations, DNA hypermethylation, and genome-wide mutation rates.

Hayes et al.’s and Wilkerson et al.’s [11,20] classification was then applied to The
Cancer Genome Atlas (TCGA) LUAD dataset comprising 230 lung LUAD [24]. However,
transcriptional subtypes were renamed according to additional morphological, histologi-
cal, and molecular characteristics: terminal respiratory unit (TRU, bronchioid), proximal
inflammatory (PI, squamoid), and proximal proliferative (PP, magnoid). As reported in
previous studies [11,20], these subtypes were associated with specific DNA alterations. The
PP subtype showed the highest KRAS mutation and STK11 inactivation frequency, while
the PI subtype was enriched for NF-1 and TP53 co-mutation. On the other hand, activating
EGFR mutations or ALK rearrangements were more prevalent within the TRU subtype.
After all, this classification did not contribute much to the previous one but served as an
independent validation of Hayes et al.’s and Wilkerson et al.’s intrinsic subtypes in a larger
set of tumors.

Over the years, the TCGA project has been incorporating new tumor cases, which
means a doubling increase in the number of lung LUAD cases with available molecular
data. This opened the opportunity for further research on the establishment of accurate
and clinically relevant tumor molecular subtypes. Hu et al. combined k-means clustering,
t-test, sensitivity analyses, self-organizing map (SOM) neural networks, and hierarchi-
cal clustering methods and reported a new classification into four intrinsic lung LUAD
subtypes [27], named 1 to 4. Again, these subtypes showed association with different
biological processes. For instance, groups 1 and 2 overexpressed immune-related signaling
pathways, whereas subtypes 3 and 4 showed higher activation of cell proliferation and
extracellular matrix organization pathways, respectively. Moreover, an association was
also reported between gene expression subtypes and specific mutations. In this way, EGFR
alteration was enriched in subtype 4, while TP53 mutations tended to be more frequent in
subtypes 1 and 2. In another study, Chen et al. reported a novel classification consisting of
six lung LUAD subtypes (e.g., AD1-AD4, AD5a, AD5b), integrating gene expression, DNA
methylation, copy number alterations, and protein expression data [26]. In agreement with
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previous classifications, LUAD subtypes associated with low differentiation levels showed
relatively worse prognosis. Moreover, an association between these subtypes and specific
transcriptional programs and biological processes was also reported.

2.2. Transcriptional Subtypes in Lung LUSC

Although most of the previously mentioned studies focused on lung LUAD, some
studies also reported intrinsic transcriptional subtypes for LUSC (Figure 1B, Table S2).
Between 2005 and 2007, the first attempts at defining subgroups in LUSC by Inamura
et al. [10], Larsen et al. [14], and Raponi et al. [12] identified two major clusters of tumors
associated with different survival outcomes and differentiation grades.

In a more comprehensive study published in 2010, Wilkerson et al. proposed four
intrinsic LUSC subtypes: primitive, secretory, basal, and classical [16]. These groups
were significantly associated with survival, tumor grade and distinct biological processes.
Primitive LUSC showed overexpression of proliferation-related genes and the worst overall
survival among subtypes. Classical tumors overexpressed genes involved in xenobiotic
metabolism. Secretory LUSC showed higher expression of genes involved in immune
response and pneumocyte type II markers. Basal subtype presented higher expression of
genes involved in cell adhesion and basement membrane functions. In terms of prognosis,
basal, secretory, and classical tumors showed similar survival outcomes, better in general
compared to primitive subtypes. These results were further discussed by Brambilla et al.,
who identified an additional basaloid-like subtype, found to mostly agree with Wilkerson
et al.’s primitive subtype but far more associated with a poor prognosis phenotype [23].

In 2012, Wilkerson et al.’s LUSC transcriptional subtypes’ were tested in the TCGA
LUSC dataset, along with other available molecular data, to classify and characterize
178 lung LUSC samples [19]. Again, correlations were observed between the different
transcriptional subtypes and genomic alterations in copy number, DNA mutations, and
methylation. The classical subtype showed higher KEAP1, NFE2L2, and PTEN alterations
frequency, as well as pronounced hypermethylation and chromosomal instability. By
contrast, primitive tumors more commonly exhibited RB1 and PTEN alterations, while
basal tumors showed NF1 alterations. Interestingly, CDKN2A deletions, which are a
common event in LUSC, were not associated with any subtype.

In 2017, Chen et al. took advantage of the incorporation of new LUSC tumors within
the TCGA resource and delved into the study of LUSC subtypes combining omics layers
other than transcriptomics [26]. Three LUSC subtypes associated with transcriptional
targets of SOX2 or TP63, as well as cancer-testis expression, were identified.

2.3. Current Clinical Applicability of NSCLC Gene Expression Signatures

Overall, different classifications have been proposed for both lung LUAD and LUSC
but have never been adopted within the clinical practice. Gene expression signatures de-
rived from these studies, generally conducted on a limited number of patients, sometimes
included large sets of genes that passed the significance threshold. This often makes it diffi-
cult to select the most relevant genes, leading to less reproducible results or identification
of the relevant biological processes that these genes represent [28]. In fact, not surprisingly,
little overlap was found between the gene expression signatures derived from some of
these studies (Figure S1). In addition, the fact that most of them have never been accurately
validated in prospective studies to prove their clinical benefit has prevented their introduc-
tion into the clinical setting. Furthermore, the increased complexity in their interpretation
favors the use of genomic sequencing, which allows identifying discrete actionable drivers
that have been shown to predict clinical benefit from targeted therapies [29].
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In this regard, in addition to the signatures derived from lung cancer molecular
subtypes studies, several groups designed studies whose main objective was to identify
prognostic signatures, some of them also able to predict clinical benefit from specific
treatments, using gene expression profiling in surgically resected tumor samples. In 2017,
Tang et al. evaluated 42 of these signatures for their prognostic potential via a meta-analysis
on almost 2000 early-stage NSCLC patients collected from 15 studies [30]. Although more
recent studies have been published between 2016 and 2021 (Table S3), to our knowledge,
this is the most recent review that comprehensively evaluates prognostic gene expression
signatures in NSCLC [30]. Unlike a previously published study reporting a lack of utility
of some of these signatures on top of clinical risk factors [31], Tang et al. identified
25 signatures able to predict survival outcome adjusting for clinical risk factors. Moreover,
18 of them significantly outperformed random signatures. These differences in the findings
of these two studies mainly reside in the different nature of their design. Subramanian and
Simon et al. [31] performed a critical review of the aim, methodology, results, and derived
conclusions of the evaluated studies, whereas Tang et al. [30] systematically compared the
prognostic performances of the published signatures.

Although distant in time, both studies agreed on the limitations that can be encoun-
tered when evaluating and proposing prognostic signatures for their clinical use. Some of
these caveats, which also apply to recent studies (Table S3), include low reproducibility
of the analysis from where the signatures come from, inconsistent patient’s eligibility
criteria, lack of prospective validation, and the fact that most gene expression signatures
are based on microarray platforms which require good quality fresh frozen (FF) tissue
samples. This requirement prevents the implementation of prognostic signatures in the
routine clinical practice, where FF tissue samples availability is often scarce [32]. In this
regard, only a few attempts to develop mRNA signatures adapted for use in formalin-fixed
paraffin-embedded tissue (FFPE) samples have been made [33–36]. However, prospec-
tive validations of these signatures are needed before they can be used in the clinic and
potentially solve tissue availability limitations.

3. Gene Expression Profiling in the Context of Targeted Therapies in NSCLC

NSCLC is not a single entity but is, in fact, multiple pathologies, each with unique
molecular features, which we are only beginning to understand [37,38]. Even though
the distinction between distinct histological subtypes is clinically relevant and has an
impact on therapeutic decisions, the current management of NSCLC requires tumors to
be screened for specific genomic alterations that predict survival benefit and sensitivity to
targeted therapies [39]. However, there are patients lacking tractable genomic alterations,
and patients with oncogenic drivers may respond differently to targeted therapies for
reasons that remain unclear, and all patients will eventually develop treatment resistance.
Therefore, the implementation of new methodologies beyond genomic testing, such as
those based on gene expression, will be crucial to delivering more precise and effective
treatments to NSCLC patients (Figure 2).
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Figure 2. Transcriptional profiling as a tool for guiding precision medicine treatments in NSCLC. Flowchart representing
key situations where gene expression profiling can add to genomic profiling in the management of NSCLC treatment.
Molecular testing to detect targetable alterations is required in all non-squamous NSCLC to detect genomic alterations that
cause an oncogenic addiction and for which there is an available targeted therapy (i.e., EGFR). Although targeted therapies
contributed to a significant improvement of the survival time in lung cancer patients harboring genomic alterations, patients
will progress within several months due to the emergence of resistance mechanisms. More importantly, a significant
proportion of patients do not harbor any actionable driver alteration. To incorporate new technologies, such as those
centered on gene expression, might allow unraveling novel vulnerabilities other than genomic oncogenic alterations.

3.1. Gene Expression Profiling as a Tool for the Stratification of Driver-Positive Patients

Current biomedical research is focused on developing treatments that specifically
target abnormally activated regulatory pathways of cancer cells, such as signal transduc-
tion, cell cycle, DNA repair, metabolism, and apoptosis resistance. Significant advances in
understanding the genomic landscape of lung cancer through comprehensive genomic pro-
filing have allowed physicians to tailor treatment options in many cancer types, including
lung cancer [40,41].

Around 38% of patients with NSCLC present an oncogenic driver mutation, which
enables the use of targeted treatment options that improve survival outcomes and reduce
toxicity compared to standard chemotherapy [42–44]. EGFR mutation and EML4-ALK
rearrangement are paradigmatic examples of how biomarker-driven targeted therapy has
shifted the treatment of patients with NSCLC [44]. Unfortunately, not all patients respond
equally to these therapeutic approaches. Recently, intratumor heterogeneity, concurrent ge-
nomic alterations, and pre- or post-treatment heterogeneity regarding targetable oncogenic
mutations can partly explain these differences in response and duration of clinical benefit
to targeted therapies [45].

Gene expression analysis could become a powerful tool to further stratify patients
for targeted therapies and to predict potential differences in response to treatment among
patients harboring the same genomic alteration. In this regard, there are only a few studies
concerning the comparison of driver alterations and defined transcriptional subtypes in the
context of NSCLC [13,15,19,20,24,26,27,46–48] (Table 2). Although transcriptional-based
NSCLC molecular subtypes derived from these studies were enriched for key genomic
drivers such as EGFR and KRAS mutations, the transcriptional signatures allowed further
refinement of disease subclassification. In this regard, only two of these studies found
specific transcriptional profiling patterns for patients harboring EGFR or ALK alterations,
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indicating that the presence of these alterations may confer a very specific gene expres-
sion pattern [46,48]. On the other hand, the majority of studies found patients with these
alterations in all the identified subtypes, although there was almost always one that was en-
riched in a certain alteration (i.e., EGFR) [13,15,20,24–27,47]. In this context, EGFR mutated
tumors are still considered to be a relatively homogeneous entity for therapeutic decisions
in NSCLC, despite drug responses and time to progression are relatively variable among
patients. Moreover, gene expression profiles of tumors harboring mutations in other key
genes such as KRAS or TP53 showed significant heterogeneity [8,13,15,19,20,24–27,47,49].
In particular, KRAS is the most common gain-of-function mutation in NSCLC, accounting
for approximately 30% of lung AC in Western countries and about 10% in Asian coun-
tries [50]. Recent advances in drug development yielded novel promising agents like
sotorasib and adagrasib, which target KRAS-G12C and will soon change the therapeu-
tic landscape of KRAS mutated tumors [51]. Given the high heterogeneity in terms of
genomic and transcriptomic profiles of KRAS mutant NSCLC, it is reasonable to expect
wide-ranging outcomes of those targeted agents.

Table 2. Studies concerning the association between genomic alterations and specific transcriptional
profiles. * Studies with * had whole-exome sequencing data, and as a wide range of mutations were
evaluated with this technology, only the most relevant ones were reported on this table.

Signature Histology Evaluated Genomic Alterations Associated Subtype

Takeuchi et al. [13]
2006

LUAD
EGFR TRU-type
KRAS -
TP53 -

Shibata et al. [15] 2007 LUAD
KRAS Bronchial
EGFR Alveolar

Angulo et al. [46] 2008 NSCLC

PI3K3CA -
BRAF -
LKB1 -
KRAS -
TP53 -

EGFR EGFR mutated LUAD
transcriptional cluster

Wilkerson et al. [20]
2012

LUAD

EGFR Bronchioid
KRAS Magnoid
TP53 Magnoid

STK11 Magnoid
LRP1B -
BRAF -
PTEN -

Okayama et al. [48]
2012

LUAD
EGFR -
KRAS -
ALK ALK positive cluster

Hammerman et al.
* [19] 2012 LUSC

KEAP1 Classical
NFE2L2 Classical
PTEN Classical, Primitive
RB1 Primitive

Planck et al. [47] 2013 LUAD
EGFR EGFR-1 and EGFR-2

subtypes
KRAS -
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Table 2. Cont.

Signature Histology Evaluated Genomic Alterations Associated Subtype

Collison et al. * [24]
2014

LUAD

KRAS PP
STK11 PP

NF1 PI
TP53 PI
EGFR TRU

Rignér et al. [25] 2016 LUAD
EGFR CONSENSUS_1
KRAS CONSENSUS_2

Chen et al. * [26] 2017 NSCLC

TP53 SQ.2a, SQ.2b, AD.1,
AD.2, AD.3

RASA1 -
PTEN -

SMARCA4 -
CDKN2A -
NFE2L2 -
STK11 AD.1, AD.5b
KRAS AD.2, AD.5b
KEAP1 -
EGFR -

Hu et al. * [27] 2019 LUAD
TP53 Subtype 1, Subtype 2
EGFR Subtype 4

In summary, this evidence supports the fact that DNA alterations do not fully recapit-
ulate the complex nature of lung tumors. Therefore, further stratification of these patients
based on their transcriptional profiling might improve the selection of individuals that
would benefit from existing targeted therapies. Moreover, advances in this direction could
lead to the development of novel combinations with standard care to target alternative sig-
naling cascades in patients suspected to be non-responders or the anticipation of resistance
mechanisms and the design of combination treatments upfront.

3.2. NSCLC Tumors Lacking a Tractable Oncogenic Driver

Targeted DNA sequencing has recently been demonstrated to be a comprehensive
tool to detect multiple types of oncogenic alterations, including relevant oncogenic kinase
fusions in NSCLC (i.e., ROS1, ALK, RET). Currently available DNA-based panels, such as
FDA-cleared MSK-IMPACT large panel, are designed to detect rearrangements via tiling
of the appropriate introns known to likely harbor the genomic alteration [52]. However,
this approach has shown some limitations, including difficulty to tile very long introns,
the existence of unmappable repetitive elements, and the possibility of the fusion event
occurring in an alternative intron not included in the panel design [53]. This may cause
patients to be considered as driver-negative, although they may indeed hold a targetable
fusion. In this regard, RNA-Seq seems to represent a more direct approach for fusions
detection in those cases, as introns are removed during splicing events. Following this
reasoning, Benayed et al. carried out a retrospective sequencing analysis using an RNA-Seq
based fusion panel on LUAD samples reported to be driver-negative by a DNA-based
sequencing platform [54,55]. The results of the study showed that 14% (n = 36) of negative
patients after targeted DNA-Seq were positive for fusions by targeted RNA-Seq and
could benefit from corresponding targeted therapy, thus demonstrating the importance of
following DNA-Seq by RNA-Seq for fusion detection. Of note, RNA-Seq used in this study
was performed using a panel with a limited number of genes. Therefore, the use of whole
transcriptome sequencing will allow the detection of targetable fusions, including some
not yet described but potentially relevant, in patients deemed driver negative [56].

On the other hand, a significant percentage of NSCLC patients do not harbor any
known actionable genomic alterations, especially in LUSC, for whom there are currently no
available targeted therapies. For this reason, there is a need to unravel novel vulnerabilities
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other than genomic oncogenic alterations and to combine new technologies that allow a
deeper understanding of cancer biology, such as those centered on gene expression. In this
regard, the WINTHER and CoPPO trials evaluated the value of transcriptomics in addition
to genomic sequencing to guide treatment decisions in advanced malignancies that have
progressed following standard treatments [57,58]. Both studies showed that incorporating
transcriptomics increased the number of treated patients compared to assessing only
genomic alterations. Indeed, the use of gene expression profiling increased the matching
rate among genomic alteration and treatment compared with previous genome-guided
therapy studies [57].

Overall, these trials showed that transcriptomic profiling beyond classical tumor DNA
sequencing is useful to make treatment decisions in patients with solid tumors. Therefore,
future research should seriously consider combining genomic and transcriptomic data.

3.3. Overcoming Targeted Therapy Resistance Mechanisms

Although the use of targeted therapies has led to clinical benefit in patients with
NSCLC, responses to these treatments are rarely complete and inevitably temporary be-
cause of the appearance of treatment resistance mechanisms.

There are two main types of resistance mechanisms to targeted drug therapy: primary
resistance or acquired resistance. Additionally, these processes can be further subclassified
as on-target and off-target [59]. Regarding on-target resistance, it arises when the target
of the drug itself is mutated, leading to response attenuation or even causing no response
at all. On the other hand, off-target mechanisms occur through activation of signaling
cascades parallel or downstream the drug target and, therefore, bypassing the potential
inhibitory effect of the treatment. However, off-target resistance mechanisms may not
necessarily be genetic. In this way, alterations in signaling pathways, histological and
phenotypic transformations during tumor progression [60,61], epigenetic changes that favor
the survival of drug-tolerant tumor cell subpopulations [62], and interactions between the
tumor and its microenvironment [63,64], can modify tumor cell sensitivity to the targeted
therapy. All these mechanisms may not be captured at the genomic level but can indeed
have an impact on the transcriptional profile of the tumor. Moreover, most of the identified
genomic mechanisms of resistance tend to converge into recurrent signaling pathways,
which promote tumor growth and cell survival. Hence, the identification of transcriptional
programs deregulated upon targeted therapy through transcriptional profiling could be a
pragmatic approach to capture and tackle drug resistance [59].

EGFR-TKIs are widely used against NSCLC with EGFR mutations. Thus, preventing
and delaying EGFR-TKI resistance is a critical clinical concern involving the treatment
of EGFR-mutant NSCLC [65]. In the past years, preclinical models have been extremely
helpful to identify specific mechanisms of drug resistance. For instance, MAPK path-
way reactivation upon EGFR and ALK inhibition has been reported to occur at different
points in the signaling cascade due to specific mutations [66–70]. More interestingly, this
resistance could be reversed and even prevented through combination therapy with MEK
and EGFR or ALK TKI. Several pathways have been found upregulated upon resistance,
such as PI3K-AKT [71,72], JAK-STAT [73,74], and IGFR1 [75]. However, one of the main
limitations of most studies focused on assessing abnormal pathway activation that may
be responsible for certain acquired resistances upon treatment, is that they are based on
determining the master regulator protein level through experimental molecular biology
techniques. Although the identification of these altered signaling cascades is important,
these approaches give little information about the mechanisms that led to such alterations,
which could, for instance, be deregulating other pathways that may not be the focus of
these studies but, that could as well be promoting resistance to treatment and tumor pro-
gression. Moreover, deregulation of compensatory pathways cannot be captured with
targeted next-generation-sequencing (NGS) panels and, therefore, whole transcriptome
analysis of preclinical models or tumor samples obtained at the times of diagnosis and
treatment resistance might become essential for the identification of non-canonical mecha-
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nisms of resistance that may eventually be translated into novel therapeutic approaches
to overcome resistance to targeted therapies. In this regard, few studies have attempted
to use whole-transcriptome microarray/RNA-Seq techniques in order to elucidate the
mechanisms that lead to EGFR-TKI sensitivity or resistance (Table 3). However, the imme-
diate clinical applicability of these studies is complicated. First, most of these studies were
carried out using pharmacogenomics data from large cancer cell lines projects, which has
been challenged before due to sensitivity metrics inconsistencies between projects driven
by inherent cancer cell lines heterogeneity. Moreover, when cellular models are used, all
the information regarding the tumor microenvironment is lost, which is a big concern
considering that interactions between tumor cells and the microenvironment could also be
determining treatment resistance [76]. Therefore, we believe that the implementation of
these signatures or the discovery of new ones for clinical use will depend on the execution
of clinical trials with matched gene expression and treatment effect information for NSCLC
patients. Moreover, as significant variability has been observed in drug response at the
level of individual cells within a heterogeneous cellular population, the use of single-cell
RNA-Seq techniques and the development of standardized analysis pipelines is bound to
result in the identification of specifically which cells are responsible for treatment failure
and might unravel new targets.

Table 3. EGFR targeted therapy resistance/sensitivity transcriptional signatures and proposed molecular mechanisms.

Study Targeted
Therapy

Target
Gene

Sensitivity or
Resistance

N Signature
Genes Main Proposed Mechanism

Coldren et al. [77]
2006 Gefitinib EGFR Both Sensitivity: 305

Resistance: 105
E-cadherin upregulation in sensitive cell

lines

Balko et al. [78]
2006 Erlotinib EGFR Sensitivity 180 Overexpression of MAPK and PI3K

pathways

Zhang et al. [79]
2012 Erlotinib EGFR Resistance 21 AXL overexpression

Byers et al. [80]
2013

Erlotinib
PI3K-i

EGFR
PI3K Resistance 76

AXL overexpression and
epithelial–mesenchymal transition

activation

Terai et al. [81]
2013 Gefitinib EGFR Resistance - FDF2-FGFR pathway activation

Geeleher et al. [82]
2014 Erlotinib EGFR Sensitivity 1000 Not highlighted

Liu et al. [83] 2015 Gefitinib EGFR Resistance - IL-8 overexpression and enriched stemness
properties

Rothenberg
et al. [84] 2015 Erlotinib EGFR Resistance 35 SOX2 overexpression

Naeini et al. [85]
2018 TKIs EGFR Resistance 1286

- Glycolysis and cell cycle upregulation
- Immune response downregulation

- Apoptosis downregulation
- P53 pathway downregulation

- TNF-alpha pathway downregulation
- Xenobiotic metabolism downregulation

Cheng et al. [86]
2020

Erlotinib
Gefitinib

Other
TKIs

EGFR Sensitivity 11,431 Not highlighted
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4. Gene Expression Profiling in the Context of Immunotherapy in NSCLC
4.1. Gene Expression Signatures as Predictors of Immunotherapy Response

Until recently, the standard first-line therapy for patients with metastatic or advanced
NSCLC has been doublet platinum chemotherapy [87]. Nowadays, immune checkpoint
inhibitor (ICI) therapy against the programmed cell death-1 (PD-1) or its ligand PD-L1 axis,
either alone, in the case of patients with PD-1 expression ≥ 50%, or in combination with
chemotherapy, in the case of PD-1 expression < 50%, has become the standard of care in
advanced NSCLC lacking driver oncogenic alterations [88]. However, some patients will
progress early to these treatments and the rate of long-term survivors is relatively low.

Previously established biomarkers for predicting clinical outcomes of immunotherapy
in NSCLC, such as PD-L1 expression, tumor mutational burden (TMB) or single genomic
alterations in STK11, KEAP1, or PTEN genes, cannot accurately predict clinical benefit
in all patients [89]. In this regard, none of these biomarkers is sufficient to predict tumor
response or longer survival outcome to immunotherapy or combined immunotherapy plus
chemotherapy.

Gene expression profiling, interrogating several immune-related genes, is becoming
an attractive approach to characterize tumor immune microenvironment and predict
immunotherapy response, going beyond the measurement of single genes such as PD-L1
(Table 4). In part, this is because immune populations infiltrating the tumor can be detected
and characterized thanks to transcriptional profiling.

Table 4. Most relevant gene expression signatures associated with immune response prediction.

Study Year Description

Liberzon et al. [90] 2011 Immunologic signatures of MSigDB.

Bindea et al. [91] 2013 28 transcriptional signatures to quantify the degree of infiltration of different immune cell
subpopulations. Both innate immune cells and adaptative immune cells are included.

Rooney et al. [92] 2015 CYT score based on the expression of the effector molecules that drive cytolysis.

Prat et al. [93] 2017 23 immune-related signatures linked to response and progression-free survival after treatment
with anti-PD1 therapy.

Ayers et al. [94] 2017
IFN-gamma pathway gene signature related to antigen presentation, chemokine expression,
cytotoxic activity, and adaptative immune resistance. It has been associated with clinical benefit
upon anti-PD1 pembrolizumab treatment.

Thorsson et al. [95] 2018
Identification of 6 immune subtypes/signatures characterized by differences in tumor
microenvironment and prognosis. Specific mutations correlated with lower (CTNNB1, NRAS,
IDH1) or higher (BRAF, TP53, CASP8) lymphocytes presence.

Danaher et al. [96] 2018

Tumor Inflammation Signature (TIS) takes into account genes related to antigen presentation,
cytotoxic activity, and adaptative immune resistance. The TIS has been shown to enrich for
patients who respond to the anti-PD1 treatment pembrolizumab. The TIS has been applied
retrospectively in multiple immuno-oncology trials.

Critescu et al. [97] 2018
T-Cell inflamed gene expression signature and TMB potential to jointly predict response to
pembrolizumab in more than 300 patients with advanced solid tumors and melanoma from
KEYNOTE trials.

A recent study demonstrated that multigene signatures constitute a reliable tool
to identify T-cell pro-inflammatory phenotypes across different solid tumors, including
NSCLC, likely to respond to PD-(L)1 inhibition therapy outperforming PD-L1 immunohis-
tochemistry in PD-L1 unselected patients [94]. Of note, the 18-gene T cell-inflamed gene
expression profile derived from this study was assessed using the Nano String nCounter
platform, which is compatible with formalin-fixed paraffin-embedded samples much more
suitable than fresh frozen tissue in the clinical setting. Moreover, this signature under-
went further validation and is under development as a clinical-grade diagnostic device,
currently being used in a set of ongoing ICI therapy trials [98]. Soon after, Hwang et al.



Cancers 2021, 13, 4734 14 of 20

evaluated the immune-related gene expression profile of prospectively gathered tumor
samples from patients with metastatic NSCLC, who had not received prior treatment, to
find putative sensitivity or resistance-related mechanisms to ICI therapy [99]. All patients
were treated with anti-PD-1 and were divided into two groups depending on whether
they achieved a durable clinical benefit or not. The results showed that gene expression
signatures, specifically T-cells and M1 macrophages from MSigDB C7 collection, were able
to discriminate between durable responders and non-durable responders. Although a
prospective validation is needed, the authors concluded that these gene sets were better
predictors than PD-L1 status or TMB.

Overall, these two studies showed that gene expression profiling constitutes a power-
ful tool for predicting response to immunotherapy outperforming previously single analyte
biomarkers. However, both used multiplexed panels containing a few selected genes, thus
limiting the amount of information that can be captured compared to whole transcriptome
sequencing. In this regard, we believe that further studies introducing whole transcriptome
sequencing, with the subsequent development of standardized single-cell RNA sequencing
analysis pipelines to properly analyze the composition of complex mixtures of cells, would
be useful not only to distinguish which patients will derive long-term clinical benefit
from immunotherapy, but also to characterize the mechanisms of acquired resistance to
anti-PD-(L)1 treatment, and to progress towards a more precise immunotherapy.

4.2. Linking Lung Cancer Molecular Subtypes with Immune Phenotype

Given the lack of accurate biomarkers for immune therapy response in NSCLC, gene
expression profiling was explored for lung LUAD and LUSC. Faruki et al. [100] assessed
the immune landscape of previously defined lung intrinsic subtypes of LUAD (TRU, PP,
PI) and LUSC (classical, primitive, secretory, and basal). They measured the abundance
of different immune cell populations involved in both adaptative and innate immune
responses using publicly available data from 1190 lung LUAD [9,20,24,101] and 761 lung
LUSC [12,16,19,102]. They observed differences in the immune cell infiltration across in-
trinsic subtypes, with decreased immune cell expression in the PP LUAD subtype and high
immune cell expression in the secretory and primitive LUSC subtypes. They also evaluated
the correlation between immune cell expression and PD-L1 gene expression. In LUSC,
immune cell infiltration was not correlated with PD-L1 IHC expression. In this regard, in
the phase III clinical trial CheckMate-017, tumor PD-L1 expression did not predict benefit
from nivolumab in patients with advanced lung LUSC [103], showing inconsistencies with
other studies reporting this positive correlation [104]. In addition to PD-L1, TMB was also
reported to be associated with immunotherapy response in NSCLC [105]. However, Faruki
et al. did not find an independent association between TMB and immune cells expression
either in LUAD or in LUSC subtypes. In this regard, the PI LUAD subtype does show
this positive correlation between TMB and immune infiltration, whereas the TRU subtype
presents the lowest mutational burden despite quite high immune cells expression. Similar
findings were reported for the association of certain genomic alterations with immune
system impairment. In this way, STK11 loss/inactivation in LUAD or KEAP1/NFE2L2
pathway alterations in LUSC were differentially enriched between intrinsic subtypes but
were consistently associated with lack of immune cells expression. Interestingly, although
KEAP1 alterations have been previously reported to be associated with high TMB, this
correlation resulted in little clinical benefit for immunotherapy treatment [97]. The authors
claim that this should be taken into consideration in future studies, as the proportion of
LUAD or LUSC subtypes within the study population could have a major impact on the
results regarding the stratification of NSCLC patients for immune-checkpoint treatment
based on TMB or genomic alterations. Overall, this work presents distinct immune infiltra-
tion patterns associated with intrinsic LUAD and LUSC gene expression-based subtypes.
More interestingly, these differences in the tumor microenvironment as well as within
tumor biology could potentially predict immunotherapy response and provide for better
patient stratification in future drug trials.
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5. Conclusions

Transcriptomics has not historically had an excessively relevant role in the diagnosis
and treatment of NSCLC. Intrinsic technical and analytical difficulties (i.e., variability of
the results, costs, tissue sample availability, challenging interpretation of the outcomes),
in addition to the weight of genomics in the management of NSCLC have contributed to
hinder its use within the clinical practice.

Future clinical development of targeted therapies relies on the integration of all the
accumulated knowledge on NSCLC biology. The definition and characterization of molecu-
larly homogeneous NSCLC subtypes is bound to result in the design of effective therapeutic
strategies. To this end, it is crucial to move away from characterizing tumors just on the
basis of single biomarkers, which are so far unable to fully predict the complexity of the
disease and drug response. In this way, we should evolve towards the integration of differ-
ent technologies that allow us to take into account clonal heterogeneity, the development
of resistance mechanisms, and interactions with the tumor microenvironment. In this
context, transcriptome profiling has been demonstrated to be a powerful tool for patient
stratification and drug selection, especially in the context of acquired drug resistance and
patients with advanced NSCLC lacking actionable drivers. The relevance of transcrip-
tional profiling will likely increase with the progress of immune therapy and the need
for predictive markers. Moreover, the recognition of signaling pathways altered upon
tumor progression through gene expression profiling has conferred new opportunities
for drug development and has increased the number of patients that can be matched to a
treatment. In addition, the identification of associations between the altered pathways and
the presence of specific mutational patterns responsible for acquired resistance and tumor
progression might unravel new therapeutic targets. In this context, there have recently
been important developments in the field of transcriptomics in order to increase resolution
and specificity. For instance, single-cell RNA-Seq allows the determination of the gene
expression profiles of individual cells. In this way, it provides information about tumor
heterogeneity and cellular interactions. Moreover, it also provides insights into which
cells might be responsible for resistance development and through which transcriptional
processes, exposing new targets for drug development.

Nevertheless, the implementation of whole-transcriptome interrogation techniques
into NSCLC management frameworks will mainly depend on prospective validation
studies of the identified signatures to assess whether they are able to improve treatment
decisions and recapitulate the heterogeneity of the disease beyond currently available
strategies.
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