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Clinical diagnosis of metabolic 
disorders using untargeted 
metabolomic profiling 
and disease‑specific networks 
learned from profiling data
Lillian R. Thistlethwaite1,2,8, Xiqi Li2,8, Lindsay C. Burrage2,5, Kevin Riehle2, Joseph G. Hacia3, 
Nancy Braverman4, Michael F. Wangler2,5,6, Marcus J. Miller7, Sarah H. Elsea2 & 
Aleksandar Milosavljevic1,2*

Untargeted metabolomics is a global molecular profiling technology that can be used to screen 
for inborn errors of metabolism (IEMs). Metabolite perturbations are evaluated based on current 
knowledge of specific metabolic pathway deficiencies, a manual diagnostic process that is qualitative, 
has limited scalability, and is not equipped to learn from accumulating clinical data. Our purpose was 
to improve upon manual diagnosis of IEMs in the clinic by developing novel computational methods 
for analyzing untargeted metabolomics data. We employed CTD, an automated computational 
diagnostic method that “connects the dots” between metabolite perturbations observed in individual 
metabolomics profiling data and modules identified in disease specific metabolite co‑perturbation 
networks learned from prior profiling data. We also extended CTD to calculate distances between 
any two individuals (CTDncd) and between an individual and a disease state (CTDdm), to provide 
additional network‑quantified predictors for use in diagnosis. We show that across 539 plasma 
samples, CTD‑based network‑quantified measures can reproduce accurate diagnosis of 16 different 
IEMs, including adenylosuccinase deficiency, argininemia, argininosuccinic aciduria, aromatic 
l‑amino acid decarboxylase deficiency, cerebral creatine deficiency syndrome type 2, citrullinemia, 
cobalamin biosynthesis defect, GABA‑transaminase deficiency, glutaric acidemia type 1, maple syrup 
urine disease, methylmalonic aciduria, ornithine transcarbamylase deficiency, phenylketonuria, 
propionic acidemia, rhizomelic chondrodysplasia punctata, and the Zellweger spectrum disorders. Our 
approach can be used to supplement information from biochemical pathways and has the potential 
to significantly enhance the interpretation of variants of uncertain significance uncovered by exome 
sequencing. CTD, CTDdm, and CTDncd can serve as an essential toolset for biological interpretation 
of untargeted metabolomics data that overcomes limitations associated with manual diagnosis to 
assist diagnosticians in clinical decision‑making. By automating and quantifying the interpretation 
of perturbation patterns, CTD can improve the speed and confidence by which clinical laboratory 
directors make diagnostic and treatment decisions, while automatically improving performance with 
new case data.
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While the adoption of exome sequencing in the clinic brought major improvements in diagnostic accuracy 
and speed, it has also brought with it the challenge of interpreting numerous variants of uncertain significance 
(VUSs). A wide variety of diagnostic approaches have been developed to connect observed genomic alterations 
with observed clinical phenotypes. For example, initiatives such as the Matchmaker  Exchange1 use clinical 
descriptions and semantic similarity metrics to calculate similarity between  individuals2. A “match” between 
individuals with highly conspicuous clinical phenotypes can significantly improve the power to find causative 
genetic variants in cases of Mendelian disease. Unfortunately, many clinical phenotypes observed in individuals 
with inborn errors of metabolism (IEMs) are non-specific (e.g., seizures, intellectual disability, diarrhea, vomit-
ing, and poor feeding), making diagnosis based solely on clinical descriptions difficult.

In contrast to clinical phenotypes, metabolic defects observed in many IEMs cause highly distinct metabolite 
perturbation patterns in plasma, represented by abnormal accumulation or depletion of essential metabolites 
stemming from an affected protein that has enzymatic, carrier, receptor, or structural roles in cellular metabo-
lism. As a result, metabolomics can help bridge existing knowledge gaps between causal genetic variation and 
observed clinical phenotypes.

Functional evidence from patient-derived “omic” data (e.g., the transcriptome, proteome, and metabolome) 
is recognized as one of the key factors in resolving VUSs. The widely adopted American College of Medical 
Genetics and the Association for Molecular Pathology (ACMG/AMP)  Guidelines3 define evidence category 
PS3, which provides means for formally incorporating functional evidence from “well-established” functional 
 studies3. Untargeted clinical testing  metabolomics4 is a functional diagnostic test which has allowed for the suc-
cessful diagnosis of many cases of metabolic disorders that would be hard to diagnose using clinical phenotype 
descriptions and targeted tests  alone5–10. Nevertheless, wide application of this source of evidence requires a 
quantitative, transparent, and computationally efficient method for detecting and comparing disease-specific 
multi-metabolite perturbations. Various automated tools for predicting the pathogenicity of genetic variants 
have been developed (e.g., SIFT, PolyPhen2, CADD, DANN)11–14, but none incorporate metabolomic profiling, 
nor other types of precise molecular phenotyping information.

Many computational  methods15–18 have been developed for the analysis of clinical research metabolomics 
data. Unlike clinical research metabolomics, which follows a case–control observational study design and relies 
on population-based statistical power, clinical metabolomics testing facilitates the interpretation of an individual 
(N-of-1) case in relation to a reference population of healthy  controls4,19. Other than the manual inspection of 
untargeted metabolomics data currently used to diagnose individual cases, few alternative methods are suitable 
for interpreting multi-metabolite perturbations observed in N-of-1 cases, and of these available alternatives, 
many rely on knowledge-driven modelling (e.g., pathway maps and biomarker lists)  approaches20.

The CTD  method21 is a novel information-theoretic method that assigns statistical significance to sets of 
metabolites based on their connectedness in disease-specific metabolite “co-perturbation” networks derived from 
accumulating patient data. A network contains metabolite nodes, and the weighted edges connect metabolites 
that are co-perturbed in a specific disease. Gaussian graphical models are used to compute edge weights, which 
indicate the strength of positive or negative partial correlation between metabolites. Given a disease-specific 
network and a set of metabolites that are perturbed in a given individual, CTD identifies a subset of perturbed 
metabolites that are highly connected within the network. The CTD method uses an efficient algorithm that 
can handle highly dense (“hairball”) networks and outputs small p values for highly connected metabolite sets 
and large p values for sparsely connected metabolites sets. Unlike any other method of similar complexity, CTD 
does not require computationally costly permutation testing to establish p values of combinatorial patterns of 
multi-metabolite perturbations and can thus be used to interpret untargeted metabolomic profiles of individual 
patients in an efficient and rigorous way.

To interpret perturbations observed in N-of-1 metabolomics profiles without relying just on prior biochemical 
pathway knowledge, we applied the CTD  method21 to existing and newly acquired datasets and introduce the 
CTDdm and CTDncd distance methods, both extensions of CTD, to serve as additional predictors for diagnosis. 
We assessed if CTD-based network-quantified measures could reproduce accurate diagnosis of IEMs and whether 
these measures hold long-term value to supplement existing information from biochemical pathways in order 
to assist in interpreting VUSs. We provide evidence that CTD-based metrics can indeed expedite the analysis of 
complex metabolomic datasets and increase the sensitivity of clinical diagnostic pipelines for clinical purposes 
that include identifying precision treatments for individuals with IEMs.

Methods
Data collection. Data used represent a meta-analysis of untargeted metabolomics plasma samples collected 
from previously reported  studies5–10,22,23, as well as previously unreported samples (Table 1, Fig. 1). All study pro-
cedures were approved by the Institutional Review Board (IRB) of the Baylor College of Medicine and complied 
with all relevant guidelines and regulations. For some of the studies, informed consent was obtained and for 
others, it was waived by the Baylor College of Medicine’s IRB-approved waiver of informed consent. All sample 
data were de-identified. While all sample data were processed  similarly24, some data differ in sample source (e.g., 
heparin vs. EDTA plasma) and platform specifications (e.g., mass analyzer) (Table 1). Sample data were gener-
ated by Baylor Genetics in collaboration with Metabolon, Inc. (Morrisville, NC) on referred clinical or research 
samples. Twenty-one research samples were collected at RhizoKids International family conference for people 
affected by rhizomelic chondrodysplasia  punctata25 (RhizoKids International, rhizokids.com). A total of 539 
profiled plasma samples were included in this study, including 414 samples from existing studies and 125 previ-
ously unpublished samples (see Table 1). Across all 539 samples, there was a range of 376–684 named, z-scored 
compounds and a range of 0–261 unnamed (“unknown”), z-scored compounds included for each sample. Com-
pounds rarely present in normal reference blood samples cannot be z-scored. However, argininosuccinate only 
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Table 1.  Description of data and data sources. For each disease cohort, the number of samples and the 
publication source of the data are described. Individuals in the Unknown  cohort22, a cohort whose clinical 
diagnoses from which we were blinded, may also have diagnoses associated with any of the disease cohorts 
listed. When samples in the Unknown cohort were identical to samples associated with a known clinical 
diagnosis, Alaimo et al.22 is also referenced. For samples from Miller et al.5, genetic sequencing data was not 
available and thus, only biochemical diagnoses were made. As a result, when more than one gene is responsible 
for a given diagnosis, all known genes associated with the given diagnosis are listed in the Related Genes 
column. GC–MS gas chromatography–mass spectrometry, LC–MS liquid chromatography–mass spectrometry, 
MSn multi-stage mass spectrometry.

Disease (OMIM) Disease gene Related genes Plasma profiles Platform
Whole blood anti-
coagulant

Used to learn 
network References

Adenylosuccinase defi-
ciency (MIM:103050) ADSL 3 GC–MS, LC–MS+,−, 

 MSn EDTA YES Donti et al.8

Argininemia 
(MIM:207800) ARG1

13 GC–MS, LC–
MS+,−,polar,lipid,  MSn EDTA YES Burrage et al.7

4 GC–MS, LC–
MS+,−,polar,lipid,  MSn Heparin NO Miller et al.5

Argininosuccinic aci-
duria (MIM:207900) ASL

11 GC–MS, LC–
MS+,−,polar,lipid,  MSn EDTA YES Burrage et al.7

2 GC–MS, LC–MS+,−, 
 MSn Heparin NO Miller et al.5

Aromatic l-amino 
acid decarboxy-
lase deficiency 
(MIM:608643)

DDC 3 GC–MS, LC–MS+,−, 
 MSn EDTA YES Atwal et al.9, Pappan 

et al.23, Alaimo et al.22

Cerebral creatine 
deficiency syndrome 2 
(MIM:612736)

GAMT 8 GC–MS, LC–MS+,−, 
 MSn Heparin YES Miller et al.5

Citrullinemia 
(MIM:215700) ASS1 SLC25A13 9 GC–MS, LC–MS+,−, 

 MSn Heparin YES Miller et al.5, Burrage 
et al.7

Cobalamin bio-
synthesis defect 
(MIM:277400, 277410, 
236270, 277380, 
250940, 614857, 
309541)

MMACHC, 
MMADHC, MTRR, 
LMBRD1, MTR, 
ABCD4, HCFC1

6 GC–MS, LC–MS+,−, 
 MSn Heparin YES Miller et al.5

GABA-transam-
inase deficiency 
(MIM:613163)

ABAT 7 GC–MS, LC–
MS+,−,polar,lipid,  MSn EDTA YES Kennedy et al.10, 

Alaimo et al.21

Glutaric acidemia 1 
(MIM:231670) GCDH ETFA, ETFB, ETFDH, 

C7ORF10 5 GC–MS, LC–MS+,−, 
 MSn Heparin YES Miller et al.5

Maple syrup urine dis-
ease (MIM:248600)

BCKDHA, BCKDHB, 
DBT 18 GC–MS, LC–MS+,−, 

 MSn Heparin YES Miller et al.5

Methylmalonic aci-
duria (MIM:251100, 
251000)

MMAA, MMAB, 
MUT, MMADHC, 
MCEE

9 GC–MS, LC–MS+,−, 
 MSn Heparin YES Miller et al.5

Ornithine transcar-
bamylase deficiency 
(MIM:311250)

OTC
17 GC–MS, LC–MS+,−, 

 MSn EDTA YES Burrage et al.7

17 GC–MS, LC–MS+,−, 
 MSn Heparin NO Miller et al.5

Phenylketonuria 
(MIM:261600) PAH 8 GC–MS, LC–MS+,−, 

 MSn Heparin YES Miller et al.5

Propionic acidemia 
(MIM:606054) PCCA, PCCB 9 GC–MS, LC–MS+,−, 

 MSn Heparin YES Miller et al.5

Rhizomelic chondro-
dysplasia punctata 
(MIM:215100)

PEX7 GNPAT, AGPS, FAR1, 
PEX5 21 GC–MS, LC–

MS+,−,polar,lipid,  MSn EDTA YES This study

Zellweger spec-
trum disorder 
(MIM:214100, 601539)

PEX1

PEX2, PEX3, PEX5, 
PEX6, PEX10, 
PEX11B, PEX12, 
PEX13, PEX14, 
PEX16, PEX19, 
PEX26, HSD17B4

18 LC–MS+,−,polar,lipid,  MSn EDTA YES Wangler et al.6, 
Alaimo et al.21

Unknown Unknown 185 GC–MS, LC–
MS+,−,polar,lipid,  MSn EDTA NO Alaimo et al.22

Reference N/A
104 GC–MS, LC–

MS+,−,polar,lipid,  MSn EDTA YES This study

68 GC–MS, LC–MS+,−, 
 MSn Heparin YES Miller et al.5
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presents in diseased samples and may serves as a strong predictor for disease and was thus encoded as a binary 
predictor (“1” for the presence or “0” for the absence). Unknown metabolites were excluded from the analysis in 
this work because the clinical utility of these compounds for diagnosis is limited.

Inference of disease‑specific networks. Metabolites with z-scores in > 50% reference samples and > 50% 
disease samples were used for network learning. Missing z-scores were imputed using the minimum z-score of 
the analyte in a large reference population. In order to model the differences in perturbation signatures between 
disease cases and controls, two types of Gaussian graphical network models were then learned from the data: 
one from both disease and control samples (disease + control network), and a second from only control samples 
(control network)21. We used the Graphical Lasso algorithm implemented in the R package huge (v1.3.5) to 
estimate the precision matrix, where regularization parameter lambda is selected using criteria “stars”. For both 
graphs, edge weights are the estimated partial correlation between any two metabolites after conditioning on all 
other variables in the datasets. Next, edges found in the disease + control network that were also found in the 
control network were  pruned21. This pruned, “disease-specific” network represents probability of any pairs of 
metabolites being co-perturbed together at the state of the disease and was used in downstream analysis (Fig. 1). 
Including both examples of disease and control profiles in the training data (“discriminative latent structure 
inference”) introduces a hidden variable representing the disease state associated with each sample, allowing 
the network to model the specific metabolomic differences between two conditions (disease vs. control). Dis-
ease-specific network models from five IEMs in Thistlethwaite et al.21 were included, as well as novel network 
models learned on 11 additional IEMs, totaling 16 IEM disease states (Table S2). All network structures used in 
this paper are accessible through the CTDext R package accessible via GitHub (https:// github. com/ BRL- BCM/ 
CTDext), an extension of the CTD CRAN R package that also includes added functionalities and filesharing 

Figure 1.  Overview of CTD-based data-driven diagnostic approach.

https://github.com/BRL-BCM/CTDext
https://github.com/BRL-BCM/CTDext
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necessary to reproduce our results. Graphical model metrics including node count, edge count and graph den-
sity for all network structures are documented in Table S2.

The CTD method. The CTD method was described  previously21. Briefly, the method takes a weighted, dis-
ease-specific “co-perturbation” network and a set of network nodes as inputs and identifies a subset of the input 
nodes that is highly connected within the network (Fig. 2A,B). The method also provides a p value correspond-
ing to the level of connectedness of the input node subset within the network.

The CTDncd distance: a network‑based patient‑patient distance method. In the context of a 
network, two individuals’ sets of metabolite perturbations can be compared by calculating the distance between 
them. If two metabolite sets hit the same nodes or modules in the context of a network, they may be considered 
related; however, if two metabolite sets share no overlapping nodes, nor do they hit proximal parts of a network, 
they may be considered unrelated (Fig. 2C). To calculate the distance between two node subsets in a network, we 
use the Normalized Compression Distance (NCD)  metric26 which is based on normalized mutual information 
(Eq. 1).

The CTDdm distance: a network‑based patient‑disease distance method, a variation on CTD‑
ncd. CTDdm also uses Eq. (1) to calculate the distance between a set of metabolites perturbed in an indi-
vidual and the metabolite set perturbed in individuals with a specific disease (Fig. 1). This set, referred to as the 
“main disease module”, is calculated by Algorithm 1 in Supplemental Text 1. Information provided by CTDdm 
was shown to reduce false positive rate and improve overall diagnostic accuracy when combined with the CTD 
method (Table S1). CTD + CTDdm metrics were therefore used for scoring sample profiles.

Analysis of exome sequencing data. The collection and processing of clinical exome sequencing data 
from 170 individuals is detailed in Alaimo et al.22. Briefly, data were acquired using protocols adapted for clinical 
testing, described  previously27. Variants were called using  AtlasSNP228 (v. 1.4.3). Variants in intronic or inter-
genic regions were filtered out, as well as variants found in ESP5400 or 1000  Genomes29 at frequencies greater 
than 0.05. The pathogenicity of each genetic variant was assessed according to the ACMG/AMP  guidelines3,30. 

(1)CTDncd(S1, S2) =
max(I(S1, S2)− I(S1), I(S1, S2)− I(S2))

max(I(S1), I(S2))

Figure 2.  CTDncd and CTDdm extend CTD to quantify distances between two sets of nodes in a network. 
(A) CTD outputs highly connected subsets of a node set (given as an input) in a graph (also given as an input). 
(B) CTD assigns higher significance to highly connected node sets compared to sparsely connected node sets. 
(C) Node sets found in identical or neighboring regions in a graph are assigned shorter distances compared to 
node sets found in distal regions of a graph. CTDncd calculates distances between two individuals, where node 
sets being compared are based on observed metabolite perturbations in two individuals’ metabolomics profiles. 
CTDdm calculates distances between an individual and a disease state, where node sets being compared are 
the main disease module in a graph (see Algorithm 1 in Supplemental Text 1) and the observed metabolite 
perturbations in a single individual’s metabolomic profile.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6556  | https://doi.org/10.1038/s41598-022-10415-5

www.nature.com/scientificreports/

For each disease gene associated with any of the 15 IEMs (X-linked OTC deficiency excluded) modeled in 
this paper, we assigned each individual to one of 5 classes (Table 2) based on the assumption of an autosomal 
recessive inheritance pattern, the ACMG/AMP pathogenicity category, and observed zygosity of the variants in 
individuals’ exomes.

The metabolomics data portal: a diagnostics tool for untargeted metabolomics data. To pro-
vide access to the data and to provide a prototype tool to aid in the clinical diagnostic process, we developed an 
R shiny application. This application visualizes individuals’ metabolomics data and implements the network-
assisted diagnostic functionalities featured in this paper. A walkthrough of the features this application offers 
can be found in Supplemental Text 1. The full application can be accessed at https:// genbo ree. org/ genbo reeKB/ 
proje cts/ metab olomi cs- data- portal.

Results
Data‑driven network models show higher accuracy relative to rule‑based biomarker models 
and eliminate the requirement for a priori biomarkers. Prior knowledge, including lists of metabo-
lite biomarkers, have previously been integrated into rule-based models for diagnosis in  metabolomics20. Net-
work-based modeling is less biased toward specific lists of biomarkers and models the co-variation between 
metabolites and is thus more suitable in the discovery and complex diagnostics contexts. We explored the possi-
bility that network-based approaches may also show added accuracy associated with incorporating information 
from full untargeted metabolomics profiles compared to information based solely from known biomarkers of 
metabolic disease states.

Haijes et al.20 reported models that rank diseases for each individual based on lists of known biomarkers for 
each IEM. The correct diagnosis ranked first in 37% of 115 validation plasma samples. In 72% of cases, the correct 
diagnosis could be found within a short “differential diagnosis” (DD) list of candidate diagnoses, returned by 
the rule-based algorithm. To compare this rule-based method to CTD, we assigned a DD to an individual based 
on whether combined network-quantified scores (CTD + CTDdm) match at a Bonferroni-corrected combined 
network p value < 0.05 in the corresponding disease-specific network model.

As shown in Table 3, CTD + CTDdm ranked the correct diagnosis (from 16 modeled IEMs) first in 70% 
of 154 samples. Moreover, 89% of samples had the correct diagnosis in their DD short list. When we omitted 
individuals with OTC deficiency (MIM:311250)—where 13 out of 17 were female—from consideration due to 
diagnostic difficulties associated with the possibility of skewed X-inactivation in females with this  diagnosis31,32, 
CTD + CTDdm ranked the correct diagnosis first in 79% of the remaining 137 samples with known diagnoses 
across the remaining 15 modeled IEMs (Table 3), and 94% of samples had the correct diagnosis in their DD short 
list. Prediction performance (sensitivity, specificity, accuracy) of all individual disease-specific models measured 
by CTD + CTDdm ranks is shown in Table S3. All disease rankings for each individual can be viewed using the 
Metabolomics Data Portal (see “Methods”), in the Network-assisted Diagnostics tab (Figure S2b).

Table 2.  Categorization of individuals based on classification of genetic variants identified in personal genome 
data. For each gene known to cause a given IEM, variants identified in a personal genome were assigned 
a pathogenicity category based on the application of the ACMG/AMP guidelines. Secondly, the observed 
zygosity (e.g., heterozygous, hemizygous or homozygous) of the variants identified in an individual’s exome 
was considered alongside the expected Mendelian mode of inheritance for the disease gene (i.e., autosomal 
recessive).

Class Interpretation Variants identified

1 Disease case At least 2 known heterozygous pathogenic or 1 homozygous pathogenic

2 At least a carrier 1 known heterozygous pathogenic and at least 1 heterozygous VUS

3 Uncertain At least 1 homozygous VUS or at least 2 heterozygous VUSs

4 Potential carrier Exactly 1 heterozygous VUS

5 Control All benign

Table 3.  Accuracy of diagnostic rankings across 188 plasma samples with known disease. A differential 
diagnosis list (DD) is a ranked list of potential “candidate” diagnoses for each individual. Diagnoses were 
added to the DD if individual sample data meet a given threshold defined by each diagnostic method. 
Rankings were determined and compared for both a rule-based method described in Haijes et al.20 and for our 
combined network (CTD + CTDdm) approach. IEMs inborn errors of metabolism, DD differential diagnosis 
list.

Diagnostic method # IEM Length DD (median, 5th-, 95th-percentile) % Top 1 % Top 3 % in DD

Haijes et al.20 58 10 [3–22] (out of 58) 0.37 0.57 0.72

CTD + CTDdm 16 3 [1–8] (out of 16) 0.70 0.87 0.89

CTD + CTDdm 15 3 [1–7] (out of 15) 0.79 0.94 0.94

https://genboree.org/genboreeKB/projects/metabolomics-data-portal
https://genboree.org/genboreeKB/projects/metabolomics-data-portal
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To determine whether the increased sensitivity comes at the cost of lower specificity, we also examined the 
median size of the DD short lists for 172 reference samples. Given that reference samples represent individuals 
without disease, a maximally specific method would assign 0 DDs to each of these individuals. In Haijes et al.20, 
reference samples identified a median of 3 out of 58 DDs. In our network-based approach, we found the median 
size to be 1 out of 16 DDs, verifying that our approach shows comparable specificity.

Network approaches may be used for diagnosis in place of pathway‑based approaches. While 
multi-metabolite perturbations are often interpreted in the context of well-curated pathway knowledge, such 
knowledge is not always available, does not include all measurable metabolites, and is not disease-specific. We 
therefore asked if data-driven network models may be used in lieu of pathway-based models. The possibility of 
using data-driven networks is particularly relevant for metabolic diseases whose affected pathways are not fully 
characterized, such as various peroxisomal, mitochondrial, and seizure disorders.

Toward this purpose, we defined a pathway-based diagnostic model to be one that considers only metabolites 
that are a priori known to be involved in a disease-relevant pathway, without information provided by the remain-
ing untargeted metabolomics profile. In contrast, network-based diagnostic models and full-profile models were 
defined to be ones that considers all frequently detected metabolites in untargeted metabolomics profiles, without 
a priori information about which metabolites are most relevant for diagnosis. The former utilizes CTD-based 
metrics, whereas the latter includes all frequently detected metabolites as predictors.

To compare the approaches directly, we used untargeted metabolomics profiling data from individuals diag-
nosed with any of four genetically distinct urea cycle  disorders7, where the disease mechanism is well-character-
ized by defects in enzymes and perturbations of metabolites in the urea cycle pathway (Fig. 3), as well as negative 
control (“reference”) profiles. We compared the performance of partial least squares regression models: two 
modeled the relative abundances of metabolites in the urea cycle; third modeled CTD- and CTDdm-quantified 
scores; fourth modeled all frequently detected metabolites in the untargeted metabolomics profiles. We note that 
argininosuccinate is rarely identified by our platforms due to its low concentration in normal plasma samples. As 
a consequence of its rare presentation in normal “reference” blood samples, z-scores for argininosuccinate levels 
cannot be generated when identified in an individual sample and thus, cannot be used as a quantitative predictor. 
Instead, we encoded argininosuccinate as a binary predictor (“1” for the presence or “0” for the absence of the 
metabolite). We, therefore, defined the “ASA-Arg-Orn-Cit” model to include quantitative variables, arginine, 
ornithine, and citrulline, and one binary variable, argininosuccinate. To further evaluate diagnostic accuracy, 
we defined the full “Pathway” model to include all metabolites found in both the urea cycle and the periphery 
of the urea cycle, as illustrated in Fig. 3.

Figure 3.  Data-derived networks are competitive with metabolic pathways as background knowledge network 
representations. For all models, (A) argininosuccinic aciduria, (B) argininemia, (C) ornithine transcarbamylase 
deficiency and (D) citrullinemia, the mean profile for each urea cycle disorder cohort is overlaid onto the urea 
cycle pathway. Red denotes a positive and blue denotes a negative perturbation, where the radius of the circle is 
modulated to reflect the magnitude of the perturbation. Below each urea cycle pathway, receiver-operator curves 
(ROC) between the two pathway-based models “ASA-Arg-Orn-Cit”, “Pathway” and the full-profile model are 
compared to the “Network” model.
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As shown in Fig. 3, both network- and pathway-based models improve diagnostic power relative to the full-
profile model. CTD performed competitively with pathway-based models of four major urea cycle disorders: 
argininosuccinic aciduria (MIM:207900), argininemia (MIM:207800), ornithine transcarbamylase (OTC) defi-
ciency (MIM:311250), and citrullinemia (MIM:215700). In the case of argininosuccinic aciduria and particularly 
for OTC deficiency, the network-based model outperformed the ASA-Arg-Cit-Orn model and was competitive 
with the full Pathway model. Interestingly, model accuracies for OTC deficiency suffered from poorer dis-
crimination compared to argininosuccinic aciduria, argininemia, and citrullinemia. This is partially due to the 
known phenotypic heterogeneity of effects associated with X-inactivation patterns observed in females with 
OTC  deficiency31,32.

Overall, this result suggests network-based and pathway-based modeling approaches have comparable accu-
racies. Thus, when biochemical pathway knowledge for a particular disease state is not available, data-driven 
network-based models may provide a valuable alternative.

Separating treatment‑related effects from disease‑related effects in metabolomics 
data. While the heterogeneity of effects associated with X-inactivation in OTC deficiency can explain why 
diagnostic accuracy of OTC deficiency was lower than many other IEMs, it is also likely that treatment-related 
effects may be confounding the raw metabolomics data and as a result, be affecting the ability of both path-
way (knowledge-driven) and network-based (data-driven) models from performing well in diagnosis. To test 
for treatment confounding and whether it could be removed or ameliorated, we examined all OTC deficiency 
samples from Burrage et al.7 where treatment information is available. We found that 8/10 patients with OTC 
deficiency were taking citrulline supplements as part of a prescribed treatment regimen. To identify treatment-
driven signatures that differentiated from disease-driven signatures, we constructed a citrulline supplement-spe-
cific network by contrasting eight OTC deficiency patients taking supplemental citrulline against the remaining 
20 urea cycle disorder patients. A second network was learned from OTC deficiency patients not undergoing cit-
rulline supplementation and edges found in both networks were pruned from the first network. Similar to “main 
disease module” identification (Algorithm 1), we determined the representative “main treatment module” for 
citrulline supplementation. When we compared the main disease module identified in the OTC disease-specific 
network to the main treatment module identified in the citrulline supplement-specific network, we found two 
out of four treatment-related compounds (e.g., carnitine and pyruvate) in the original OTC deficiency main 
disease module (Fig. 4A).

We then asked if treatment-related signatures contributed to false positives in patients with these diseases. 
Notably, the citrulline supplement-related treatment module was also found to overlap perturbations in other 
disease states such as cobalamin biosynthesis defect (carnitine, betaine) and argininosuccinate lyase deficiency 
(phenylalanine and pyruvate). As a consequence, we expected diagnostic accuracy to improve by omitting 
these treatment-related metabolites from the disease-specific OTC network folds. One case, for instance, is 
argininosuccinate lyase deficiency patient “EDTA-ASLD-7”, where OTC deficiency was falsely ranked first by 
CTD + CTDdm (combined, p = 0.00568), while the correct diagnosis fell out of the top three rankings (combined, 
p = 0.0385). With the updated network model, significance of OTC deficiency dropped to the 5th in the list of 
diagnoses (combined, p = 0.0716), and the correct diagnosis ascended to within top three. Additionally, removal 
of treatment signal also unflagged a cobalamin biosynthesis defect patient “EDTA-COB-6”, as the significance 
of OTC deficiency dropped an order of magnitude (combined, p = 0.00335). Removal of treatment-related com-
pounds also increased model AUC, specificity, and overall accuracy (Fig. 4B).

This result suggests that pruning treatment-related nodes can improve the diagnosis of patients with other dis-
eases where compounds to be removed are affected by the disease state. Nevertheless, the pruning of treatment-
related nodes should be performed with caution, as treatment-related signatures that are particularly specific to a 

Figure 4.  Impact of citrulline supplement on disease-specific network modeling ornithine transcarbamylase 
(OTC) deficiency. (A) Treatment module overlaps with main disease module for OTC deficiency and are well-
connected. (B) Prediction performance of OTC deficiency model before and after removal of treatment module.
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given diagnostic category can also improve diagnostic performance. Ideally, we would only collect metabolomic 
data prior to administering treatment, in order to train disease-specific network models for diagnostic purposes. 
However, many individuals that undergo untargeted metabolomic screening are already on a treatment regimen 
in order to manage their symptoms, and as a result, the confounding due to treatment is common. While we have 
shown that censoring treatment-related metabolites from our diagnostic OTC network models helped diagnostic 
accuracy, this represents only a first pass attempt to separate treatment effects from disease effects. Future research 
may be needed to explore new strategies that would improve diagnostic accuracy by removing treatment effects.

Dissecting the genetic etiology of peroxisome biogenesis disorders using untargeted metabo‑
lomics with network models. Peroxisome biogenesis disorders (PBDs) are autosomal recessive disorders 
that result from the impaired assembly and biological functioning of  peroxisomes33. They are composed of two 
known major classes: Zellweger spectrum disorders (ZSD, MIM:214100,601539) and rhizomelic chondrodys-
plasia punctata (RCDP, MIM:215100). As a whole, PBDs are complex since they are caused by deficiency of 
any single gene in a group of related genes and their severity is strongly influenced by the residual activity 
of downstream gene products. Furthermore, PBDs affect the functions of numerous organ systems, and their 
pathological mechanisms of disease are only partially understood. We therefore asked whether a data-driven 
network-based approach may help dissect their etiology and help provide diagnostic information.

Untargeted metabolomic profiling from Wangler et al.6 describe 18 individuals with ZSD originating from 
deleterious variants in PEX1 (MIM:602136). We collected an additional 21 samples from individuals diagnosed 
with a RCDP type 1 disorder with confirmed deleterious variants in PEX7 (MIM:601757). For all 39 samples, 
pairwise patient-patient distance calculations using CTDncd were estimated and plotted in lower dimensional 
space (Fig. 5). As shown, the distances accurately cluster individuals with ZSD separately from individuals with 
RCDP and from known reference samples. Interestingly, examination of the ZSD cluster highlighted less pro-
nounced abnormalities in plasma metabolite levels in older individuals ( ≥ 10 years) with a smaller centroid–cen-
troid distance to the reference cluster (d = 0.625) than that of younger patients (< 10 years of age) (d = 0.949), 
in agreement with Wangler et al.6. Overall, k-means clustering generated a cluster purity score of 0.888, which 
indicates low false positive and false negative clustering results. These results suggest that CTDncd can accurately 
distinguish between groups of individuals with ZSD and RCDP, the two major subtypes of PBDs.

Evidence from the metabolome can help interpret variants of uncertain significance. Methods 
for using untargeted metabolomics data to resolve the pathogenicity of VUSs are currently manual, qualita-
tive, and can be very laborious. We therefore asked if disease-specific networks and CTD-based metrics may 
help automate the interpretation of untargeted metabolomics profiling data to improve variant assessment. We 
recently reported that manual evaluation of untargeted metabolomics data aided in the diagnosis in the context 

Figure 5.  Zellweger spectrum disorder (ZSD), rhizomelic chondrodysplasia punctata (RCDP) and reference 
(REF) individuals cluster by disease using CTDncd. (A) Dots represent individual samples in a lower 
dimensional 2-D space using multi-dimensional scaling. Individuals are colored by their diagnostic state (e.g., 
ZSD samples in pink and blue, RCDP samples in green, and reference samples in orange). Within the ZSD 
cluster, age-related effects can be identified whereby the older individuals with the disease ( ≥ 10 years old) 
generally show less pronounced abnormalities in metabolite levels, in agreement with Wangler et al.6, while 
younger patients (< 10 years of age) showed greater heterogeneity in this regard. (B,C) Main disease modules for 
ZSD and RCDP, respectively.
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of exome sequencing for several  IEMs22. In our current analysis, we interpreted the same exome sequencing 
and respective metabolomics data in two stages. First, as in Alaimo et al.22, genetic variants identified in patient 
exome data were classified according to the ACMG/AMP guidelines. Individuals with variants found in at least 
one disease gene relevant to any of the 15 IEMs (X-linked OTC excluded) modeled in our analysis were catego-
rized into the one of 5 groups (Table 2) based on the observed variants’ pathogenicity and zygosity. Second, select 
patient metabolomics data were then analyzed using CTD and CTDdm in the context of relevant IEM-specific 
networks.

For all individuals with variants categorized into groups 1–3 (Table 2) in disease-relevant genes for a given 
disease state (Table 1), individuals with a combined CTD + CTDdm disease-specific network p value < 0.05 were 
reported as a HIT, and the pathogenicity of the respective variants was re-interpreted towards a more pathogenic 
classification. Furthermore, individuals with combined network p values between 0.05 and 0.15 were reported 
as a BORDERLINE HIT. Of all 29 variant confirmations or re-interpretations reported by Alaimo et al.22, 10 
had variants in disease genes relevant to the 15 IEMs (X-linked OTC excluded) modeled in this paper. Of all 10 
individuals, 9/10 were classified as HIT and 1/10 was a BORDERLINE HIT (Table 4). These results suggest that 
the interpretation of untargeted metabolomic profiling data to improve variant assessment can be automated 
using CTD-based metrics.

Of further relevance are the patterns detected by CTD + CTDdm that connect individuals to disease states 
and that escaped manual inspection in Alaimo et al.22 (Table 4). Patient 10 was a 21-year-old female who had a 
likely pathogenic homozygous variant (NM_004813.4:c.993_995del) in PEX16 (MIM:603360). Her metabolomic 
profile showed several metabolite perturbations consistent with a PBD. Out of 16 diagnoses, ZSD ranked 6th and 
RCDP ranked 2nd. CTD detected a module containing a very long-chain fatty acid that was positively perturbed 
(Table 4), a hallmark of ZSD, in the ZSD disease network. Review of clinical reports revealed that Patient 10 had 
an intellectual disability, spasticity, ataxia and structural brain abnormalities, phenotypes consistent with those 
observed in individuals with PEX16 pathogenic variants, as reported  previously34. We then confirmed that this 
individual was the same individual who was diagnosed with a PBD in a recent  publication35, a diagnosis that 
took over 18 years to establish. We previously reported that plasma disease signatures in individuals with a mild 
to intermediate ZSD are more pronounced in younger subjects, suggesting studies earlier in life reveal larger 
biochemical changes for a number of possible  reasons6. CTD’s ability to detect ZSD-relevant disease signatures 
in Patient 10 (21-year-old), however, shows how CTD can assist clinicians in difficult diagnostic situations.

While the CTDdm score put Patient 10’s module moderately far away from the main disease module (63rd 
percentile), the ZSD disease network modeled perturbation patterns in individuals with PEX1 defects from a 
variety of different levels of severity. It is therefore plausible that a mild PEX16 disease signature, while highly 
connected in the PEX1 network, was more distal to several metabolites perturbed in individuals with PEX1-
associated ZSD. To make the ZSD disease network more sensitive to disease signatures observed in each of the 14 
PEX genes that cause ZSD, using profiling data from individuals with biallelic defects in any of several different 
PEX genes would be beneficial for network learning. While this diagnosis was further complicated by reduced 
plasma-derived perturbations with age observed in ZSDs, the fact that the diagnosis was missed by previous 
manual inspection of metabolomic  data22, however, highlights the power of our data-driven network method to 
identify both the modeled (PEX1) and related disease gene’s (PEX16) effect on the metabolome.

Discussion
Several recent publications have called for systems biology solutions to shortcomings observed in current diag-
nostic methods for metabolic  disorders36–38. IEMs provide a useful context for testing novel computational 
approaches such as CTD because the genetic etiology of many IEMs is well-established. In this work, we have 
shown the accuracy of the CTD method using untargeted metabolomics on a variety of IEM data sets. Our results 
pave the way toward the dissection of the genetic etiology and precise diagnosis of more complex, metabolically 
heterogeneous diseases, such as diabetes and metabolic syndrome.

CTD characterizes individuals’ metabolomic likeness to a given disease state based on the connectedness 
of metabolite perturbations in a disease-specific network. Analogous to the background knowledge clinicians 
accumulate about metabolism by combining textbook knowledge of biochemistry and experience in the clinic, 
disease-specific networks are learned directly from representative profiling data and reflect information found in 
well-curated pathway  knowledge39. Network-based similarity metrics have been constructed previously for use in 
disease-disease  similarity40, functional protein  similarity41, and similarity in clinical ontological  terms42. We apply 
similar logic to quantify patient-patient (CTDncd) or patient-disease (CTDdm) distances using metabolomics 
data and use both metrics as additional network-quantified predictors of diagnosis.

CTD makes few assumptions about the nature of disease-associated perturbations and is thus well-suited for 
discovery and diagnosis of hard-to-diagnose cases. For example, CTD does not make any hard assumptions about 
the metabolites involved in a particular disease or the directionality (+ or −) of perturbations. While information 
about the directionality of a metabolite perturbation can be useful for diagnostic discrimination, there are several 
situations where this information can be disadvantageous. For example, related disease states and disease genes 
frequently affect the same molecular components but in different  ways40,43. Just as different variants identified 
in a single gene can lead to different levels of disease severity, modeling the effect that one disease gene has on 
a metabolic phenotype may not accurately predict the metabolic effect of another gene that is involved in the 
same pathway, particularly when it comes to the direction that specific metabolites are perturbed. By considering 
combinatorial patterns without regard to directionality, CTD-based metrics make fewer assumptions and are 
therefore more suitable for data-driven discovery and for resolving hard-to-diagnose cases. If routine discrimina-
tion and not discovery is the main goal, information about the directionality of metabolite perturbations can be 
combined with combinatorial information garnered in CTD-based metrics (see Supplemental Text 1).
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Pt Sex Age Variant AA Zyg OMIM Net. (Rank) CTD CTDdm Comb
Module detected 
(Z-score) ACMG

10 F 21
PEX16, CA250385,
NM_004813.4:
c.993_995del

N/A Hom 614862;
614863

Zellweger spec-
trum disorder 
(6/16)

0.002 0.63 0.009

16-Hydroxypalmi-
tate (2.306)

LP to P

3-Hydroxylaurate 
(2.494)

5-Dodecenoate 
(12:1n7) (2.017)

Alpha-hydroxyis-
ovalerate (1.908)

Docosadioate 
(1.843)

Nonadecanoate 
(19:0) (1.843)

44 M 2

DDC,
CA367529579,
NM_000790.4:
c.286G > A

G96R Het

608643
Aromatic l-amino 
acid decarboxylase 
deficiency (1/16)

2e−16 0.07 5e−16

3-Methoxytyrosine 
(6.081)

VUS to LP

9,10-Dihome 
(2.202)

Adipate (− 3.598)

Deoxycholate  (− 
2.510)

Gamma-Glutamyl-
tyrosine  (− 2.942)

Hydroquinone 
sulfate (2.716)

Indoleacetate 
(2.315)

Kynurenate  (− 
2.517)

Pipecolate (1.716)

DDC,
CA4262432,
NM_000790.4:
c.260C > T

P87L Het

Pyroglutamylleu-
cine (2.659)

VUS to LP

s-Methylcysteine 
(3.599)

Taurochenodeoxy-
cholate  (− 1.810)

Taurocholate  (− 
2.305)

Taurodeoxycholate  
(− 1.981)

Taurolithocholate 
3-sulfate  (− 2.198)

Tryptophan 
betaine  (− 2.279)

Vanillylmandelate 
(vma)  (− 2.708)

48 F 1

PAH,
CA229811,
NM_000277.3:
c.842 + 1G > A

N/A Het

261600 Phenylketonuria 
(1/16) 4e−7 0.02 1e−7

Arachidonate 
(20:4n6)  (− 1.626)

Confirms (P)
Docosahexaenoate 
(dha; 22:6n3)  (− 
1.769)

erucate (22:1n9)  
(− 2.209)

PAH,
CA229775,
NM_000277.3:
c.805A > C

I269L Het

Gamma-gluta-
mylphenylalanine 
(2.328)

VUS to LP

Myristoleate 
(14:1n5)  (− 1.665)

n-Acetylphenylala-
nine (1.801)

Palmitate (16:0)  
(− 2.024)

Palmitoleate 
(16:1n7)  (− 1.696)

Phenylalanine 
(3.452)

Stearate (18:0)  (− 
2.247)

Continued
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Pt Sex Age Variant AA Zyg OMIM Net. (Rank) CTD CTDdm Comb
Module detected 
(Z-score) ACMG

55 M 15
GAMT,
CA295620,
NM_000156.6:
c.79 T > C

Y27H Hom 612736
Cerebral creatine 
deficiency syn-
drome 2 (14/16)

2e−2 0.54 6e−2

2-Hydroxyglutar-
ate (2.500)

VUS to LPCreatine  (− 3.048)

Pyroglutamine 
(2.314)

68a

M 1

ABAT,
CA394688322,
NM_020686.6:
c.454C > T

P152S Het

613163
GABA-transam-
inase deficiency 
(3/16, 1/16)

7e−5 0.04 4e−5

2-Pyrrolidinone 
(6.883)

VUS to LP

4-Guanidinobu-
tanoate (2.110)

4-Methyl-2-oxo-
pentanoate (2.410)

Isoleucine (1.490)

Leucine (1.997)

Lysine (1.552)

68b
ABAT,
CA394691458,
NM_020686.6:
c.1393G > C

G465R Het 5e−6 0.05 4e−6

2-Pyrrolidinone 
(6.157)

VUS to LP

4-Guanidinobu-
tanoate (2.514)

Caprylate (8:0) 
(3.767)

Creatinine  (− 
1.984)

Glucuronide of 
c10h18o2 (2.529)

Maleate (cis-buten-
edioate) (3.475)

n-Acetylmethio-
nine (6.650)

Tauroursodeoxy-
cholate (3.475)

85 M 4

ABAT,
CA394692408,
NM_020686.6:
c.168 + 1G > A

N/A Het

613163
GABA-transam-
inase deficiency 
(1/16)

3e−7 0.01 3e−8

1-Linoleoylglycerol 
(1-monolinolein) 
(1.954)

Confirms (P)
2-Pyrrolidinone 
(2.196)

4-Guanidinobu-
tanoate (3.028)

Cis-4-decenoyl 
carnitine  (− 1.845)

ABAT,
CA394688780,
NM_020686.6:
c.638 T > G

F213C Het

Decanoylcarnitine  
(− 2.552)

VUS to LP

Iminodiacetate 
(ida)  (− 2.599)

Myristoylcarnitine  
(− 2.752)

Sphinganine 
(2.001)

Sphingosine 
(2.561)

Continued
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Pt Sex Age Variant AA Zyg OMIM Net. (Rank) CTD CTDdm Comb
Module detected 
(Z-score) ACMG

92 M 1
PEX6,
CA3811598,
NM_000287.4:
c.611C > G

S204* Hom 614862; 614863
Zellweger spec-
trum disorder 
(2/16)

8.3e−16 0.02 7.9e−16

1-(1-Enyl-
palmitoyl)-
2-linoleoyl-gpe 
(p-16:0/18:2)  
(− 4.237)

Confirms (P)

1-(1-Enyl-
palmitoyl)-
2-oleoyl-gpc 
(p-16:0/18:1)  
(− 3.976)

1-(1-Enyl-
palmitoyl)-
2-palmitoleoyl-gpc 
(p-16:0/16:1)  
(− 3.700)

1-(1-Enyl-
palmitoyl)-
2-palmitoyl-gpc 
(p-16:0/16:0)  
(− 3.912)

1-(1-Enyl-
stearoyl)-2-ara-
chidonoyl-gpe 
(p-18:0/20:4)  
(− 4.272)

1-(1-Enyl-
stearoyl)-2-doco-
sahexaenoyl-gpc 
(p-18:0/22:6)  
(− 4.349)

1-(1-Enyl-
stearoyl)-
2-linoleoyl-gpe 
(p-18:0/18:2)  
(− 6.191)

1-Lignoceroyl-gpc 
(24:0) (6.100)

1-o-Hexadecyl-gpc 
(c16)  (− 5.368)

1-Oleoyl-2-doco-
sahexaenoyl-gpc 
(18:1/22:6)  (− 
4.415)

1-Palmitoleoyl-
2-linoleoyl-gpc 
(16:1/18:2)  (− 
5.012)

1-Palmityl-
2-oleoyl-gpc 
(o-16:0/18:1)  (− 
7.014)

2-Hydroxy-
3-methylvalerate 
(6.160)

Alpha-hydroxyis-
ovalerate (4.571)

Docosadioate 
(4.096)

Hexadecanedioate 
(5.136)

Phenyllactate (pla) 
(4.164)

Pipecolate (5.901)

Sphingomyelin  (− 
4.565)

Sphingomy-
elin (d18:1/17:0, 
d17:1/18:0, 
d19:1/16:0)  (− 
4.108)

Continued
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As is the case with any data-driven modeling approach, the performance of CTD-based metrics is mostly 
determined by the amount and quality of data available. Based on our experience, we recommend a minimum of 
5 disease profiles, a minimum of 25 reference profiles for each disease condition, and the use of surrogate disease 
and negative control  profiles21 to learn stable disease-specific networks (Figure S5). If the samples represent a 
spectrum of disease severity or are the result of defects from more than one gene, we recommend gathering even 
more unique examples of disease prior to network learning.

The paucity of profiles available for rare disorders similarly affects both our network-based and rule-based 
approaches. There are many metabolic disease states including several IEMs where the paucity of cases has pre-
cluded data-driven classification. When a new case of such diseases shows a different metabolic perturbation 
signature that is contrary to existing biomarker-based knowledge, the case is very likely to be falsely omitted from 
the correct diagnosis by rule-based  algorithms20. This problem will only be alleviated with the accumulation of 
more case profiling data. One strength of the network-based strategy is that new data can be incorporated auto-
matically by a structured network learning process. In contrast, for rule-based approaches, knowledge curation 
and optimization can often be laborious.

Network models may also be significantly affected by confounding factors. For example, networks learned 
from samples collected after treatment was initiated will inevitably connect both treatment-related and disease-
related metabolites together. Treatment-related modules, if not pruned properly in the network pruning stage, 
can cause some individuals without the modeled disease to be falsely diagnosed. CTDdm is designed to identify 
false positive calls made by CTD alone (see Supplemental Text 1) but fails when the treatment-related module is 
also well-connected and/or proximal with the disease-related module in the network. Such a circumstance may 

Pt Sex Age Variant AA Zyg OMIM Net. (Rank) CTD CTDdm Comb
Module detected 
(Z-score) ACMG

136 F  < 1
DDC,
CA4262295
NM_001082971.2:
c.714 + 4A > T

N/A Hom 608643
Aromatic l-amino 
acid decarboxylase 
deficiency (1/16)

5.3e−03 0.04 1.8e−03

3-Methoxytyrosine 
(6.059)

Confirms (P)

Cortisol  (− 4.380)

Cortisone  (− 
3.736)

Gamma-glutamyl-
tyrosine  (− 3.164)

Glucose (6.795)

Glucuronate (− 
4.052)

Indoleacetate (− 
5.349)

o-Sulfo-l-tyrosine 
(− 4.879)

Succinate (− 5.165)

Vanillylmandelate 
(vma) (− 3.367)

146 M  < 1

MTR,
CA345379301
NM_000254.3:
c.2405 + 1G > A

N/A Het

250940 Cobalamin biosyn-
thesis defect (4/16) 1.6e−04 0.02 4.0e−05

2-Aminooctanoate 
(− 3.202)
3-Indoxyl sulfate 
(− 7.687)
betaine (10.549)
Dimethylglycine 
(4.747)
n-Acetylphenylala-
nine (3.049)
Phenylacetylglu-
tamine (− 2.573)

Confirms (P)

MTR,
CA923726079
NM_000254.3:
c.2473 + 3A > G

N/A Het LP to P

157 F 1
ASS1,
CA375229529 
NM_000050.4:
c.830A > G

K277R Hom 215700 Citrullinemia 
(5/16) 7.0e−03 0.15 8.5e−03

Arachidonate 
20:4n6 (− 1.633) LP to P
Citrulline (+ 7.086)

166 M  < 1

MUT,
CA138796356
NM_000255.4:
c.1218delG

N407fs Het

251000 Methylmalonic 
aciduria (4/16) 4.3e−03 0.22 7.4e−03

1-Pentadecanoylg-
lycerophosphocho-
line 15:0 (+ 2.353)

Confirms (P)

MUT,
CA3846855NM_000255.4:
c.1531C > T

R511* Het
1-Margaroylglycer-
ophosphoethanola-
mine (+ 2.902)

Confirms (P)

Table 4.  Variant re-interpretations based on evidence quantified from the metabolome. 10/10 variant 
interpretations discovered by manually inspecting metabolomics data from 170 individuals in Alaimo et al.22 
were reproduced using our automated pipeline, where 9/10 of those had strong significance and 1/10 had 
borderline significance. One novel finding is also reported, where one individual was diagnosed with a PBD, 
highlighting the ability of CTD-based metrics to detect disease-relevant signatures that are too complex or 
subtle to detect using manual inspection. Pt patient, AA  amino acid change, Zyg zygosity, OMIM  diagnosis 
identifier from the Online Mendelian Inheritance in Man catalog, Net  disease-specific network, Comb Brown’s 
combined p value, ACMG  The American College of Medical Genetics variant pathogenicity classification.
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arise when nearly all the samples used in network learning for a particular disease were on treatment at the time 
their blood was sampled. Similarly, some treatments (e.g., metabolite supplementation, enzyme replacement 
therapy) have shown to successfully normalize disease-relevant metabolite perturbations in targeted, disease 
pathways. Network models trained on metabolomic profiles without disease-relevant perturbations will not be 
informative. On the other hand, some treatment-related signatures—especially when the treatment is highly 
specific to a particular IEM—can improve diagnostic accuracy in some circumstances, as these signatures can 
provide indirect evidence for the presence of disease.

In summary, our work suggests that data-derived network models offer competitive diagnostic accuracy 
compared to rule-based biomarker modeling approaches, show improved performance as more data accumu-
lates, and can replace pathway-based modeling approaches, particularly when the relevant pathway knowledge 
is unavailable.

Conclusions
The benefit of CTD-based metrics can be particularly powerful when applied to individuals who are undiagnosed 
by current methods. By quantifying the likeness of individuals’ metabolite perturbations with perturbation 
patterns observed in many diseases, candidate diagnoses can be ranked and possible diagnoses can be recom-
mended. Furthermore, if genetic sequencing data are available for an individual exhibiting strong disease-specific 
metabolite perturbation patterns, VUSs can be re-interpreted given the functional evidence provided by untar-
geted metabolomics. While CTD-based metrics cannot eliminate manual review entirely, they can expedite it 
and increase the confidence by which clinical laboratory directors make diagnostic decisions. Finally, disease-
specific network models can be automatically and continuously updated as new case profiling data accumulates, 
ensuring stronger network stability and improved diagnostic performance.

Data availability
Datasets related to this article are available within Supplemental Table 2 and accessible via the Metabolomics 
Data Portal Download Data tab (Figure S4).
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