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Simple Summary: This article examines the relationship between twentieth- and twenty-first-century
paleobiology. After summarizing the disciplinary problem of paleontology in the mid-twentieth
century, I focus on five representative research topics in contemporary paleontology. In doing so, I
outline twenty-first-century paleontology as a science that seeks more data, more technology, and
more integration. At the end of the paper, I highlight a possible new paleobiological revolution:
it would give paleontologists strong political representation to deal with issues such as expanded
evolutionary synthesis, conservation of the Earth’s environment, and global climate change.

Abstract: In this paper, I will briefly discuss the elements of novelty and continuity between twentieth-
century paleobiology and twenty-first-century paleontology. First, I will outline the heated debate
over the disciplinary status of paleontology in the mid-twentieth century. Second, I will analyze
the main theoretical issue behind this debate by considering two prominent case studies within the
broader paleobiology agenda. Third, I will turn to twenty-first century paleontology and address five
representative research topics. In doing so, I will characterize twenty-first century paleontology as a
science that strives for more data, more technology, and more integration. Finally, I will outline what
twenty-first-century paleontology might inherit from twentieth-century paleobiology: the pursuit of
and plea for a new synthesis that could lead to a second paleobiological revolution. Following in
the footsteps of the paleobiological revolution of the 1960s and 1970s, the paleobiological revolution
of the twenty-first century would enable paleontologists to gain strong political representation and
argue with a decisive voice at the “high table” on issues such as the expanded evolutionary synthesis,
the conservation of Earth’s environment, and global climate change.

Keywords: paleontology; paleobiology; history and philosophy of paleontology; twenty-first-century
paleontology; paleobiological revolution; technoscience and global issues

1. Introduction

At the beginning of his book Tempo and Mode in Evolution (1944), North American
paleontologist George Gaylord Simpson (1902–1984) provided an interesting picture of the
difficulties and lack of interaction between the paleontological and biological communities
during the middle of the twentieth century. He wrote, “not long ago [ . . . ] geneticists
said that paleontology had no further contributions to make to biology, that [ . . . ] it was
a subject too purely descriptive to merit the name “science”. The paleontologist, they
believed, is like a man who undertakes to study the principles of the internal combustion
engine by standing on a street corner and watching the motor cars whiz by” [1].

The same opinion was shared by prominent biologists. For instance, British geneticist
John Maynard Smith (1920–2004) noted that that during the 1960s there were continuous
frictions between paleontologists and biologists. As he recalled in 1984, “[at] that time, the
attitude of populations genetics to any paleontologist rash enough to offer a contribution to
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evolutionary theory has been to tell him go away and find another fossil, and not to bother
the grownups” [2]. However, in the same piece, Maynard Smith added two lines, in effect
showing the different perception and value of paleontology. He admitted, “Palaeontology
has been too long absent from the high table. Welcome back” [2].

In welcoming paleontology to the table that matters, the geneticist paved the way for
some historical and theoretical questions: What happened between the 1960s and 1980s that
was so imprinted as to make his judgment change? Does twenty-first-century paleontology
still sit at the high-table? And how does the scientific agenda of today’s paleontology relate
to its scientific past and future?

In this paper, I will briefly address these questions, in effect reflecting on the elements
of novelty and continuity between twentieth-century paleobiology and twenty-first-century
paleontology. First, I will expose the heated debate about the disciplinary status of paleon-
tology during the mid-twentieth century. Second, I will analyze the main theoretical issue
behind this debate by looking at two prominent case studies within the broader paleobio-
logical agenda. Third, I will move to twenty-first-century paleontology and address five
representative research topics. By doing so, I will characterize twenty-first-century paleon-
tology as a science that seeks more data, more technology, and more integration. Moreover, I
will I focus on the notion of the “second digital revolution” as it occurs in paleontology.
In the conclusion, I will state what twenty-first-century paleontology might take from
twentieth-century paleobiology: the aspiration of and plea for a new synthesis that may
lead to a second paleobiological revolution.

2. Paleobiology vs. Paleontology

“We are paleontologists, so we need a name to contrast ourselves with all you folks
who study modern organisms in human or ecological time. You therefore become neontolo-
gists” [3]. With his classical provocative and quite “parochialism” jargon, North American
paleontologist Stephan Jay Gould (1941–2002) called attention to two important elements
that characterized the methodology and disciplinary status of paleontology throughout the
twentieth century. First, Gould insisted that a different name was necessary to differentiate
two quite different approaches to evolution. According to Gould, the term ‘paleontology’
was too weak and too historically laden to achieve the aim of promoting paleontologists
as genuine biologists and not as geologists. Together with several US colleagues, such as
Niles Eldredge, David Raup, Jack Sepkoski, Steven Stanley, and others, he chose the term
“paleobiology” as the perfect name to describe paleontological interests in evolutionary
biology [4,5]. Paleobiology had its heyday between 1970 and 1985. This name though goes
back to Austrian paleontologist and biologist Othenio Abel (1875–1946). He coined the
term “paleobiology” to emphasize the biological meaning of this discipline. Paleobiology,
so Abel, was able to investigate evolutionary mechanisms, in effect providing the deep-
time perspective to evolutionary study [6–8]. Hence, paleontology should be considered a
biological sub-discipline and not practiced in geological departments.

Second, Gould contrasted between evolutionary investigations of living organisms
(what he called neontological analyses) and the paleo(bio)ontological ones, which study
what happened in the deep past. Indeed, Gould’s statement derived from the empirical
results he himself and other paleontologists were obtaining during the 1960s and 1970s.
These scientists were keen to present their discipline as a rigorous investigation of evo-
lutionary mechanisms. By uncovering deep-time patterns and processes, paleontologists
were indeed able to contribute to and expand the evolutionary mechanisms set during the
modern synthesis of evolution. Gould coupled this theoretical aim with a broader idea of
science, paleontology, and evolutionary time [5,9–11].

As noted, the second ground behind Gould’s provocative statement was his emphasis
on the importance of deep-time investigations as defining characteristic of paleontology.
Although the discovery and conquest of deep time was a classical argument for the im-
portance of paleontology since the seventeenth century [12–16], this dimension acquired
extra (biological) value in the twentieth century. In 1985, Gould published a paper in the
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journal Paleobiology, arguing that “Nature’s discontinuities occur at different scales of time
or tiers”. He distinguished three distinct temporal tiers. The first tier includes events at the
ecological movement; the second tier encompasses events which occur during “millions of
years in “normal” geological time”; whereas the most exciting subject in paleontology lies
in our recognition that one of our best-recognized and most puzzling phenomena, mass
extinction, is not merely more and quicker of the same, but a third distinct tier with rules
and principles of its own [17].

Successively, he stated that “whatever accumulates at the first tier is sufficiently
reversed, undone, or overridden by processes of the higher tiers” [17]. For instance, mass
extinction occurs at the third tier. It “works by different rules and may undo whatever the
lower tiers had accumulated” [17]. Evolution is an extremely hierarchical phenomenon.
Hence, Gould noted that only paleobiologists are able to investigate what happened in
the second and third tier; whereas “neontologists” study “modern organisms in human or
ecological time” [17].

Gould’s idea was that evolutionary time could be seen as a system of distinct tiers—
and the problem of transpacific evolution requires an explicit study of their interaction.
Darwinian tradition leads us to deny this kind of structuring, to view time as a continuous,
and to seek the source of causality at all scales in observable events and processes at
smallest [9,18].

To put it simply, Gould and colleagues meant to “(1) make paleontology more theoreti-
cal and less descriptive; (2) introduce models and quantitative analysis into paleontological
methodology; (3) import ideas and techniques from other disciplines (especially biology)
into paleontology; (4) emphasize the evolutionary implications of the fossil record” [5].
Or, as philosopher Derek Turner put it in seven slogans, “(1) Paleontology has more to
contribute to biology than to geology; (2) Study fossils in bulk—individual specimens
don’t tell you much about evolution; (3) Paleontology needs theories; (4) If you can’t
experiment, then simulate; (5) don’t assume that the fossil record is incomplete; analyze
the incompleteness; (6) resist reductionism; (7) don’t shy away from raising big questions
about evolution” [19]. This does not mean, though, that all these features were literally
invented by paleobiologists, but rather that Gould and colleagues put these elements at the
center of their research programs.

Following these starting points, Gould asserted that paleontology was a legitimate
biological discipline able to uncover patterns and mechanisms which could be found at
the second and tier tiers of time [20]. For instance, at the second tier, Gould individuated
phenomena which occur primary within a punctuated equilibrium-pattern (as he had
formulated years earlier together with Niles Eldredge [21]), whereas the third tier is domi-
nated by mass extinction phenomena. These patterns and mechanisms complete, expand,
and in part revise the neo-Darwinian picture of evolution.

Nine months after his article “The Paradox of the first Tier” was submitted to Paleo-
biology, Gould wrote to the journal’s editor, Jack Sepkoski, explaining the necessity of an
interaction between different and autonomous layers of the evolutionary theory:

Hierarchy, as here discussed in its genealogical context, is an ‘internalistic’ theory
about evolution dynamics. And we need to formulate it properly if we are to tackle this
internal dynamic with the other great mover of life’s patterns—the externals of geological
history especially mass extinctions, that so impact life’s history . . . in other words, all the
data that you and your colleagues are treating in such new and exciting ways. Hierarchy
confronts the geological dynamic, and we will not get it right until we reformulate both
sides. Gould to Sepkoski, 13 August 1985 in [5].

In this letter, Gould clearly affirmed the importance of reformulating the hierarchical
model of evolution in the light of the momentous and exciting research techniques used
in the investigation of mass extinctions. The reformulation Gould had in mind, however,
concerned the entire paleontological discipline. He suggested a “nomothetic and idio-
graphic” approach to the fossil record based upon David Raup and Sepkoski’s studies on
the structure of the mass extinction [22–24].
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The Kantian philosopher Wilhelm Windelband (1848–1915) coined the nomothetic vs.
idiographic distinction. On May 4, 1894, he gave his rectoral address on the methodological
differences between History and Natural Science at the Kaiser-Wilhelms-Universität Stras-
burg. During that address, he distinguished historical from natural sciences by focusing
on the “formal character of their cognitive goals” [25]. Nomothetic disciplines aimed at
formulating general laws and general judgments, while the ideographic sciences merely
collected historical facts. The former were sciences of laws, the latter sciences of events:
“the former teach what always is, the latter what once was” [25]. This distinction was
not about the contents of the two sciences; but rather it was about how scientists produce
knowledge. That means that the main difference between nomothetic and ideographical
disciplines was methodological. With his programmatic statements expressed publicly
in a paper, Gould intended to bridge the methodological gap between the natural and
bio-historical sciences [20].

To accomplish the reformulation, Gould promoted a methodological synthesis. He
clearly suggested this in commenting on Sepkoski’s study on Phanerozoic diversity [26,27].
Gould affirmed that, “Here we see an interesting and fruitful interaction of nomothetics
and ideographics. The form of the model remains nomothetic—the “real” pattern arises as
an interaction between two general curves of the same form, but with different parameters.
Ideographic factors determine the parameters and then enter as boundary conditions into a
nomothetic model” [20].

The ideographic factors mentioned by Gould derive from Sepkoski’s famous
Compendium. It gave the required data a mathematical treatment of data. This in turn
made visible what is invisible: the structure and development of the Phanerozoic diver-
sity [28,29].

Hence, the contrast between paleontology and paleobiology was mainly based on
disciplinary and methodological issues. Gould and colleagues first created a disciplinary
space in which to insert their research agenda (they named their approach “paleobiology”).
Successively, they sought to a possible methodological and disciplinary synthesis, in effect
avoiding possible dichotomies. Famously and quoting German philosopher Immanuel
Kant, Gould wrote “with all biology and no geology, paleontology is empty; but with geol-
ogy alone, it is blind” [20]. Furthermore, by calling for a synthesis, another theoretical issue
was tackled by twentieth-century paleobiology: the possible over- and under-determination
of paleontological explanations.

3. Over- and Under-Determination

It is quite difficult to find well-preserved fossils that immediately resemble living
organisms that can also be exhibited, used, and taken at face value. In fact, once an
organism dies, it is subjected to the several taphonomic processes. These processes destroy
and change the features of the original organism. For instance, it is rare to find fossils
with their soft parts preserved. There are two ways to practically address this problem:
(1) focus on structures that are more frequently preserved; (2) focus on exceptionally well-
preserved sites. These provide more selective observations that can be essential, but have
their limitations when studying rapid changes during evolution (I thank an anonymous
reviewer who pointed this out to me. See [30,31])

The imperfect and incomplete nature of the paleontological record gave several pa-
leontologists cause to reflect on the epistemic aspect of the fossil record. As a result,
paleontologists came up with practices intended to overcome the incomplete nature of
the records of the past. In addition to working with imperfect and incomplete data, pa-
leontologists must face another difficulty: the so-called over and underdetermination
issue.

As philosopher of science Carol E. Cleland has pointed out, historical sciences, such
as paleontology, are subjected to the asymmetry of overdetermination [32,33]. They are in
the same condition as the investigator who is trying to reconstruct what, exactly, shattered
a window starting from the traces on the floor. Let us imagine that three different people
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throw different objects at the same window at the same time. In that case, “the breaking
of the window is overdetermined by numerous sub collections of shards of glass lying on
the kitchen floor. That overdetermination of earlier facts by later traces occurs whenever a
window breaks” [34].

Following Turner, we can develop the thought experiment a bit further. “The owners
of the house sweep up the shards, throw the baseball in the bin, and eventually repair the
window. A few weeks later, the only traces of the event that remain are a few shards of
glass under the refrigerator. The housecleaning and repair are examples of what Sober
(1988, 3) calls information-destroying processes” [34].

Let us follow Turner again in this line of reasoning. Let us assume that a future
investigator discovers glass shards on the kitchen floor. He will then ask what kind of
shards they are—are they pieces of a glass, a window, a vase, etc.? “Even if the historical
investigator recognizes the traces for what they are”, noted Turner, “rival hypotheses about
earlier events and processes will often be underdetermined by the available traces. After
studying the shards under the refrigerator, the historical investigator will be completely
confused: The evidence does not permit her to discriminate at all between incompatible
opposing hypotheses (window vs. wine glass, football vs. baseball, etc.) In other words,
she confronts a local underdetermination problem” [34].

Therefore, the present event (a broken window, or, in paleobiology, a mass extinction)
over- or under-determines its possible causes. Replaying the tape of time, we cannot be
sure to identify the correct sequence of cause–effect, since there are many possible causal
chains backwards from the local event.

Hence, first, the record of the past is always imperfect and incomplete, and second,
we are not able to state whether our imperfect and incomplete data overdetermine or
underdetermine the phenomena paleontologist would like to investigate.

Given these two issues, how can paleontologists bring out patterns and mechanisms
that might expand evolutionary theory? Are these two issues not a death kiss for pale-
ontology? And more broadly, what is paleontological business about? To answer these
questions, I will briefly recall some research results Gould himself put in the middle of
his agenda.

One main topic of twentieth-century paleobiology was the debate about the impor-
tance and dynamics of mass extinction [5,35]. One central research result was the famous
paper (and graph) representing the periodicity in mass extinctions within geological time.
It was used by Gould to indicate a classical phenomenon which happens on the third
temporal tier. This representation has many interesting peculiarities, which are related to
the notion of paleobiological data [16,29,36,37].

Due to Alvarez’s team discovery (1978) of the iridium anomaly in rocks formation
at K–T boundary, mass extinction became the hot topic of paleontology in the 1980s. One
of the main questions during those years was concerning the number and intensity of the
mass extinctions.

This issue was resolved in two famous papers written by David Raup and Jack
Sepkoski. Using Sepkoski’s database (1982), Raup and Sepkoski identified the number of
mass extinctions and the periodicity of this phenomenon. Sepkoski and Raup plotted a
huge number of fossil marine families against geological time and found that five mass
extinctions clearly occurred in the history of the Earth as “statistically distinct from the
background extinction levels”. These “five extinction events are seen as sharp drops
in standing diversity”, and therefore they were easily detected. A mass extinction is
thus an event in which a “large number of organisms have disappeared over relatively
short time” [22,23].

This case study is emblematic since it shows the highly integrative practice used in
twentieth-century paleobiology. As for the seminal investigation of morphogenesis con-
ducted by David Raup and Adolf Seilacher during the 1960s and 1970s [11,38], also in
this case paleobiologists sought to integrate data and technologies to produce possible
coherent scenarios of the past. Since a direct access to the deep past is impossible, scientists



Biology 2022, 11, 1120 6 of 12

technically recreate possible scenarios which tell the scientists that something happened in
the past. Hence, to overcome the issue of over- and underdetermination, paleobiologists
stretched and elaborated their data with the help of technology (such as computer, electron
microscope, databases, etc.). The key methodological insight was indeed the fruitful combi-
nation of science and technology. This implied that phenomena such as mass-extinctions or a
life-like display of extinct specimens in a museum’s hall depend both on the correct use
of technological devices and on the interplay between these devices and theories. Hence,
paleobiology can be seen as a phenomena-lead discipline. These “investigations are such
because the relevance of evidence turns on relationships between phenomena, the hypothe-
ses pertaining to them” [39] and, I would add, the technologies used to stage deep time.
Shades of glass on the ground or fossil excavated in a particular region are evidence if these
can be used into this integrative process [40].

4. Twenty-First-Century Paleontology: More Data, More Technology, and
More Integration

What is left of the paleobiological research agenda? As I will detail in the conclusion,
twentieth-century paleobiology shares with twenty-first-century paleontology the needs for
integration and synthesis. In this section, I would like to briefly single out five promising
research topics of current paleontology and connect them with twentieth-century paleobi-
ology. I would like to characterize the research of twenty-first-century paleontology with a
slogan: more data, more technology, and more integration.

The first topic I chose is about the emergence of paleocolor as a testable field of enquiry.
To achieve this aim, it is important to have more clean data. In addition to the publication of
studies on feather taphonomy, scientists are teaming up to use ion beam scanning electron
microscopy to investigate the preserved melanin pigments. By integrating more data with
more technologies, paleocolor can provided precious insights into the behavior and ecology
of extinct organisms [34,41–48].

Second, as noted, one main issue paleontologists have to face is the lack of appropriate
data. The clarification around the preservability of organic chemicals in fossils, and more
broadly, the mechanisms behind taphonomy, is another key research program of twenty-
first-century paleontology. Also in this case, the choice and use of appropriate technologies
(such as mass spectrometry methodology, appropriate databases, etc.) is essential to obtain
more data and thus pose new questions on phylogenetic hypotheses [49–54].

Third, another promising topic of twenty-first-century paleontology is given by the
intersection between morphology, evolutionary theory, and various technologies. The inter-
section between robotics and morphology provides one compelling example. Scientists are
working together with engineers to model and construct bio-inspired robots to understand
evolution. One example above all (for another example published recently, see [55]) is
given by research on the morphology of Orobates pabsti. This is a four-legged vertebrate
organism that went extinct about 300 million years ago. The study of the morphology of this
well-preserved specimen is very important because it could offer valuable insights into the
evolution of terrestrial vertebrates. Orobates are an early evolution of the lineage that led to
amniotes. These made the vertebrate transition to land by becoming independent of open
water during the early stages of development. Thus, studying and understanding how
these species were able to transition from water to land is essential to better understand
one of the major transitions in vertebrate evolution.

To perform this research, scientists designed the OroBOT robot. It was designed to
account for the locomotion dynamics of Orobates. The OroBot was built in collaboration
with bioengineers at the École Polytechnique Fédérale de Lausanne (EPFL) in Lausanne.
The spine of the OroBot was segmented into eight joints: two for the neck, four for the
trunk, and two for the tail. The feet consisted of three passive and compliant joints. The
designed parts of OroBOT were made of polyamide plastic material and created by selective
laser sintering. Working in vivo with these robots, Nyakatura’s team was able to reach
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conclusions about the complex form-function that characterized the vertebrates’ transition
to land [56–59].

The same logic is behind the creation of a chewing machine, an artificial mechani-
cal chewing machine, used to study the micro-wear process and the possible correlation
with diet and the rate of tooth wear. As the authors noted, “the aim was a simplified
system that would allow changing various factors in mastication, for example different
standardized feeds, to test whether expectations based on a simplistic interpretation of
microscopic and macroscopic wear could be confirmed. The aim of this study was to
produce microwear features seen in nature, i.e., pits and scratches, and to quantify macro-
scopic wear with real teeth and diets, in order to achieve a detailed picture of the wear
process and its components” [60]. As in the case of the OroBot, the use of technology and
various machines here also brings the investigation of the past (micro-wear process) close to
engineering [59,61].

This synergy between technology and paleontological research has also taken different
forms in the present day. Among them, one is virtual paleontology [62–67]. This leads
to a second digital revolution in paleontology. This second digital revolution is signed
by the passage from bio-robotics, or nature-inspired robotics, to robotics-inspired biology.
This transition implies bridging of the gap between technology and nature. Form changes
should now be studied through in vivo investigations (such as the classical anatomical
dissection), in silico (as, for example, through CT scanners or computer simulations), and
eventually again in a hybrid and highly integrated in vivo–silico–robotic environment
through bio-robotics [61]. The full integration of these methodological levels would help
illustrate the structural interplay of elements that characterizes form change.

The fourth hot topic of twenty-first-century paleontology is deeply rooted in the
twentieth-century paleobiology. As noted in the introduction, paleobiology was launched
to reorient the paleontological agenda toward broader evolutionary problems. This was the
main reason for the paleobiological revolution of the 1960s and 1970s—think of Eldredge
and Gould’s call for punctuated equilibrium. The same search for new evolutionary mech-
anisms pervaded paleobiological research during the first encounters with the emerging
evo-devo community. Or rather, the evolution of evo-devo was shaped by paleobiological
questions from the beginning, and vice versa. In fact, at the 1981 Dahlem conference on
“Evolution and Development”, which will be considered as the grounding meeting of evo-
lutionary developmental biology as an autonomous evolutionary discipline, biologists and
paleontologists discussed together the relationship between evolution and development.
For instance, in the working group on “The Role of Development in Macroevolutionary
Change” biologists, such as Jim Murray, Pere Alberch, Brian Goodwin, Gunther Wag-
ner, Tony Hoffman, and David Wake, defined with paleontologists Stephen Gould, Adolf
Seilacher, and David Raup the role of constrains in evolution [11,68–70].

The same line of continuity and interaction denotes current paleontology, which even
formalizes the paleontological contribution to evo-devo as Paleo-Evo-Devo. Therefore, the
paleontology of the twenty-first century is also characterized by the search for a strong
integration in this fourth case [71–79].

The fifth topic I have singled out is also anchored in the twentieth-century paleobio-
logical agenda: the discussion of abiotic and biotic factors in evolution. Recall that I opened
this paper with a quote from Maynard Smith. He welcomed the return of paleontology
to the high table as a result of Raup and Sepkoski’s findings on mass extinction and the
consequent focus on biotic elements in evolution. This research, in turn, had emerged
from the study of the dynamics of Phanerozoic marine paleodiversity (and the proposed
model analyses for studying diversity) and the Red Queen model proposed by Leigh Van
Valen [5].

Twenty-first-century paleontology is capitalizing on this line of research. At the same
time, paleontologists are trying to synthetize biotic and abiotic factors. For instance, Mike
Benton notes, “The realization that the Red Queen and Court Jester models may be scale-
dependent, and that evolution may be pluralistic, opens opportunities for dialog” [80]. He
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goes on asserting, “methods are shared by paleontologists and neontologists, and this al-
lows direct communication on the patterns and processes of macroevolution” [80]. Fortelius
and colleagues are also proposing “a tentative synthesis, characterized by interdependence
between physical forcing and biotic interactions” [81].

Along these lines, paleontologist Tyler Faith and his colleagues emphasized the key
methodological elements of current hominin evolution. First, paleoanthropology, as pale-
ontology, is all about data and time scales (or as Gould put it tiers): “There is no universally
‘correct’ scale of observation, but to address questions linking ecology and evolution, the
scales of the processes of interest must align with the scales of the available data” [82].
Second, paleoanthropology is desperately in need of more theory (recall Turner’s third
point for describing paleobiology), or rather of a new hypothetic-deductive methodol-
ogy [83]: “Incorporating a stronger theoretical framework into the agenda of hominin
paleoecology will allow researchers to reverse the typical direction of inference (i.e., from
data to hypothesis) by generating theoretically informed predictions that are tested with
the data, and then determining if a hypothesis should be modified or rejected” [82]. By
granting a new methodology, a new balance may emerge “between inferring evolution-
ary narratives from the data and testing process-based hypotheses using those data” [82].
Hence, again, twenty-first-century paleo-research is about more data, more technology, and
more integration.

5. Conclusions: A Plea for a New Synthesis

What do the five topics just discussed tell us about the elements of continuity between
twentieth-century paleobiology and twenty-first-century paleontology? First, both enter-
prises called paleontologists’ attention to a cooperative effort to understand the (deep) past.
As paleontological data are always imperfect and incomplete, paleontologists should om-
nivorously assimilate every method to successfully and opportunistically work on and with
deep time [40,84,85]. Molecular approaches to the deep past are therefore supplementary
not antagonistic to classical paleontological analyses of forms [86]. Sometimes, they allow
paleontologists to see things better or, at least, in a different fine grade (e.g., [87]). How,
however, can paleontologists confidently use data, names, technology, and knowledge
outside their field of application if they do not know the correct boundaries of application
of such tools in their own? Critical integration of different methods can help mediate and
hopefully overcome technical issues. This should be paired with inter- and multidisci-
plinary programs to enable students and scholars to fruitfully learn and apply different
methods—that was one of insights of the paleobiological revolution of the 1960s and 1970s.

Indeed, this implies a return to the sprit embodied by the paleobiological revolu-
tion of the mid twentieth-century. At the end, what Gould and colleagues were asking
for was a genuine synthesis of knowledge. They asked for blurring the disciplinary bor-
ders between natural and historical sciences as well as between science and technology.
This spirit should be put at the center of twenty-first-century paleontology – this agenda
is also perused by other technoscientific disciplines such as biorobotics, synthetic biol-
ogy, nano(bio)technology, etc. See, for instance, [59,61,88–91]. This enterprise should be
characterized by a cooperative model of knowledge production. Instead of supporting a
never-ending disciplinary struggle to define what paleontology is (or is not), to draw a
sharp line between paleontology and neontology, or between morphological and molecular
phylogenetics, scholars should work together and ideally share their data and method to
address new challenges, as has happened during periods of major theoretical transitions
in the history of paleontology [5,29,92]. The results provided by Perri et al. [93] are a clear
example of the continuum of approaches that characterizes paleontology and biology.

A future task for philosophers and historians of paleontology would be to understand
the various practices and reasons for the paleontological plea for synthesis and integration
in the last century. In other words, the analysis should focus on what (and why) paleontolo-
gists sought (and are seeking) collaboration with neontologists and promote the circulation
of knowledge and technologies [94] (an important starting point would be the analysis
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of how paleontologists and neontologists are publishing together or taking part in joint
conference. I thank one referee for this point. See, for instance, the papers gathered in the
special issue “Crossing the Palaeontological-Ecological Gap” published in Methods in Ecol-
ogy and Evolution 2016, 7. Furthermore, it is perhaps worth noting that Wolfgang Kiessling
was the first paleontologist to play a major role in the Intergovernmental Panel on Climate
Change (IPCC) report on climate change, working on ”Climate Change 2021: Impacts,
Adaptation and Vulnerability“, thus bridging the gap between the two communities - I
thank one referee for this. See also [35,95–97]).

This point will make visible the role of the so-called invisible technicians, i.e., all those
who work (silently and without much recognition) on the production of paleontological
knowledge. In addition to the flood of data and the transformation of the paleontologist
into a data scientist (and vice versa), field and preparatory work needs to be recognized as it
remains at the heart of paleontology today [98–100]. Today, more than ever, the classic metaphor
of the earth as an archive of knowledge and data is still valid. In fact, the greatest amount of
data is still buried in the field. On the importance of field work for paleontology [101–106].
This focus will create an awareness of the new social hierarchies in twenty-first century
paleontology that result from the massive use of technology.

Hence, and to conclude, if constructively interpreted and read through the recent
history of paleontology, the five topics singled out may provide some potentialities for a
new synthesis between genetic and morphological approaches to the evolution of forms in
the attempt to overcome the limits, issues, and problems of phylogenetic reconstructions.
The major implication would be a broader reflection on what paleontology might become
in light of recent technical and molecular revolutions. This would imply a second paleobio-
logical revolution. In fact, as David Sepkoski put it, “the paleobiological “revolution” was
more like a political contest in which one group perceives itself to be disenfranchised and
agitates for greater representation in government than a contest of lofty ideas. The 1970s
was a period of revolution in paleontology because paleobiologists saw themselves, and
described what they were doing, as revolutionary” [5]. Echoing the paleobiological revolu-
tion of the 1960s and 1970s, a twenty-first-century paleobiological revolution would enable
paleontologists to gain strong political representation and to argue with a decisive voice at
“the high table” on topics such as the extended evolutionary synthesis, the Anthropocene,
conservation of Earth’s environment, and global climate change.
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