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Background: Diabetic retinopathy (DR) is one of the most common eye diseases. Convolutional neural 
networks (CNNs) have proven to be a powerful tool for learning DR features; however, accurate DR grading 
remains challenging due to the small lesions in optical coherence tomography angiography (OCTA) images 
and the small number of samples.
Methods: In this article, we developed a novel deep-learning framework to achieve the fine-grained 
classification of DR; that is, the lightweight channel and spatial attention network (CSANet). Our CSANet 
comprises two modules: the baseline model, and the hybrid attention module (HAM) based on spatial 
attention and channel attention. The spatial attention module is used to mine small lesions and obtain a set 
of spatial position weights to address the problem of small lesions being ignored during the convolution 
process. The channel attention module uses a set of channel weights to focus on useful features and suppress 
irrelevant features.
Results: The extensive experimental results for the OCTA-DR and diabetic retinopathy analysis challenge 
(DRAC) 2022 data sets showed that the CSANet achieved state-of-the-art DR grading results, showing the 
effectiveness of the proposed model. The CSANet had an accuracy rate of 97.41% for the OCTA-DR data 
set and 85.71% for the DRAC 2022 data set.
Conclusions: Extensive experiments using the OCTA-DR and DRAC 2022 data sets showed that the 
proposed model effectively mitigated the problems of mutual confusion between DRs of different severity 
and small lesions being neglected in the convolution process, and thus improved the accuracy of DR 
classification.
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Figure 1 Typical retinal images. Top row: typical color fundus camera images. Bottom row: typical en-face optical coherence tomography 
angiography images.

Introduction

Diabetic retinopathy (DR) (1-5) is one of the most common 
eye diseases caused by diabetes. DR can cause vision 
loss and even blindness in the working age population 
worldwide (6). Fortunately, DR can be prevented and 
controlled. However, to minimize its damage, DR needs to 
be screened and detected early (7,8).

There are many ways to screen for DR, including 
fluorescein angiography (FA), fundus photography 
(FP), optical coherence tomography (OCT), and optical 
coherence tomography angiography (OCTA) (9). FA is an 
important medical imaging modality for the evaluation 
of DR; however, it is invasive, time consuming, and 
cumbersome (10). FP captures images of the inside of the 
eye through the pupil and can be used to examine the optic 
disc, retina, and lens. FP is a non-invasive technique that 
takes only one minute to administer. It enables doctors to 
observe subtle changes in the eye and recommend useful 
treatments for eye diseases (11). However, conventional 
FP cannot be reliably used to identify microvascular 
abnormalities that occur in the early stages of ocular 
diseases (12-14). OCT is a new non-invasive imaging 
technique that can be used to effectively observe subtle 
changes in the superficial and deep capillary plexus of the 

human retinal microvasculature and has become popular in 
recent years (15). As an extension of OCT, OCTA is used to 
capture and analyze the movement of blood cells in the field 
of view by repeatedly acquiring images of the same retinal 
location to obtain an image of the capillary network (16).  
Numerous studies have shown that OCTA has many 
advantages over traditional imaging modalities, such as 
FP or FA, in the detection and diagnosis of various ocular 
diseases (17). Figure 1 shows typical fundus images; the 
images in the top rows are representative of fundus images 
taken with conventional color fundus cameras; while the 
images in the bottom rows are representative of images 
taken with a swept-source OCTA camera.

Sandhu et al. (18) introduced a computer aided design 
system based on a random-forest classifier that was fed 
features extracted from OCT and OCTA images. Ramasamy 
et al. (19) extracted and fused retinal features from retinal 
images based on texture gray-level features and Ridgelet 
transform coefficients, and then used the sequential minimal 
optimization classification method to classify DR based on 
the retinal features obtained. The method achieved 97.05% 
accuracy on the DIARETDB1 data set and 91.0% accuracy 
on the KAGGLE data set. Abdelsalam et al. (20) developed 
a support vector machine-based model with multifractal 
geometry and lacunarity parameters to diagnose DR using 
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OCTA images. Maqsood et al. (21) developed a new macular 
detection system based on contrast enhancement, top-hat 
transformation, and a modified Kirsch template method, 
which achieved state-of-the-art performance compared to 
other mainstream methods.

It takes a great deal of effort to manually extract features 
using machine-learning algorithms; however, deep-learning 
methods learn image features automatically during training. 
Recently, convolutional neural networks (CNNs) have been 
shown to be a powerful tool for learning features for DR 
(22-26). Chaurasia et al. (27) introduced an ensemble model 
for DR disease detection using transfer learning. Zang  
et al. (28) introduced a deep CNN called DcardNet with 
adaptive label smoothing to suppress overfitting using  
en-face OCT and OCTA images. Maqsood et al. (29) used a 
method that combined deep learning and machine learning 
to detect whether retinal fundus images were hemorrhagic 
and thus to determine whether patients suffer from DR. 
They conducted experiments on 1,509 images from five 
data sets and reported that their model had an average 
accuracy rate of 97.71%. Dong et al. (30) designed a fused 
network based on two networks [Inception-V3 and VGG16 
(visual geometry group)] to improve the accuracy of the 
model. Ouyang et al. (31) introduced a contrastive self-
learning algorithm that was first pre-trained with unlabeled 
retinal images using a convolutional network-based 
encoder, and then re-trained with small-scale annotated 
training data using a classifier to detect referable DR. Ryu 
et al. (32) developed a fully automated system based on 
the CNN model for early detection of DR using OCTA 
images. Durai et al. (33) developed a deformable ladder  
bi-attention U-shaped encoder-decoder network and deep 
adaptive CNN to classify DR. Tang et al. (34) designed an 
ordinal regularized module to represent the orderliness of 
disease severity that could be flexibly embedded into general 
classification networks. The above deep-learning methods 
have shown to be effective methods for grading DR and will 
be helpful for researchers and patients alike.

The CNN-based DR grading methods have achieved 
good performance; however, they still face challenges 
in grading DR tasks. In clinical practice, there are some 
differences between DR diseases with adjacent grades. 
Additionally, the lesions in DR images are relatively small. 
Thus, we sought to develop a fusion-attention module 
based on channel attention and spatial attention to obtain 
the discriminative features needed for fine-grained DR 
classification while suppressing the irrelevant features.

We used bottleneck blocks and skip connections in 

the model to ensure the classification performance of 
the network while reducing the number of parameters 
and addressing the overfitting problem. Overfitting is a 
typical problem in computer vision applications (35-39). 
It is a problem that occurs in the training of CNNs and is 
caused by a lack of training data or the complexity of the  
network (40). Our main contributions can be summarized 
as follows:

(I) We designed a new spatial attention block (SPAB) 
to obtain a set of spatial weights to alleviate the 
problem of small lesions being ignored during the 
convolution process.

(II) We developed a novel channel attention module 
to explore the relationship in different channels of 
the proposed model that can learn a set of channel 
weights to focus on useful features and suppress 
irrelevant features.

(III) We introduced a novel plug-and-play fused 
attention module to integrate the advantages of the 
spatial and channel attention modules.

(IV) We performed extensive experiments on Dong’s 
DR data set (the OCTA-DR data set). The 
extensive experimental results for the OCTA-
DR data set showed that the channel and spatial 
attention network (CSANet) achieved state-of-the-
art DR classification results.

Methods

Figure 2 shows the architecture of our proposed CSANet. 
The CSANet comprises two parts: (I) the hybrid attention 
module (HAM); and (II) the backbone network. The 
spatial attention module determines the spatial location 
weights, and the channel attention module obtains the 
feature channel weights. High weights can achieve good 
performance in grading DR tasks. As Figure 2 shows, our 
CSANet takes OCTA images as input, and outputs DR 
grades in an end-to-end manner.

In the following sections, we first introduce the attention 
modules and then describe our training and testing 
strategies for grading DR. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Attention block

The attention block comprises the bottleneck layer, the 
attention-based module, the skip-connection layer, and the 
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Figure 2 Illustration of our proposed CSANet. (A) The flowchart of the CSANet. (B) The convolutional layer. (C) The structure of the 
CHAB. (D) The structure of the SPAB. CSANet, channel and spatial attention network; CHAB, channel attention block; SPAB, spatial 
attention block; HAM, hybrid attention module; FC, fully connected layers; DR, diabetic retinopathy; NPDR, non-proliferative DR; PDR, 
proliferative DR; BN, batch normalization; MLP, multi-layer perception.

convolutional layer. First, the input feature map is denoted 
as C H WF × ×∈ , where C is the number of channels, and 

H and W are the height and width of the feature map, 
respectively. To improve the computational performance of 
the model, the number of channels of F is halved by adding 
a convolutional layer. Here, the feature map is denoted as 

/2
1

C H WF × ×∈ . F1 is then fed into the HAM module, which 
can obtain the spatial attention feature map and the channel 
attention feature map. The obtained spatial and channel 
attention feature maps are each weighted, respectively, and 
the feature map FM is computed by element-wise addition 
to achieve a better classification effect. Next, the channel 
number of FM is restored to C by a convolutional layer and 

a convolutional operation. We then obtain C H W
MF × ×′ ∈ .  

The high and low semantic features are merged by the skip 
connections. Finally, in the last convolutional layer, the 
number of channels in the feature map becomes 2C.

Channel attention block (CHAB)

Unlike the squeeze-and-excitation (41) attention 
mechanism, the efficient-channel-attention (ECA) (42) 
mechanism avoids dimensionality reduction and uses a 
one-dimensional convolution to efficiently implement 
local cross-channel interaction and extract inter-channel 
dependencies. The ECA mechanism first performs the 
global average pooling of the input feature map, then 
performs a one-dimensional convolution operation with 
a convolution kernel size of k, obtains the weights of each 
channel through the sigmoid activation function, and finally 
multiplies the weights by the corresponding elements of the 
original input feature map to obtain the final output feature 
map. The CHAB structure proposed in this article not only 
ensures the classification performance of the network while 
reducing the model parameter increase as much as possible, 
but also overcomes the shortcomings of the ECA structure 
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without considering the global channel correlation. The 
CHAB structure is shown in Figure 2C.

The feature map F1 is input to the CHAB module. 
Two feature vectors (i.e., p and q) can be obtained using 
the global average pooling and global maximum pooling 
operations for each channel as follows:

( )
( )

1

1

p GAP

q GMP

F

F

=

=
 [1]

where GAP(·) is the global average pooling operation, and 
GMP(·) is the global maximum pooling operation. The 
local channel relation features p' and q' can be obtained by 
the adaptive one-dim convolutional operation as follows:

( )( )
( )( )

Sigm Conv

Sigm Conv

p p

q q

′ =

′ =
 [2]

where Conv(·) is the convolution operation, and Sigm(·) is 
the sigmoid activation function.

Since the multi-layer perceptron (MLP) is a true global 
attention, the global channel-related features r and s are 
obtained from all local channel-related features p' and q' by 
the MLP. The global attention feature Fc is expressed as 
follows:

( )( ) 1SigmCF r s F= ⊕ 

 [3]

where the ⊕  operation denotes the element-wise addition, 
and   denotes the channel-wise weighting operation.

SPAB

Figure 2D shows the structure of the SPAB. The learned 
spatial position weights represent the importance of 
different spatial locations. Specifically, two weight vectors 
with [1 × H × W] can be obtained from the global average 
pooling and global max pooling layers. The spatial attention 
feature Ac is obtained via a convolutional layer by merging 
two weight vectors with element-wise addition. Spatial 
attention Ws is expressed as follows:

( ) ( )( )S S
avg maxConv ConvsW F Fσ= ⊕  [4]

where σ(·) is the activation function. Ac is multiplied by 
F1 on an element-by-element basis to generate a spatial 
attention feature map. The SPAB can capture the most 
important semantic information of the samples for grading 
DR tasks, mitigating the problem of small lesions being 
missed by convolution.

Results

In this section, we introduce two DR data sets [i.e., the 
OCTA-DR data set (30) and the diabetic retinopathy 
analysis challenge (DRAC) 2022 data set (43)], and the 
experimental settings and evaluation metrics, and then 
present the qualitative and quantitative results of the 
competing methods for the two DR data sets.

Data sets

Dong’s OCTA-DR data set
The OCTA-DR data set comprised OCTA fundus images 
of 288 diabetic and 97 healthy individuals that were 
obtained using a swept-source OCT system with a 12 mm 
× 12 mm single scan centered on the fovea (this data set is 
available at https://kyanbis.github.io/OCTADR). All the 
OCTA images were graded by two ophthalmologists (30).  
The size of each original image was 299×299 pixels. 
Due to the similar clinical manifestations and consistent 
recommended treatment methods between moderate and 
severe non-proliferative DR (NPDR), two professional 
ophthalmologists graded these images into the following 
four categories based on the Early Treatment of Diabetic 
Retinopathy Study: (I) no DR; (II) mild NPDR; (III) 
moderate-to-severe NPDR; and (IV) proliferative DR 
(PDR). 

As Figure 3A-3F shows, compared with normal eyes, 
mild NPDR eyes had a small amount of non-perfusion 
and microvascular tumors in the wide-field OCTA (WF-
OCTA) images (44). As DR progresses from moderate 
to severe NPDR, the number of non-perfusion areas and 
microaneurysms increases, and blood vessels become 
distorted and dilated (45) (Figure 3G-3I). During PDR, 
ocular ischemia and hypoxia worsen, and new blood vessels 
are formed (46,47) (Figure 3J-3L).

To address the overfitting problem in the training 
process, we augmented samples using the same method 
as Dong et al. (30) and also normalized the data before 
augmentation. The number of augmented images was 2,693. 
Table 1 shows the image distribution of the OCTA-DR data 
set.

DRAC 2022 data set
The DRAC was designed to provide a benchmark for 
evaluating the algorithms used to automatically analyze 

https://kyanbis.github.io/OCTADR
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Figure 3 Representative optical coherence tomography angiography images of different severities of DR. (A) Normal sample 1. (B) Normal 
sample 2. (C) Normal sample 3. (D) Mild DR sample 1. (E) Mild DR sample 2. (F) Mild DR sample 3. (G) Moderate-to-severe DR sample 1. 
(H) Moderate-to-severe DR sample 2. (I) Moderate-to-severe DR sample 3. (J) Proliferative DR specimen 1. (K) Proliferative DR specimen 2. 
(L) Proliferative DR specimen 3. The orange circles indicate microaneurysms and areas of capillary non-perfusion. The blue circles indicate 
large areas of microaneurysms and intraretinal microvascular abnormalities. The green circle indicates neo angiogenesis. DR, diabetic 
retinopathy.

Table 1 Information for the OCTA-DR data set

Severities Number

No DR 615

Mild NPDR 704

Moderate-to-severe NPDR 706

PDR 668

OCTA, optical coherence tomography angiography; DR, diabetic 
retinopathy; NPDR, non-proliferative DR; PDR, proliferative DR. 

DR using ultra-wide OCTA images (43) (available at 
https://drac22.grand-challenge.org). The challenge 
was divided into three separate tasks as follows—task 1: 
the DR lesion segmentation task, which comprised 109 
training images showing three types of lesions (i.e., an 
intraretinal microvascular abnormality, a non-perfusion 
area, and neovascularization), and 65 test images; task 2: 
the image quality assessment task, which comprised 665 
training images of three different levels (i.e., poor, good, 

https://drac22.grand-challenge.org
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and excellent) and 438 test images; task 3: the DR grading 
task, which comprised 611 training images, which were 
a subset of the task 2 training images divided into three 
classes (i.e., normal, NPDR and PDR), and 386 test images. 
No expert annotations were available for the participants. 
All the images had a resolution of 1,024×1,024 pixels; 
however, the images were re-sized to 512×512 pixels in 
this implementation. For the data in the DR grading task, 
we used horizontal flip for label 0, horizontal flip, and 
vertical flip for label 1, horizontal flip, vertical flip, rotation, 
and blur for label 2 to enhance the data. The number of 
enhanced images was 1,715. For this study, 80% of the 
images were used for training, and the remaining 20% were 
used for testing. The image distribution in the DRAC 2022 
data set is shown in Table 2.

Implementation details

To examine the performance of our proposed model, we 
conducted experiments on two different DR data sets (N=4, 
where N is the number of attention block and maximum 
pooling layers). We used the Adaptive Moment Estimation 
(Adam) method to train the model for fast convergence. Of 
the images, 80% were used for training and the remaining 
20% were used for testing. Cross-entropy loss was used 
as the loss function. The weights γ1 and γ2 of channel 
attention and spatial attention in the HAM module were set 
to 0.55 and 0.45, respectively. The model was trained for 80 
epochs, and the learning rate, betas, and epsilon were set to 
10−2 (0.9, 0.999), and 1e−8, respectively. Of these, the betas 
were the momentum parameter in the Adam algorithm, 
and epslion was used to maintain numerical stability. When 
performing the classification tasks on the OCTA-DR data 
set, the batch size was set to 8. When the model training 
process reached 3/4 on the OCTA-DR data set, the learning 
rate was reduced to 1/10 of the original learning rate. When 
performing classification tasks on the DRAC 2022 data 
set, the batch size was set to 4. When the model training 

process reached 2/5 on the DRAC 2022 data set, the 
learning rate was reduced to 1/10 of the original learning 
rate. In addition, the benchmark model also underwent 
sufficient iterative training to achieve the best performance. 
We used Pytorch to implement the CSANet on a Window 
10 workstation with an NVIDIA RTX 3090Ti (Santa 
Clara, CA, USA) with 24 GB of Graphics Processing Unit 
memory.

Evaluation metrics

To evaluate the performance of the proposed method, we 
used four evaluation metrics; that is, accuracy, precision, 
the F1-score, and the kappa coefficient. Accuracy, which 
represents the ratio of the number of correct predictions 
for classification to the total number of predictions is the 
most commonly used metric in classification tasks, and is 
expressed as:

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 [5]

where TP (true positive) is the number of samples correctly 
predicted as positive examples; FN (false negative) is the 
number of samples correctly predicted as negative examples; 
FP (false positive) is the number of samples correctly 
predicted as positive examples; TN (true negative) is the 
number of samples correctly predicted as negative examples.

Precision represents the degree of prediction accuracy in 
the results of the correct sample, and is expressed as follows:

TPPrecision
TP TN

=
+

 [6]

Recall is the ratio of being predicted as a positive sample 
to actual positive samples, and is expressed as:

TPRecall
TP FN

=
+

 [7]

The F1-score is based on the harmonic mean of precision 
and recall, and is expressed as:

2 Precision RecallF1-score
Precision Recall
× ×

=
+

 [8]

The kappa coefficient is used for consistency testing and 
can also be used to measure classification accuracy, and is 
expressed as:

o

1
e

e

p pk
p
−

=
−

 [9]

Table 2 Information on the DRAC 2022 data set

Severities Number

No DR 656

NPDR 639

PDR 420

DRAC, diabetic retinopathy analysis challenge; DR, diabetic 
retinopathy; NPDR, non-proliferative DR; PDR, proliferative DR. 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 2 February 2024 1827

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):1820-1834 | https://dx.doi.org/10.21037/qims-23-1270

where po is the sum of the number of samples correctly 
classified for each class divided by the total number of 
samples (i.e., the overall classification accuracy), and pe 
is the sum of the “product of the actual and predicted 

number” corresponding to all categories divided by the 
“square of the total number of samples”.

The results for the three metrics (i.e., accuracy, precision, 
and the F1-score) for the OCTA-DR data set are presented 
in Table 3. Due to the small non-perfusion areas caused by 
ischemia, there were small differences between the healthy 
OCTA images and the OCTA images with non-perfusion 
areas. Thus, the accuracy of mild NPDR was lower than 
other grades of DR.

The confusion matrix summarizes the performance of 
the DR grading algorithm. As Figure 4 shows, the columns 
of the matrix represent the true classes, while the rows of 
the matrix represent the predicted classes. The confusion 
matrix of DR of different severity for the OCTA-DR data 
set is shown in Figure 4. Based on the confusion matrix 
and the classification accuracy of DR of different severity, 
the proposed model achieved good classification where the 
ground truth was moderate-to-severe NPDR and PDR, but 
requires improvement where the ground truth was no DR 
and mild NPDR.

In addition, we plotted the loss and accuracy curves 
of the proposed model in relation to the epochs for the 
OCTA-DR data set (Figures 5,6, respectively).

Table 3 Comparison of accuracy, precision and F1-score of DR severity

Metrics No DR Mild NPDR Moderate-to-severe NPDR PDR

Accuracy 0.9767 0.9444 1.0000 0.9774

Precision 0.9474 0.9855 0.9640 1.0000

F1-score 0.9618 0.9645 0.9817 0.9886

DR, diabetic retinopathy; NPDR, non-proliferative DR; PDR, proliferative DR. 
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Figure 6 The accuracy curve of the proposed model.

Figure 5 The loss curve of the proposed model.

Figure 4 Confusion matrix for grading DR in the proposed model. 
DR, diabetic retinopathy; NPDR, non-proliferative DR; PDR, 
proliferative DR.
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Ablation study

We then performed ablation studies on DR grading to 
evaluate the effectiveness of each module in our proposed 
model. We analyzed the effect of the CHAB and SPAB on 
the OCTA-DR data set with the baseline as the backbone 
network.

Analysis of the spatial attention module
Table 4 shows the results of grading DR with the SPAB. 
Notably, the accuracy of SPAB achieved an improvement of 
1.30% over the baseline. The advantage of the SPAB is that 
it captures the relationships in the spatial feature maps to 
alleviate the problem of small lesions being ignored during 
convolution.

CHAB
As Table 4 shows, our CHAB achieved an improvement 
of 0.74% over the baseline. To examine the relationship 
between the SPAB and CHAB, we simply connected these 
two attention modules in parallel. The baseline model with 
the SPAB and CHAB also achieved higher accuracy than the 
baseline model with the SPAB alone. We also compared our 
model with the most popular convolutional block attention 
module (48). The experimental results showed that our 
model outperformed all the baselines on the OCTA-DR 
data set.

Figure 7 shows the confusion matrices, which more 
intuitively represent the classification effect of each 
attention module. Notably, each attention module showed 
different degrees of improvement in the classification 
performance of no DR and mild NPDR, among which 
the baseline + CHAB + SPAB model showed the most 

obvious improvement in the classification performance 
of mild NPDR. Compared with the SPAB and CHAB 
modules, simply connecting these two modules in parallel 
further improved the ability of the models to classify mild 
NPDR and PDR. However, for the classification of no DR, 
the performance of the baseline + CHAB + SPAB model 
was low. Among all the attention mechanisms, the SPAB 
achieved the best performance for moderate-to-severe 
NPDR, while the CHAB achieved the best performance for 
the no-DR class.

Based on the above analysis, we conducted further 
experiments on the DR data set by separately weighting 
the feature maps of the SPAB and CHAB. The feature-
weighted attention mechanism was merged with the 
baseline data. The confusion matrix is shown in Figure 4. 
Compared to the unweighted attention module (baseline 
+ CHAB + SPAB), the weighted spatial attention and the 
channel attention post-attention mechanism (HAM) led to 
improvement in the performance classification of no DR 
and moderate-to-severe NPDR. However, the effect on 
the performance of the model for the other categories was 
minimal.

In summary, our extensive experimental results showed 
that the proposed attention module could be used to 
perform fine-grained classification.

Comparisons with other state-of-the-art methods

To further evaluate the performance of our method for 
grading DR, we compared our proposed model with other 
representative neural networks. All the methods achieved 
their optimal performance with the corresponding epochs 
for the training models.

As Table 5 shows, the accuracy rate of our model for 
grading DR for the OCTA-DR data set was 97.41%, which 
was 2.78% higher than that of the ordinal regularization 
network (ORNet) (34) and 6.85% higher than that of the 
model proposed by Dong et al. (30). As Table 6 shows, the 
kappa value of our model for DR grading was 0.8813 for 
the DRAC 2022 data set, which was 0.0310 higher than that 
of the ORNet and 0.0515 higher than that of the model 
proposed by Dong et al. (30). We found that the accuracy of 
the model on the challenged data set was superior to other 
mainstream models but did not achieve very satisfactory 
results. Thus, we analyzed the data set and found that 
the OCTA images in the data set had different degrees of 
motion artifacts and mosaic-like patches. Among them, 
the number of severe image deletions and similar mosaics 

Table 4 Ablation study of the CSANet for the OCTA data set 

Methods Accuracy

Baseline 0.9537

Baseline + CHAB 0.9611

Baseline + SPAB 0.9667

Baseline + CBAM 0.963

Baseline + CHAB + SPAB 0.9703

Baseline + HAM 0.9741

CSANet, channel and spatial attention network; OCTA, optical 
coherence tomography angiography; CHAB, channel attention 
block; SPAB, spatial attention block; CBAM, convolutional block 
attention module; HAM, hybrid attention module.
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Table 5 The accuracy and loss comparison of the proposed model with other mainstream convolutional neural network models on the OCTA-
DR data set 

Metrics Ours ORNet Dong (30) Inception V3 VGG16 GoogLeNet Resnet50

Accuracy 97.41% 94.63% 90.56% 81.25% 79.98% 79.78% 79.22%

Loss 0.0897 0.1552 0.2679 0.3882 0.4714 0.4901 0.4917

Epoch 60 60 70 60 60 50 55

OCTA-DR, optical coherence tomography angiography-diabetic retinopathy; ORNet, ordinal regularization network; VGG, visual geometry 
group.

Figure 7 Confusion matrix comparison of DR classification of each attention module. (A) Baseline, (B) baseline + CHAB, (C) baseline + 
SPAB, (D) baseline + CHAB + SPAB. CHAB, channel attention block; SPAB, spatial attention block; DR, diabetic retinopathy; NPDR, non-
proliferative DR; PDR, proliferative DR.
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Table 6 Kappa coefficient and accuracy comparison of the proposed model with other mainstream convolutional neural network models on the 
DRAC 2022 data set 

Metrics Ours ORNet Dong (30) Inception V3 GoogLeNet VGG16 Resnet50

Kappa 0.8813 0.8503 0.8298 0.8241 0.8082 0.7342 0.7676

AUC 0.9463 0.9394 0.9172 0.9130 0.9067 0.8882 0.8797

Accuracy 0.8571 0.8280 0.8017 0.7959 0.7638 0.7493 0.7289

Epoch 80 70 70 70 50 65 55

DRAC, diabetic retinopathy analysis challenge; ORNet, ordinal regularization network; VGG, visual geometry group; AUC, area under the 
receiver operating characteristic curve.

Figure 8 Low-quality images in the DRAC 2022 data set. From left to right: the missing pixels, the motion artifacts, and the mosaic-like 
patches. DRAC, diabetic retinopathy analysis challenge.

Table 7 Number of parameters for all models 

Model Parameters (M)

VGG16 134.28

Dong (30) 97.76

AlexNet 57.02

Inception V3 27.46

ORNet 25.61

ResNet-50 23.52

Ours 30.13

M, million; VGG, visual geometry group; ORNet, ordinal 
regularization network. 

in the no-DR category accounted for 11.3% of the total 
number of the original data sets and 21% of the no-DR 
category. Figure 8 shows some images with artifacts and of 
poor quality. We believe that artifacts and image quality are 
the main factors affecting the performance of the proposed 
model.

The advantages of our approach are twofold: (I) our 
proposed model uses lightweight deep neural network 
parameters. As Table 7 shows, our proposed model used 
only 30.13 million parameters, which is one-third of the 
amount of network parameters used by Dong et al. (30).  
Additionally, it achieves better performance with fewer 
parameters. Conversely, complex models will have 
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Figure 9 Visualization of different diabetic retinopathy severity levels for each hybrid attention module in the network using gradient-
weighted class activation mapping. From left to right, the feature maps show the first to fifth layers. The first row is mild DR samples; the 
second row is moderate-to-severe DR samples, and the third row is proliferative DR samples. DR, diabetic retinopathy. 

overfitting problems for a few-shot DR data set; and (II) 
we designed attention modules in the framework that can 
detect small lesions in DR images and improve the DR 
grading performance to some extent.

Visualizing the classification process of our model using 
gradient-weighted class activation mapping (Grad-CAM)

In this study, we use Grad-CAM (49), which can visualize 
the key regions of the feature maps of the models. The 
representative heat map generated by Grad-CAM is shown 
in Figure 9. The images in Figure 9 show mild NPDR 
patterns, moderate-to-severe NPDR patterns, and PDR 
patterns in each HAM block module in the network. Grad-
CAM can show the location of the discriminative features 
of the model during the training process. This will be useful 
for grading DR tasks. It should be noted that the proposed 
model is good at localizing the lesion location.

Discussion

Automated DR screening has become a research hotspot in 
medical imaging. Deep-learning methods have shown good 
performance in DR grading tasks; however, there is still 

a certain gap in the clinical application of such methods. 
In this article, we developed the CSANet to solve the 
overfitting problem caused by small lesions and few-shot 
DR samples. To improve the interpretability of the model, 
we also obtained the location maps of suspicious lesions in 
OCTA images so that the results generated by the model 
could help ophthalmologists make the correct diagnosis.

The experimental results showed that our proposed 
model achieved state-of-the-art performance on the OCTA-
DR and DRAC data sets. The advantages of our method 
are twofold: (I) the CHAB can capture a group of channel 
weights to focus on useful features and suppress irrelevant 
features; (II) the SPAB can capture a set of spatial weights, 
which addresses the issue of small lesions being ignored 
during the convolution process, and can learn richer 
features from the OCTA images.

Our method achieved state-of-the-art performance 
on the OCTA-DR data set and the DRAC 2022 data set; 
however, there is still room for improvement. First, the 
number of OCTA samples was relatively small, which led 
to the overfitting of the deeper neural network. Second, the 
entire network was only trained based on the image-level 
annotations, which made it very difficult to accurately locate 
small lesion areas.
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Conclusions

In this article, we developed a hybrid attention network 
(CSANet) that incorporates channel attention and spatial 
attention. The experimental results for the OCTA-DR and 
DRAC data sets showed that our network outperformed 
other related methods in grading DR tasks. In the future, we 
intend to use adversarial networks to generate richer OCTA 
images, which will to some extent prevent overfitting when 
training the model. Additionally, we also intend to try to 
develop useful rules for deeper neural networks for DR 
grading tasks.
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