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DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most
serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal micro-
scopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows
research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce
DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis.
DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and YH2AX) and uses U-Net
for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF
segmentation.

The proposed method was trained and tested on challenging datasets consisting of mixtures of nonir-
radiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-
87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer
patients. The cells were dosed with 0.5-8 Gy y-rays and fixed at multiple (0-24 h) postirradiation times.
Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among cur-
rent advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the
variability between two experienced experts, the software maintained its sensitivity and fidelity across
dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morpho-
metric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF
categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and
classification of patient tumors, with the potential to identify specific cell subclones.

The developed software improves IRIF quantification for various practical applications (radiotherapy
monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better
understanding of (radiation-induced) DNA damage and repair.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The ability to precisely and rapidly monitor DNA double-strand
break (DSB) induction and repair underpins numerous fields of bio-
logical, medical and space research (reviewed, e.g., in [1-4]). DNA

Abbreviations: 53BP1, P53-binding protein 1; CNN, convolutional neural
network; DSB, DNA double-strand break; FOV, field of view; GUI, graphical user
interface; IRIF, ionizing radiation-induced (repair) foci; MSER, maximally stable
extremal region (algorithm); NHDFs, normal human dermal fibroblasts; RAD51,
DNA repair protein RAD51 homolog 1; U-87, U-87 glioblastoma cell line; YH2AX,
histone H2AX phosphorylated at serine 139.
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DSBs are regularly introduced into DNA molecules by ionizing radi-
ation, radiomimetic chemicals and vital cell processes [5-7]. With
both DNA strands simultaneously cut, DSBs represent the most
serious type of DNA lesions [8], the accumulation of which, if left
unrepaired, promotes aging [9], neurodegeneration [10], infertility
[11], and other health consequences. Imprecise DSB repair then
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causes mutagenesis and may lead to cancer [7,12]. DSB damage
induction and repair monitoring thus opens the doors to personal-
ized medicine [3,4,13-15], for instance, coupled with direct radio-
therapy effect monitoring [13,16] and rational development of new
DNA-damaging [17-20] or DNA-protecting drugs [21-24] needed
in medicine [13,16,25] and radiation protection [26,27]. Precise
and automated DSB damage monitoring is also valuable for bio-
dosimetry [27-31], for instance, in situations related to mass radi-
ation accidents (terrorist attacks with radioactive materials) or
space exploration where astronauts would be exposed to a mixed
field of different radiation types [32-38]. Although biodosimetry
based on immunofluorescence detection of ionizing radiation-
induced (repair) foci (IRIFs) does not replace the methods based
on other biomarkers (e.g., chromosomal aberrations), it is currently
the most sensitive approach to detect DSB damage, as detailed
below.

A revolution in DSB detection has arrived with the discovery of
IRIFs that rapidly form at DSB sites after damage, which currently
serve as their most sensitive markers (reviewed, e.g., in [2-4]). One
of the early events at DSB sites is the phosphorylation of histone
H2AX at serine 139 (referred to as yH2AX), which eventually
spreads over 2 Mb of damaged chromatin and leads to the forma-
tion of so-called YH2AX foci [39]. YH2AX foci then serve as signal-
ing and structural platforms [40] that attract, in a spatially and
temporally organized manner, additional repair proteins to DSB
sites. Consequently, IRIFs of different repair proteins, characterized
by specific parameters and behavior, can be visualized in cell
nuclei by immunofluorescence microscopy. Since the number of
IRIFs tightly corresponds with the number of DSBs in most DNA
damage situations [41-43], the IRIFs formed by YH2AX or colocal-
ized repair proteins (such as 53BP1) can be considered quantitative
DSB markers with a single lesion sensitivity [44]. Although IRIFs
are only temporary structures, the advantage of the method is that
blood samples obtained from potential victims can be simply fixed
at the site of the accident and processed later, even after a long per-
iod, in the laboratory.

While flow cytometry offers fast, automated quantification of
integrated values of these repair signals in high cell numbers
[45], microscopy allows detection of individual IRIFs in the context
of their natural chromatin environment in individual cells and
analysis of their property development over time [35,46,47]. Char-
acterization of morphological and behavioral parameters of IRIFs
formed by repair proteins participating in different DSB repair
pathways [48]—such as 53BP1 and yYH2AX, which were used in
the present manuscript for illustration—opens the doors to explor-
ing spatiotemporal interactions between repair proteins at individ-
ual DSB sites, deepening our insights into mechanisms of DSB
induction and (mis)repair [13-15,37,49-56].

IRIFs are, by nature, highly dynamic structures. Their number
per nucleus and other parameters, such as size, intensity, shape,
and border sharpness, change dramatically during the postdamage
period as repair proceeds [37,57-60]. Moreover, cell types or even
individual cells of the same population show extreme differences
in generated DSB/IRIF numbers, IRIF properties, and intensity of
the background signal [36,37,60,61]. This fact is attributed to the
randomness of damage induction, generation of DSBs that are
repaired with unequal efficiencies, heterogeneous cell states, asyn-
chronous repair of individual DSBs, and cell biological variability.
In addition, IRIF parameters are influenced by the sample prepara-
tion [31,62]. Confocal microscopy image data thus cannot be con-
sidered quantitative without careful calibration and detailed
knowledge on the exact experimental and biological behavior of
the cell type studied. Simplistic intensity thresholding or
approaches based on predefined parameters thus frequently fail,
making the correct identification of IRIFs impossible. Accordingly,
The Second yH2AX-Assay Inter-Comparison Exercise carried out in
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the framework of the European Biodosimetry Network (RENEB)
[30], other available literature sources, and our experience have
demonstrated that manual inspection of images by an expert eye
still ensures more precise IRIF identification than automatic soft-
ware algorithms. Nevertheless, visual quantification of IRIFs is
extremely time-consuming and difficult even for a trained eye.
Moreover, unless all data are analyzed by a single observer, which
is practically impossible, the results may suffer from dramatic vari-
ations [28]. Hence, the results obtained by different observers and/
or laboratories can only be compared with extreme caution
[31,63,64]. This unsatisfactory situation means that without suit-
able software, the evaluation of large image datasets, as generated,
for instance, in the case of mass radiation accidents, remains unre-
alistic. This problem strongly complicates other practical (e.g.,
medical) applications and research.

Moreover, the information on architectural IRIF properties, such
as the focus size, intensity, and shape, is left unexplored by visual-
only evaluation. The IRIF architecture has been recognized as an
important factor regulating DSB repair processes and potentially
participates in decision-making for a particular repair mechanism
(pathway) at individual DSB sites [37,38,56,65-67]. Architectural
IRIF defects or their enhanced presence often appear in cells
affected by cancer [36,37,68,69|, precancerous syndromes
[14,15,69] and aging [70]. Hence, the improved ability of automatic
software detection coupled with detailed characterization of IRIFs
formed by individual repair proteins would be immediately recog-
nized in numerous research fields as well as important practical
areas of human activity related to DNA damage (e.g., medicine,
radiation protection and space exploration).

Several strategies to segment IRIFs (usually YH2AX or 53BP1)
have recently been published [71-75]. Focinator [71,76], FindFoci
[72], the method proposed by Feng et al. [73], Foco [74], AutoFoci
[75] and FocAn [76] represent the most important open-source
attempts. Commercial software packages developed for micro-
scopy image processing by microscope-providing companies are
not focused on IRIFs specifically, and the ongoing effort to develop
new open-source IRIF analysis platforms clearly demonstrates that
many important issues have not been solved satisfactorily.

To conclude, while automatic IRIF quantification (and nucleus
segmentation) with only simple processing techniques, such as
thresholding, is inefficient due to variability of the fluorescence
intensity and other IRIF parameters between the cells and experi-
ments, massive quantities of image data related to emergency bio-
dosimetric events or required to meet the research requirements
preclude manual analysis of IRIFs. Even if there are sufficient
human resources for this purpose, the results of different evalua-
tors (even from the same laboratory) usually suffer from a strong
subjective bias and are therefore hardly comparable. Moreover,
IRIF parameters cannot be quantified, except for the number.

In the present manuscript, we introduce DeepFoci, a novel
robust software based on machine (deep)-learning strategies for
fully automated identification and characterization of IRIFs formed
by different repair proteins. The software overcomes serious short-
comings associated with IRIF detection as described above and
allows segmentation of cell nuclei and IRIFs with high fidelity, even
in the case of challenging cell specimens of dramatically different
quality as they appear in daily practice. The precision, specificity
and reproducibility of the procedures are further enhanced by dual
DSB labeling and colocalization analysis of two selected indepen-
dent DSB markers [21,35]. At the same time, this approach allows
studies on spatiotemporal interactions between IRIF proteins dur-
ing repair. The software was successfully trained and tested on
extremely challenging datasets based on tumor cell primary cul-
tures; in all cases, DeepFoci exhibited performance comparable
to that of a careful, time-demanding manual analysis by an experi-
enced expert.
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2. Methods
2.1. Cells and cell culturing

The following cells were used: (1) Normal and cancerous stan-
dard permanent cell lines represented by primary normal human
dermal fibroblasts (NHDFs, PromoCell, Heidelberg, Germany) iso-
lated from the dermis of the juvenile foreskin or adult skin and
highly radioresistant U-87 glioblastoma cells (ATCC HTB-14, LGC
Standards, United Kingdom), respectively; and (2) Tumor and
tumor-adjacent primary cell cultures isolated from patients with
squamous cell cancer of head and neck (tumor and tumor-
adjacent tissues). While the permanent cell lines represented bio-
logically homogeneous and technically relatively easy samples,
tumor cell primary cultures were considered highly heterogeneous
and challenging samples.

The protocol for patient primary culture isolation was described
in [78]. The primary culture was cultivated in RPMI-1640 medium
with Pen/Strep antibiotic solution (PAA Laboratories GmbH, Aus-
tria) and 10% fetal bovine serum (FBS, Biochrom, USA), at 37 °C
and 5.0% CO, in a humidified atmosphere up to 50% confluence.
NHDF and U-87 cells were grown in Dulbecco’s modified essential
medium (DMEM, Life Technologies) supplemented with 10% fetal
calf serum (FCS) and a 1% gentamicin-glutamine solution (all
reagents from Sigma-Aldrich).

2.2. Irradiation

The cells were irradiated with different doses of y-rays pro-
duced by a ®°Co irradiator (Chisostat, Chirana, CR) at the Institute
of Biophysics of the Czech Academy of Sciences, Brno, Czech
Republic. Permanent cell cultures — NHDFs and cancer U-87 cells
- were irradiated with increasing single doses of 0.5, 1, 2, 4 or
8 Gy (D =1 Gy/min) y-rays. Patient-derived primary cultures were
irradiated with a single dose of 2 Gy due to the different character-
istics of the intended experiments and lack of material, using the
same irradiation conditions as those of the permanent cell lines.
The cells were irradiated in culture flasks containing a normal
atmosphere and appropriate culturing medium and placed in a
thermostable box to keep the temperature of the cells close to
37 °C. Irradiated cells were immediately returned to the ther-
mostat (37 °C, in a normal atmosphere), and DSBs were repaired
for the indicated periods of time postirradiation (PI). Subsequently,
the cells were detached from the culturing flask bottoms, attached
to glass microscopy slides for 5 min without dehydration, spatially
(3D) fixed, immunolabeled, and visualized by confocal microscopy
as described in the particular paragraphs below. The irradiation
procedure and sample processing were set to resemble real acci-
dent conditions.

2.3. Cell fixation and immunostaining

Aliquots of nonirradiated cells (0 min PI) and irradiated cell
samples were washed in phosphate-buffered saline (PBS) and spa-
tially (3D) fixed with 4% buffered paraformaldehyde for 10 min at
room temperature (RT) at different periods of time PI—30 min, 8 h
and 24 h PI. Subsequently, cells were permeabilized with 0.2%
Triton X-100/PBS for 15 min and immunolabeled for IRIFs. Two
combinations of primary antibodies were used for immunofluores-
cence detection: anti-phospho-histone H2AX (mouse, clone
JBW301; Merck Millipore, Darmstadt, Germany, cat. no.: 05-636;
1:400) + anti-53BP1 (rabbit; Cell Signaling Technology, Danvers,
MA, USA, cat. no.: 4937; 1:400) or anti-phospho-histone H2AX
(mouse; Merck Millipore; 1:400).
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Among other IRIFs and DSB markers, YH2AX foci and 53BP1 foci
were selected for the following purposes: YH2AX foci have been
used as DSB markers in numerous studies and can indicate changes
in chromatin structure that appear at DSB sites during DSB repair.
53BP1 protein participates in DSB repair and the decision-making
process for nonhomologous end joining (NHE]) or homologous
recombination (HR) at particular DSB sites. Since 53BP foci colocal-
ize well with yH2AX foci and are formed in a kinetically similar
manner to these foci, 53BP1 and YH2AX foci are often codetected
to enhance the fidelity and reliability of DSB quantification [21,35].

The immunodetection procedure used was described previously
[21,35]. Briefly, after incubation with primary antibodies (over-
night at 4 °C), a mixture of secondary antibodies was applied for
1 h (RT). Primary antibodies were visualized by the mixture of
FITC-conjugated donkey anti-mouse and Cy3-conjugated donkey
anti-rabbit (both Jackson ImmunoResearch Laboratories, West
Grove, PA, cat. nos.: 715-095-150 and 711-165-152) applied in
1:100 and 1:200 dilutions, respectively (30 min incubation at RT
in the dark). Alternatively, anti-mouse Alexa Fluor 647 and anti-
rabbit Alexa Fluor 568 (Thermo Fisher Scientific) secondary anti-
bodies were used, which are directly compatible with both confo-
cal microscopy and single-molecule localization microscopy
(SMLM). The antibodies were diluted in sterile donkey serum
(1:400 and 1:200, respectively; cat. no.: P30-0101, Pan Biotech
GmBH) and applied to the cells for 30 min (RT, in the dark). After
incubation, the cells were washed three times in 1 x PBS for 5 min.

The cell nuclei were stained with 4/,6-diamidino-2-phenylin
dole (DAPI, 5 min at RT) provided as Duolink In Situ Mounting Med-
ium with DAPI (DU082040; Sigma-Aldrich; now Merck, Darm-
stadt, Germany) and diluted to a concentration of 1:20,000 [79].
Afterward, the slides with cells were washed three times in
1 x PBS for 5 min each. Finally, the coverslips were air-dried,
and the cells were embedded in ProLong Gold (Thermo Fisher Sci-
entific). ProLong Gold was left to polymerize for 24 h in the dark at
RT. After complete polymerization, the slides were sealed with nail
polish and stored in the dark at 4 °C. Alternatively, nuclear chro-
matin was counterstained with 1 pM TO-PRO-3 (Molecular Probes,
Eugene, OR) in 2 x saline sodium citrate (SSC), prepared fresh from
a stock solution. After brief washing in 2 x SSC, Vectashield med-
ium (Vector Laboratories, Burlington, Canada) was used for final
mounting of the samples.

2.4. Confocal microscopy

A Leica DM RXA microscope equipped with a DMSTC motorized
stage, piezo z-movement, MicroMax CCD camera, CSU-10 confocal
unit and 488, 562, and 714 nm laser diodes with acousto-optic tun-
able filters (AOTFs) was used to acquire detailed cell images with a
100 x oil immersion Plan Fluotar lens (NA 1.3) with a Z step size of
0.3 pm; usually, fifty serial optical sections were captured along
the z-axis. The equipment was controlled by the Acquiarium soft-
ware developed by [80]. The resulting images were 90.0 x 67.2 x
15 pm xyz (1392 x 1040 x 50 px). The exposure times for individ-
ual channels were experimentally set to suitable values that
ensured comparable imaging, even for samples with different
labeling efficiencies. All samples were maintained at a constant
temperature of 20 °C to reduce microscope overheating and thus
prevent an increase in chromatic aberrations (shifts among the R,
G and B channels).

2.5. Datasets for software analyses

Two datasets were used in the study. Dataset (1) was based on
patient-derived primary cell cultures prepared from squamous cell
cancer and morphologically normal tissues adjacent to the tumor
taken from patients suffering from head and neck cancer. The data-
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set consisted of several cell types: a) tumor cells, b) tumor-
associated fibroblasts, and c) cells from morphologically normal
tissues. All cell types were fixed at different periods of time (0
(nonirradiated control), 0.5, 8 or 24 h PI) after exposure to 2 Gy
v-rays. Overall, this dataset consists of 389 samples (containing
tumor cells, tumor-associated fibroblasts, or normal cells analyzed
at different time points after exposure to different radiation doses)
from 77 patients, where each sample contains ~32 fields of view
(FOVs), with 12,650 FOVs in total. The dataset was divided into
two subsets: (1.1) for training, validation and testing the nucleus
segmentation (237/10/30 FOVs; 1090/89/139 cells) and (1.2) for
training, validation and testing the colocalized IRIF segmentation
(239/60/100 FOVs; 1047/243/343 cells). The representation of cells
in the two subsets with respect to the cell type, patient, radiation
dose, and PI time (i.e., DSB repair duration) was randomized to
make the datasets as diverse as possible in order to train the most
universal method and ensure the most reliable evaluation of real,
often very heterogenic cell samples. Validation data were used
for evaluations during model training and for adjustment of train-
ing parameters. Moreover, postprocessing parameters were set
optimally for the validation data. The testing dataset was used to
evaluate the proposed method.

Dataset (2) was composed of multiple types of differently trea-
ted cell lines to establish a highly challenging dataset maximally
reflecting high biological and technical variability between sam-
ples, as may appear in research or clinical practice. The dataset
contained a) mesenchymal NHDFs coming from a standard perma-
nent cell line (331 annotated FOVs) and b) radioresistant U-87
glioblastoma cells coming from a standard permanent cell line
(348 annotated FOVs). NHDF and U-87 cells received 0.5, 1, 2, 4
or 8 Gy y-rays and were fixed at 0.5 h and 8 h PIL Dataset (2)
was used to train single-channel detection of YH2AX and 53BP1
channels in multichannel images and to assess the robustness of
segmentation procedures.

2.6. Ground truth generation

Manual annotation of nuclei and IRIFs is required for convolu-
tional neural network (CNN) training and performance evaluation.
As both nucleus segmentation and IRIF detection are performed in
3D, manual labeling with available labeling tools is problematic.
For this reason, a customized labeling graphical user interface
(GUI) was created in MATLAB, enabling easier 3D data labeling.
The tool for nucleus segmentation is based on the presegmentation
of an image with the simple linear iterative clustering (SLIC) super-
pixel approach [81], where superpixels are then labeled in the GUI
by the user. For detection training, IRIFs were predetected with the
same algorithm as that for the final segmentation, where the CNN
was replaced by a simple local maxima detector applied on the
colocalization image. This detector was set to high sensitivity to
capture all potential IRIFs. At this point, the user selects real foci
from IRIF proposals in the 2D projection image, where its 3D coor-
dinates are taken from the detector. Nuclei and IRIFs for training
were manually annotated in 3D by one expert. IRIFs for testing of
the algorithm were labeled in 2D projection.

2.7. Evaluation metrics

To evaluate the accuracy of nucleus segmentation in 3D, the
SEG score (objectwise intersection over union (IoU)) was used
[81]. To calculate the SEG score, the IoU (also known as the Jaccard
index) is needed, which is defined in equation (1):

XnyY

loU =7y

(1)
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where X and Y are manually annotated segmentation masks
and predicted segmentation masks, respectively. For every manu-
ally annotated object, the segmented object with the largest loU
is found. Next, the average IoU of all manually annotated objects
is calculated. If the IoU for any manually annotated object is smal-
ler than 0.5, then the IoU for this object is set to 0. This approach
ensures that each manually annotated object can be paired with
only one segmented object. The resulting SEG is an average of
the IoUs for all manually annotated objects. To evaluate the detec-
tion accuracy of individual IRIFs, the Dice coefficient (F1-score) was
used, as defined as equation (2):

2TP
2TP +FP +FN @)

where TP is the number of true positive IRIFs, FP is the number
of false positives and FN is the number of false negatives.

Dice =

2.8. Ethical declarations

The study was conducted in accordance with the 1964 Declara-
tion of Helsinki and all subsequent revisions thereof. Moreover,
this study was approved by the ethical committee of St. Anne’s Fac-
ulty Hospital, Brno.

3. Results

To overcome important shortcomings of currently available
procedures for DNA repair focus (IRIF) analysis, we have developed
DeepFoci, a novel software tool based on artificial neural networks
and deep learning that allows fully automated detection, quantifi-
cation and analysis of these structures in the context of their nat-
ural environment, i.e., within the architecture of the cell nucleus
(chromatin). DeepFoci is written in MATLAB and Python and is pri-
marily focused on precise 3D segmentation of IRIFs and cell nuclei
in large datasets of confocal microscopy images and consequent
analysis of recorded data. To fully benefit from the software abili-
ties, IRIF visualization with fluorescently tagged antibodies against
two different DSB markers was applied. This dual labeling
approach improves the precision of DSB quantification and, at
the same time, allows studying the spatiotemporal relationships
among YH2AX (or other epigenetic modifications), repair proteins
of interest, and chromatin architecture/function at individual DSB
sites. Nevertheless, analysis based on staining with a single IRIF
marker (e.g., YH2AX) is also possible if preferred based on the char-
acteristics of an experiment or practical situation. In the present
manuscript, YH2AX and 53BP1 were selected as IRIF markers—
YH2AX because of its widespread usage for this purpose and
53BP1 protein due to its involvement in both main DSB repair
pathways (NHE] and HR) [83,84]. Moreover, YH2AX and 53BP1 foci
differ in their morphological features but share similar formation-
decomposition kinetics and extensively colocalize with each other.
The protein RAD51 is a DSB repair protein selectively involved in
HR and, as such, colocalizes with only a subset of YH2AX foci. Foci
of RAD51 appear at a later PI time than YH2AX and 53BP1, and
their morphology leads to more difficultly in software analysis.

Images were preprocessed with a5 x 5 x 1 median filter, Gaus-
sian filter with sigma 1. The proposed IRIF analysis method con-
sists of three main steps (see Fig. 1): (1) initial instance
segmentation of single nuclei with a CNN, (2) detection of individ-
ual IRIFs again with the CNN and (3) segmentation of detected foci
with the maximally stable extremal region (MSER) algorithm.



T. Vicar, J. Gumulec, R. Kolar et al.

input data CNN nucleus segmentation

Computational and Structural Biotechnology Journal 19 (2021) 6465-6480

nucleus (DAPI)
IRIF focus (
50 Z stack

+ 53BP1)
30 z-stack
nuclear staining

nan

individual nucleus
3D masks

nucleus-only area

predicted gaussian

individual foci seedpoints

53BP1/
50 Z stack

centroids
v
YH2AXx53BP1 MSER output

watershed v

‘ - “n%‘ I

co-localization semantic segmentation |

7-stack mask z-stack IRIF focus nucleus + IRIF
3D masks focus 3D masks

Fig. 1. Block diagram of IRIF detection. Three-channel images are used for a network input: one for nuclear staining and two for IRIF staining, as exemplified by DAPI
staining of the nuclei (blue) and immunodetection of YH2AX (green) and 53BP1 (red) IRIFs. The process is divided into three steps. First, 3D nucleus masks are created using a
U-Net convolutional neural network (CNN) from the channel for nuclear staining. Second, individual IRIFs are detected with the CNN. Third, individual foci are segmented
from a multiplied z-stack composed of the two channels for IRIFs by utilizing a maximally stable extremal region (MSER) detector. The output of these three steps is finally
merged into nucleus/IRIF 3D masks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1. Nucleus segmentation

The image-to-image encoder-decoder CNN with the U-Net
topology [85] (See Supplementary Fig. 1) was proved to be very
powerful for biomedical image segmentation. However, it pro-
duces just foreground-background (semantic) segmentation in
most standard cases. The standard U-Net architecture does not
ensure single nucleus separation, as every error in the boundary
voxels results in the connection of neighboring nuclei into one seg-
mented object. Successful separation of individual nuclei was
achieved by modifying the network to predict the eroded binary
masks. However, this approach can still lead to incomplete separa-
tion of individual nuclei due to prediction errors on the boundary
between nuclei. Accordingly, 3D CNN prediction is followed by dis-
tance transform (DT) and watershed segmentation (applied to the
negative DT image) to separate the touching nuclei [86]. Moreover,
the DT image is processed with the h-maxima transform and grays-
cale dilation, which prevents oversegmentation. This step removes
the maxima that are close to each other and separated by an insuf-
ficient decrease in the image intensity. The minimal distance
between the maxima is controlled by the radius of the structuring
element and the minimal image intensity decrease defined by the h
parameter of the h-maxima transform. Afterward, the resulting
image is dilated to compensate for the initial erosion of ground
truth masks. To prevent nucleus merging, dilation is performed
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sequentially for individual nuclei. Both the h parameter and mini-
mal distance between the maxima were optimized with grid
search on a validation set.

3.2. IRIF detection

Similarly, 3D U-Net with the same architecture was applied for
the detection of individual IRIFs. In this case, an image with the 3D
Gaussian function overlaid over the position of each IRIF centroid
represented the ground truth for CNN training. Thus, the 3D CNN
estimates possible foci in the form of a Gaussian function, which
is further postprocessed. Individual foci were detected using max-
ima detection—local maxima with a value above the threshold
were considered detected foci, and the h-maxima transform was
utilized to prevent multiple detections of the same IRIFs due to
inaccurate CNN prediction. Moreover, grayscale dilation was
applied to set the minimal distance between detected IRIFs. The
threshold, h parameter and minimal IRIF distance were optimized
with grid search on a validation set.

3.3. IRIF segmentation
The MSER algorithm [87] is a segmentation technique that is

generally very robust to illumination changes and, therefore, suit-
able for the segmentation of fluorescence microscopy images of
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varying intensity. Extremal regions of an image are defined as the
connected components of a thresholded image. MSER produces
stable extremal regions of the image, which are stable in the sense
of the volume variation w.r.t. changes in the threshold. The mini-
mal allowed stability of the extracted region can be set with two
parameters—the threshold step and the maximal relative volume
change associated with this step.

This IRIF segmentation approach was applied to the colocaliza-
tion image created as a multiplication of the two IRIF channels (as
represented by YH2AX and 53BP1 signals here). Using MSER, mul-
tiple segmentation variants of increasing size for every IRIF were
generated. The size was restricted to the maximal IRIF volume.
Of the segmentation variants, the largest was selected as a final
segmentation mask. The IRIF segmentation produced by MSER
was then combined with U-Net IRIF detection employing the
seeded watershed transform. The seeded watershed transform
[88] was then applied to the colocalization images, where the out-
puts of IRIF detection served as the seeds and those of MSER served
as the foreground mask.

3.4. Implementation details

MATLAB R2021a with Image processing and Deep Learning
Toolboxes and VLFeat library (for 3D MSER) [89] was used. The
3D U-Net network [85] with 16 filters in the first layer was
employed for both the nucleus segmentation and IRIF detection
settings. The whole network had a depth of 4 (with 4 encoder
and decoder blocks separated by max-pooling/transposed convolu-
tion), with the number of filters doubled for blocks of lower reso-
lution. Each block consisted of 2 layers of convolution, batch
normalization and rectified linear unit (ReLU) nonlinearity; the
whole architecture is shown in Supplementary Fig. 1. For nucleus
and IRIF detection, only the loss functions were different: the Dice
loss [90] for nucleus segmentation and the mean-squared error
loss for IRIF detection. For higher computational efficiency and
the graphics processing unit (GPU) memory limit of nucleus seg-
mentation and IRIF detection, the image volumes were downscaled
in the x-y dimensions by a factor of two and in the z dimension
from size 50 to size 48 (to size 505 x 681 x 48 px). Images were
preprocessed with normalization of each channel based on image
upper and lower percentile values; specifically, values from the
0.01-99.99 percentile range were projected to range —0.5-0.5.
Augmentation with a selection of random patches in the x-y direc-
tion (96 x 96 x 48), random flips in the x-y direction, random rota-
tion by multiples of 90°in the x-y direction, and multiplication of
image pixels by a random value between 0.5 and 1.5 was used.

3.5. Nucleus segmentation evaluation

The SEG instance segmentation measure [82] was adapted for
the segmentation of nuclei. Two nuclei were considered matching
if the IoU was equal to or greater than 0.5. Each ground truth
nucleus was included exactly once to prevent assignment to mul-
tiple nuclei. Nucleus segmentation was tested on a dataset consist-
ing of 30 FOVs annotated by a single expert, using the same tool
employed to generate the training data. The proposed method
achieved a median SEG score of 0.82 (median over FOVs). The rep-
resentative FOV with a SEG score of 0.80 and the distribution of
SEG values (a histogram for all FOVs) are shown in Fig. 3a and b,
respectively.

3.6. Colocalized IRIF detection evaluation
The accuracy of automated IRIF detection was compared to that

of manual annotation performed by two experienced experts on
the maximum-projection images. The Dice coefficient served as
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the IRIF detection accuracy metric (see Methods). The IRIFs
detected by the proposed software procedures and annotated man-
ually were considered mutually matching if their centroids were
closer than 1.95 pm (30 px), a value corresponding to maximal dis-
persion of manual annotations between experts. The IRIF detection
performance using DeepFoci is presented in Fig. 2c-e. Manual
annotation by two experts enabled not only evaluating IRIF detec-
tion by DeepFoci itself but also estimating the minimum difference
that can be observed between experts. The difference between
manual expert annotations provided a median Dice coefficient of
0.75. The discrepancies between the automated IRIF detection/seg-
mentation by DeepFoci and manual annotations by either of the
experts were close to the variability between experts, with a Dice
coefficient of 0.64 for expert 1 and 0.70 for expert 2 (Fig. 2f). An
example of automated IRIF detection and segmentation is pre-
sented in Fig. 2c-e.

3.7. Colocalized IRIF detection method verification and practical
applications

The DeepFoci performance was compared with that of two
recently published tools for IRIF counting, namely, FocAn [76]
and AutoFoci [75], and with that of CellProfiler (universal particle
analysis software). For AutoFoci and FocAn, only the IRIF segmen-
tation part (without nucleus segmentation) was applied. For 2D
methods (AutoFoci and CellProfiler), the maximum intensity
projection images were used. CellProfiler and FocAn were designed
for single IRIF fluorescence staining; thus, the procedures were
applied to the colocalization images (obtained by multiplication
of the two IRIF channels) because this variant achieved the best
results. The parameters of these methods were optimized using
grid search. For AutoFoci, the most reliable values were searched
and set up for the object evaluation parameter threshold, minimal
focus distance and top-hat structuring element radius. For FocAn,
the minimal focus distance, threshold value and neighborhood size
of the adaptive threshold were optimized. CellProfiler employed a
simple pipeline (based on [72]) with the
EnhanceOrSuppressFeatures—Enhance Speckles option and with the
IdentifyPrimaryObjects—Otsu method and distance local maxima
suppression, where the minimal focus distance and Enhance Speckles
parameters were tuned.

Based on the performance on our challenging testing dataset,
composed of heterogeneous primary cell cultures derived from
squamous cell head and neck cancer patients’ tumors (see Methods
for details), the highest accuracy among all compared software
detection methods was achieved with DeepFoci. The median Dice
coefficient for FocAn, AutoFoci, CellProfiler and DeepFoci was
0.22, 0.38, 0.49 and 0.67, respectively (Fig. 3a).

To further compare DeepFoci with these already available soft-
ware approaches, the correlation between the manually annotated
and automatically detected IRIFs was evaluated for nuclei with var-
ious IRIF counts, ranging from 0 or only a few in nonirradiated con-
trols to several dozens in cells fixed at 1 h PI. To cover all stages of
DSB repair that differ dramatically in the number of IRIFs per
nucleus and IRIF parameters, primary tumor cultures were fixed
at different periods of time until 24 h PI. Specifically, the fixation
times were selected to test the software ability to quantify a) large
quantities of morphologically variable IRIFs at the time of their
maximum appearance in nuclei (0.5 h PI), b) medium quantities
of large but differently diffused late IRIFs (8 h PI) and c¢) low quan-
tities of only a few persistent IRIFs (“irreparable” DSBs) in cells that
almost accomplished repair (24 h PI). Nonirradiated cells (0 min PI)
served as the negative controls with no or only a few naturally
occurring IRIFs. Among all software approaches (Fig. 3b), the IRIF
numbers detected by DeepFoci best correlated (had the most linear
dependence) with those obtained for the same corresponding
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Fig. 2. The results of nucleus segmentation and colocalized IRIF detection. a-b Nucleus segmentation performance; a. Comparison of automatic and manual nucleus
segmentation. Segmentation results for a single field of view (FOV), single Z slice, NHDF cells, and DAPI staining are shown (left), together with 3D reconstruction (right). b.
Histogram of the SEG score for nucleus segmentation with 30 segmented FOVs used for testing. The red line indicates the median SEG of all FOVs. c-f. IRIF segmentation
performance. c. IRIFs after 2 Gy y-ray exposure, 8 h postirradiation, oropharyngeal squamous cancer cells from patients, YH2AX/53BP1 staining, max projection,
100 x magnification. d Comparison of manual annotation and DeepFoci detection results. e. Top — 3D confocal data of the detail indicated by a gray square in 2c; bottom -
binary masks detected by the proposed CNN. f. IRIF detection performance, comparison of the automatic result with two manual annotations by experts shown as the median,
IQR and min-max in 1.5 IQR. The red line indicates the median Dice coefficient of IRIF detection between two experts. The scale bar in all FOVs indicates 10 pm. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nuclei by manual expert analysis (average values for individual
experts are plotted in Fig. 3b). Moreover, unlike other tested meth-
ods, DeepFoci retained both its sensitivity and fidelity over the
whole scale of possible IRIF quantities. The detection performance
of those methods for representative images with various numbers
of IRIFs is shown in Supplementary Fig. 2.

To demonstrate the practical usability of DeepFoci and further
test its performance, DSB repair kinetics and IRIF morphology were
compared for head and neck squamous cell cancer primary cul-
tures and tumor-adjacent cultures using additional FOVs that were
not involved in training. For all the tumor cell primary cultures and
tumor-adjacent nontumorous primary cultures, the IRIF numbers
peaked at 0.5 h PI, followed by a significant drop at 8 h PI and per-
sistence of only a few IRIFs/nuclei at 24 h PI (Fig. 3¢). Such a repair
profile (repair kinetics) corresponds well with the profile expected
for cells exposed to 2 Gy gamma radiation [13], i.e., the conditions
used in the present work.

In addition to the number of IRIFs per nucleus, analyzed as the
only parameter in most studies, a wide spectrum of other parame-
ters can be extracted by DeepFoci, including the focus intensity in
two color channels, the intensity of chromatin staining at the IRIF
site and extent/characteristics of colocalization in all color chan-
nels. Furthermore, it was possible to measure the 3D morphomet-
ric features of IRIFs and nuclei, such as their volume, solidity, and
circularity. The principal component analysis biplot (Fig. 3d) shows
the interdependence between these parameters and examples of
multiparameter classification/categorization of IRIFs. The graphs
demonstrate that the separation of cell groups of interest—as plot-
ted for tumor vs. tumor-adjacent (normal) tissue cells (left) or cells
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allowed to repair DSBs for various PI times (right)—is much better
than that solely based on the IRIF numbers. This result demon-
strates that the IRIF parameters could be mutually interdependent
in a complex way, so their joint consideration may allow catego-
rization of cell groups even in cases when they cannot be separated
solely based on the IRIF numbers. In our head and neck squamous
cell cancer dataset, the tumor tissue cells and tumor-adjacent tis-
sue cells with similar average IRIF counts per nucleus were distin-
guished when the morphology of IRIFs (e.g., the average 3D
solidity) and intensity of 53BP1 foci were taken into account. Deep-
Foci analysis also revealed several distinct cell groups within the
same dataset, corresponding to cells fixed at different periods of
time PI (Fig. 3d, right). In this case, the inclusion of YH2AX focus
intensity emerged as an important parameter, in addition to the
extent of YH2AX and 53BP1 mutual colocalization. This finding is
in accordance with the fact that 53BP1 binds to YH2AX early after
DSB induction and dissociates when the damage is repaired, which
is also accompanied by YH2AX dephosphorylation. The degree of
colocalization between YH2AX and repair proteins thus proved
useful for the separation of cells in different phases of the repair
process and, in some cases, the separation of normal and tumor
cells.

3.8. Single-channel IRIF analysis in multichannel images

In addition to providing analysis based on YH2AX and 53BP1
colocalization, the DeepFoci system enables the quantification of
fluorescence channels independently. The applicability of this fea-
ture was verified on a dataset composed of permanent cell lines -
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normal human skin fibroblasts (NHDFs) and U-87 glioblastoma
cells. U-87 cells are derived from a radioresistant brain tumor that
was treated by radiotherapy, while NHDFs are normal (nontrans-
formed) cells with relatively lower radioresistance and are always
exposed to radiation during radiotherapy or in the event of a radi-
ation accident. Due to these differences between NHDF and U-87
cells and their different origins, cell-type-specific IRIF morphology
and repair dynamics are expected (as already reported in [37]).
Moreover, the differences may appear only for one IRIF type
(YH2AX or 53BP1, in the present case) or affect both IRIF types in
different ways. Indeed, the extent of YH2AX and 53BP1 IRIF colo-
calization differed between NHDF and U87 cells (see Fig. 5). This
difference may be due to different DSB repair capacities and/or
repair mechanisms activated in NHDF and U87 cells or as a conse-
quence of repair defects in U87 cancer cells. However, the total
number of generated DSBs (labeled by YH2AX) may remain unin-
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fluenced. Hence, the estimation of radiation dose based on colocal-
ized YH2AX and 53BP1 (or other repair protein) IRIFs may lead to
dose underestimation. Therefore, the regimen of analyzing differ-
ent IRIFs independently was implemented in DeepFoci.

The cells were exposed to a wide spectrum of doses (0.5-8 Gy)
and analyzed at the PI period characteristic of the maximum IRIF
occurrence (0.5 h PI) and later (8 h PI) at a stage when most DSBs
have already been repaired but the repair of problematic DSBs is
still ongoing (see Fig. 5 a). For this evaluation, IRIFs were manually
labeled separately in both YH2AX and 53BP1 channels. The same
detection network used for the colocalized IRIFs was trained for
the two channels. Hence, three networks were trained - two for
the detection of YH2AX and 53BP1 IRIFs in individual channels
and one for the detection of colocalized IRIFs only (Fig. 4a-c). Fol-
lowing single-channel detection, colocalized foci could be detected
from two individually detected channels. Two different approaches
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were tested: 1) the prediction of colocalized IRIFs trained on
merged YH2AX and labeled 53BP1 (pre-colocalization) and 2) the
prediction of IRIFs in individual channels by merging the results
afterward (post-colocalization) (see Fig. 4 b-c). The colocalization
for merging labels/results was defined by a minimal distance of
53BP1 and YH2AX IRIFs and experimentally set to 3.3 um (20 pix-
els in x-y). The comparison of the Dice coefficient for single-
channel detection and pre/post-colocalization is shown in Fig. 4
d, where post-colocalization achieved slightly better results than
pre-colocalization, with median Dice values of 0.780 and 0.769,
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respectively. Thus, the post-colocalization approach was used for
the following evaluations.

The results were evaluated using 5-fold cross-validation, where
the whole experiment (measurement of a specific cell line at a
specific time with a specific irradiation dose) was included or
excluded for training or testing. Consistent with the manual anno-
tation results, DeepFoci demonstrated stable performance across
the different radiation doses, PI times, and cell types, with an over-
all Dice coefficient of 0.78 (Fig. 5 b-d). A slightly lower accuracy
was registered only in nuclei with low IRIF numbers (<10 IRIFs
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focus marking DNA double-strand breaks.

per nuclei), specifically NHDF cells exposed to doses lower than
1 Gy (Fig. 5 d).

4. Discussion
The discovery of IRIFs has been a milestone in radiobiology and

medical research. Currently, IRIF monitoring represents the most
sensitive and versatile method to quantify DSBs and study repair
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protein interactions and epigenetic modifications at individual
DSB sites within the natural environment of the cell nucleus and
with time. Immunofluorescence microscopy provides the most
complex information on IRIFs, so it has found useful applications
in biodosimetry and research. However, robust, precise and repro-
ducible identification of IRIFs still represents an unsatisfactorily
solved task, even in the current era of advanced image analysis
technologies. The Second yH2AX-Assay Inter-Comparison Exercise
was carried out in the framework of the European Biodosimetry
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Network (RENEB) [30], and our experience has shown that visual
(manual) identification of IRIFs still far overperforms any software
package in terms of precision.

On the other hand, the manual quantification of IRIFs by a single
evaluator is usually unrealistic due to extreme time demands. The
cooperation of more evaluators does not help unless they are
intensively (i.e., for a long time) trained to reduce interexpert
biases in IRIF identification (see Fig. 2f). Equally frustrating is the
principal inability of manual analysis to extract IRIF parameters
that are of fundamental interest in DNA damage and repair
research and that may also be of practical relevance. This precari-
ous situation strongly limits analyses of larger datasets, compar-
isons of results both within and between laboratories and future
progress.

Automated (software) IRIF segmentation is mostly challenged
by the tremendous variability of these structures in terms of all
their parameters. In particular, the amount of fluorescence can
vary greatly between samples. Simple thresholding-based strate-
gies thus provide acceptably accurate and reproducible results only
in specific situations, e.g., when the same cell type (e.g., normal
lymphocytes) is repeatedly analyzed using a well-optimized stain-
ing procedure. Most available methods, therefore, use adaptive
thresholding or image standardization; however, this causes the
detection sensitivity to be dependent on the number of IRIFs in
the nucleus (Fig. 2b). In principle, it remains impossible to set up
a threshold parameter universally so that all IRIFs (early, mature,
and late) can be correctly recognized and segmented. Specific set-
tings to detect IRIF parameters are often necessary for individual
datasets.

According to our experience [13], the difficulty with simple
thresholding methods is especially experienced in patient-
derived primary cultures, which are characterized by their high
heterogeneity. Cells obtained from different patients show, by nat-
ure, dramatic differences in IRIF parameters and may even react
unpredictably to the same staining protocol (staining procedure
optimization for particular patient samples is usually not possible
due to a material lack and/or time demands). This was the reason
why we included tumor cell primary cultures from different
patients in our training and testing datasets.

Particularly problematic are also samples with few or no IRIFs
(nonirradiated controls, cells that have already accomplished
repair, etc.), in which large numbers of false-positive IRIFs are usu-
ally detected as a result of automatic thresholding or image stan-
dardization. Of the reports on IRIF detection algorithms, those on
Foco [74] or Focinator [71,76] (introduced below) do not disclose
the results for control samples. In the paper on FocAn, the controls
(time point 0) are included but show unrealistically high IRIF num-
bers [76].

Several strategies for segmentation of IRIFs (mostly YH2AX or
53BP1 foci) have recently been published [71-75]. Focinator
[71,76] is a simple Image] macro enabling thresholding, maxima
detection, and filtering based on size and circularity. FindFoci
[72] is an Image] plugin that detects IRIFs as the local maxima.
Focus regions are segmented with the downhill gradient algorithm,
and the proposed foci are eventually filtered out with specified
parameters, which can be trained on a few labeled images. How-
ever, the procedure is suitable only for single-channel (YH2AX)
labeling so that spatiotemporal interactions between repair pro-
teins or repair proteins and chromatin within the IRIF or cell
nucleus cannot be studied. Feng et al. [73] use rather simplistic
fuzzy c-means clustering for IRIF detection, which produces noisy
and mutually incomparable results if the quantity of IRIFs in nuclei
varies to a higher degree. This shortcoming thus seriously compli-
cates even basic analyses of DSB repair kinetics (IRIF number
changes with postdamage time), as IRIF numbers may be very high
after DNA damage induction (e.g., irradiation) but decrease to zero
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with repair time. Foco [74| presents an interesting pipeline for
nucleus and IRIF segmentation; however, nucleus segmentation
is based on intensity thresholding, which we demonstrated to be
insufficiently robust for our datasets. AutoFoci [75]—an advanced
high-throughput algorithm—extracts several features from each
IRIF and finds the most reliable feature to distinguish between
the IRIFs and noise. FocAn [76] is the only available 3D IRIF detec-
tion method implemented as an Image] macro; however, it is based
on simple adaptive thresholding followed by maxima detection.
CellProfiler offers a universal particle detection algorithm, where
customized IRIF detection pipelines can be developed (pipeline
from [72] was tested in this paper).

DeepFoci was able to identify and quantify the number of IRIFs
with higher accuracy than that of CellProfiler [91], AutoFoci [75] or
FocAn [76] and showed precision comparable to that of careful
manual analysis performed by a single experienced expert
(Fig. 2f, 3a). Accordingly, a consistent and lower level of error
was also detected using DeepFoci in cells with lower IRIF counts,
which posed serious difficulties to other software packages (Sup-
plementary Fig. 2). The problems with IRIF detection outlined in
the previous paragraphs were circumvented by the introduction
of a robust 3D segmentation technique based on the standard U-
Net. The main modifications involve the application of erosion on
segmentation masks and subsequent postprocessing of binary pre-
dictions, which lead to the correct separation of individual nuclei.
Similarly, the prediction of individual IRIFs via 3D Gaussian func-
tions with specific postprocessing provided precise IRIF detection
similar to that with human detection. Additionally, MSER was
shown to be a fast and powerful method for the 3D segmentation
of IRIFs, producing very precise segmentation results with robust
tolerance to different IRIF intensities. With these improvements,
the method was proved to achieve satisfactory segmentation of
both nuclei and IRIFs. The main advantage of our method is that
it is robust against changes in the image intensity. These intensity
differences precluded batch analyses of our data, even with the
expensive commercial software Imaris. DeepFoci also uses the
same U-Net architecture for both nucleus segmentation and IRIF
detection, which reduces its implementation complexity. In con-
trast to manual IRIF counting, the developed method is fast and
automatic, and it provides the possibility to extract many other
IRIF features in addition to the IRIF count, e.g., mean intensity, size,
and solidity. Compared to available automation approaches, Deep-
Foci is trainable and utilizes advanced deep-learning algorithms.
This fundamental advantage leads to better results than those
obtained by methods based on thresholding and maxima detection
approaches. The proposed method trained on this dataset can also
be safely used for a wide range of doses — 0.5 to 8 Gy - without risk
of detection accuracy saturation. Moreover, the proposed approach
operates on 3D samples. The only other available 3D method is
FocAn [76]; however, it utilizes simple IRIF detection approaches
and provides unsatisfactory results on our challenging datasets.

The main motivation for this work was to explore whether the
obstacles associated with IRIF detection and segmentation in con-
focal datasets could be overcome by employing deep learning. We
aimed to enable an unbiased analysis of large datasets in a timely
manner, thereby allowing the realization of complex research
studies, effective medical triage (biodosimetry) in the events of
mass-casualty radiological incidents, and results comparison
between samples and laboratories. In the present manuscript, we
introduced DeepFoci, a novel robust software based on deep learn-
ing for fully automated identification and morphometric character-
ization of IRIFs formed by different repair proteins in 3D. The
software was designed to overcome current limitations of fluores-
cence image analysis and allow segmentation of cell nuclei and
IRIFs with high fidelity, even in the case of challenging cell
specimens of dramatically different quality as they appear in daily
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practice. The results confirmed our idea that the precision, speci-
ficity and reproducibility of the procedures were significantly
enhanced by dual DSB labeling and colocalization analysis of two
selected independent DSB markers [21,35]. At the same time, this
strategy allowed us to analyze the recruitment of repair proteins
into IRIFs and follow their spatiotemporal interactions during
repair. These achievements are crucial for both practical (e.g., clin-
ical) and research applications.

It has been well documented (see also Fig. 3e) that individual
IRIFs differ quite dramatically in their shapes, sizes, border sharp-
ness and intensities. This variability appears among a) cell types
[37], b) cell cultures (especially tumor cell primary cultures) and
¢) individual cells. In addition, it is problematic to determine and
define simple parameters that optimally separate individual IRIFs
within IRIF clusters. Using DeepFoci, multiple IRIF parameters were
computed, which allowed multiparametric IRIF categorization and
thus more accurate recognition of different cell/patient groups
and/or repair stages (Fig. 3d). The results indicated that morpho-
metric parameters of IRIFs (such as the 3D solidity) as well as
the extent and characteristics of YH2AX and 53BP1 colocalization
indeed change between cell types and PI periods. In turn, we show
that this information, extracted by DeepFoci, can be used to further
refine the identification and categorization of different cell classes
or (pre)malignant subclones.

The proposed method was also extended and tested for single-
channel detection of IRIFs (detection of IRIFs separately in 53BP1
and YH2AX channels), where it performed consistently across a
wide range of radiation doses and different PI times. Detection of
IRIFs in individual channels allows the extraction of additional
information for different IRIF types in individual nuclei. In a multi-
channel setup, this approach also allows the detection of not only
colocalized (e.g., 53BP1/yH2AX) IRIFs but also IRIFs that (yet, still
or in principle) do not colocalize with IRIFs in the second analyzed
channel. Therefore, this regimen also enables analysis of the
dynamics of IRIF complex formation and disassembly, which is
critical to allow research on repair mechanisms activated by cells
at individual DSB sites (see [65] for a review). Moreover, some
repair proteins, such as RAD51 (the results for RAD51 are discussed
later), that are specific for HR appear almost exclusively in G2 cells
and colocalize with only a proportion of YH2AX IRIFs. Hence, dose
estimation based on colocalized (e.g.,) YH2AX and RAD51 IRIFs is
impossible. Even when a combination of IRIFs that mutually colo-
calize without any restrictions is used, a lack of colocalization may
occur, as observed in the present manuscript for 53BP1 IRIFs, due
to saturation of cell repair capacity. Hence, especially for higher
radiation doses and short PI times, the detection approach based
on IRIF colocalization may lead to severe IRIF and radiation dose
underestimation. For the yH2AX and 53BP1 combination, we
demonstrate that the degree of colocalization is highly dependent
on the dose, PI time, repair protein and cell type. Specifically, the
quantity of yH2AX IRIFs was significantly higher than that of
53BP1 IRIFs in all samples but was most prominent in U87 cells.
In relatively radiosensitive normal skin fibroblasts (NHDFs),
YH2AX and 53BP1 IRIFs were colocalized within most IRIFs; how-
ever, distinct saturation was observed for 53BP1 staining in
radioresistant U87 glioblastoma cells, especially for doses of 4 Gy
and at short (0.5 h) PI periods (Fig. 5b). While this observation
may seem paradoxical, delayed and inefficient formation of
53BP1 IRIFs and their lower colocalization with YH2AX in U87 can-
cer cells than in NHDFs has recently also been confirmed at the
nanoscale [37,65], using SMLM [36]. Explanation of this phe-
nomenon is beyond the focus of this manuscript. In general, lower
colocalization of YH2AX with 53BP1 at short PI times after high-
dose exposures is attributed to a temporary exhaustion of DSB
(cNHE]) repair capacity. The same situation at later PI times may
then occur due to ongoing detachment of 53BP1 from DSBs that
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were successfully rejoined but where the original chromatin archi-
tecture has not yet been restored. The sites of these epimutations
[4,92] may then be solely decorated by YH2AX. Noncolocalizing
53BP1 foci, on the other hand, can protect chromosomal fragile
sites and DSBs that are transferred unrepaired to the next cell cycle
[93]. Hence, DeepFoci broadens the applicability of IRIFs as clinical
biomarkers and makes it possible to study DSB repair mechanisms
(and their defects) at individual DSB sites.

In addition to observed differences in DSB repair in permanent
cell lines, we recognized differences in multiparameter IRIF micro-
morphology among the tumor cell primary cultures obtained from
individual patients suffering from head and neck cancers as well as
among the tumor cells and tumor-associated fibroblasts of a par-
ticular patient. As head and neck tumors dramatically differ in
their radioresistance (even if only HPV(-) tumors are considered),
the differences observed herein might be related to this character-
istic [13], similar to NHDF and U87 cells. Taken together, in the
present manuscript, we show that cell-type differences in YH2AX
colocalization with repair proteins and multiparametric differ-
ences in the IRIF architecture may indicate alterations in DSB repair
in (cancer) cells, which can be observed and evaluated at the
microscale using suitable (DeepFoci) software.

Next, the generalizability of the network for other IRIF types
and other possible conditions (time PI, cell type, etc.) changes
was tested. For this purpose, RAD51 detection was performed with
the network trained only for 53BP1 staining (see Supplementary
Fig. 3a). RAD51 foci almost exclusively occur in G2 cells and only
at DSB sites where the repair operates via HR. Hence, not all YH2AX
foci colocalize with RAD51 (even in RAD51-positive cells), and the
maximum RAD51 focus occurrence is shifted toward later (4 h PI)
periods of time than for 53BP1 (0.5 h PI). The analyses performed at
this time point for RAD51 thus tested and confirmed the generaliz-
ability of the network with respect to not only the type of IRIF but
also the time after irradiation (the network was not trained at this
time point, even for 53BP1). The accuracy of detection on a subset
of G2 cells (i.e., RAD51-positive cells) was virtually identical to that
of the YH2AX and 53BP datasets at different PI times, i.e., the data-
sets for which the network was specifically trained. The Dice value
for RAD51 analysis was 0.76 vs. 0.78 for the analysis of YH2AX and
53BP1 at colocalized channels (see Supplementary Fig. 3b). This
result is important even from a practical point of view, as it advo-
cates biodosimetric measurements based on a single DSB marker
(e.g., YH2AX) as a less expensive but comparably precise possibil-
ity. Hence, the detection based on colocalized channels of two
DSB markers could be seemingly redundant or even contradicted
by the saturation of some repair proteins described above. How-
ever, in real situations, the samples can be collected not earlier
than several hours PI, thus eliminating (if it is not too late) the
problem of delayed colocalization due to saturation. Moreover, in
cells with a high yH2AX or any repair protein background,
colocalization-based analysis may still be the best choice.

As also follows from the previous paragraph, it would be of
interest in DSB repair studies to correlate the numbers of different
IRIF types to the cell cycle phase. This functionality is irrelevant for
practical biodosimetry, as lymphocytes, the only cell type relevant
for this purpose, are permanently arrested in the Go phase of the
cell cycle. Moreover, even if nonarrested cell types are used for
some specific reason, the easiest approach to analyze how nonsyn-
chronized cells populate in a practical situation is to construct a
calibration curve for the whole cell population and exclude only
extreme values, e.g., by simply using the median instead of mean
values. It should also be noted that in normal cells, in contrast to
cancer cells, the background values, even for nonsynchronized cell
populations, are extremely low (e.g., [2,14,15,21,79]). Alterna-
tively, in studies where the cells with extreme IRIF values can be
expected or are even of special concern, for instance, when the



T. Vicar, J. Gumulec, R. Kolar et al.

radiosensitivity/radioresistance of tumors is in question, these
extreme cells (likely representing S-phase cells under extensive
replication stress [23]) can be separated from the rest of the cell
population based on the DNA intensity staining/IRIF numbers, as
discussed below. Another approach enabled by our software is to
use a DSB marker specific for the S/G2 phase of the cell cycle, with
the RAD51 protein used in the present manuscript. This strategy
can be used in most types of research studies where specific repair
proteins (other than YH2AX and RAD51) are not the subject of
research, for instance, when the radiosensitivity and/or repair
capacity of cells in different cell cycle phases are compared. Addi-
tionally, as the numbers of DSBs generated per Gray depend on the
DNA amount, which is doubled in S/G2 cells compared to G1 cells
[94-97], the estimations of DSB numbers per radiation dose and
DNA unit (Mb) may be specified. However, in some situations,
more precise knowledge on the cycle distribution may be critical.
When the regulation of DSB repair pathways in the context of
the cell cycle is the subject of research, additional markers of the
cell cycle are needed, as it cannot be strictly excluded that HR
can to some lower extent operate in G1 cells [65]. It would there-
fore be difficult to judge whether occasional RAD51 foci in some
cells represent true foci or staining artifacts.

Given the possibility of estimating the cell cycle by measuring
their DNA content according to DNA staining intensity (e.g., as an
integrated signal of DAPI in the present study) [94-96], we
enriched DeepFoci to be able to extract this parameter. Similar to
flow cytometry-based gating, this approach provided DNA content
estimations alongside IRIF numbers (see Supplementary Fig. 4).
However, it should be noted that the sorting of G1, S and G2 cells
based on the integrated DNA signal significantly depends on
exactly the same staining and imaging conditions for different
samples, and even a weak illumination inhomogeneity within the
recorded microscopy field, for instance, might be a problem. Hence,
in contrast to flow cytometry, where large numbers of cells are
analyzed, giving statistically persuasive data, only some studies
have used cell cycle categorization solely based on DNA staining
[94-96]. In contrast to these studies but in agreement with other
recently reported results [98-101], our datasets did not allow clear
separation of the G1 vs. S/G2 cell subpopulation. However, even
with the dataset used, the results suggest that DNA staining func-
tionality may serve as a potential filter to remove nuclei with a
high DNA content that are therefore atypical (~10% of nuclei in
the present study). The uncertainty regarding DNA content as a cell
cycle marker for microscopy can be easily overcome by introducing
immunofluorescence labeling of a protein with cell cycle-specific
expression as an additional color channel. If this strategy is techni-
cally impossible, DeepFoci offers, due to its high accuracy of single-
channel analysis, the possibility to analyze only one DSB repair
protein together with one cell cycle marker. Alternatively, cells
specifically modified to express cell phase-specific proteins fused
with different GFP spectral variants can be used for experiments
(such as Premo FUCCI, Thermo Fisher Scientific, catalog no.
P36237), and cells can be synchronized in specific phases of the cell
cycle prior to irradiation or sorted by flow cytometry at specific PI
periods.

Chromatin architecture and its changes have been shown to
play critical roles in DNA damage and during subsequent repair
[2,4,50,55,65,79,102-105]. In the present study, the results (not
shown) did not confirm systematic changes in chromatin staining
intensity at IRIF sites as a function of the radiation dose or PI time.
The most likely explanation is that while we studied the PI times
starting with 0.5 h PI and ending at 8 h PI, these changes mostly
occurred faster after irradiation [79]. Regardless, the ability to
quantify DNA staining intensity at sites of IRIFs is a potentially use-
ful functionality of the present software.
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Importantly, due to the learning-based nature of the imple-
mented methods, the proposed algorithm offers extensive room
for application modifications and can be easily adapted based on
the specific requirements of different laboratories, where it can
be simply retrained for a different type of data. The evaluation part
of the software with the pretrained network contains a very simple
and easy-to-use GUI, which is friendly even for an unexperienced
user. However, the retraining procedure for new datasets is a com-
plex task and is difficult to cover with a GUI Therefore, for the
retraining, one must run code and, in some cases, make changes
in the data-loading part. After retraining both CNNs and readjust-
ing a few parameters (including the focus size range, thresholding
step of MSER, and h-minima transform parameter for optimal
nucleus separation and focus detection), IRIFs formed by different
repair proteins can be analyzed together with their parameters and
extent of mutual colocalization in various cell types stained with
different methods. Furthermore, the software can be easily tuned
to generate comparable results between laboratories for a particu-
lar application. This flexibility and robustness, which is highly
important, especially for research purposes, represents a unique
feature of the introduced software.

5. Conclusion

Quantification of DNA DSBs by means of DSB repair focus (IRIF)
immunodetection is of utmost importance in various fields of
science and practical life (e.g., medicine, cell biology, radiation pro-
tection, space exploration). Because of the nature of IRIFs and flu-
orescence imaging, where both the IRIF parameters and intensity
of analyzed objects may vary dramatically, automatic segmenta-
tion of IRIFs and cell nuclei is highly problematic. Accordingly,
we developed a new method based on deep learning that over-
comes many of the current limitations of image analysis and
allows rapid and automated quantification and parameter evalua-
tion of IRIFs. This performance is enabled by a robust U-Net-based
technique for nucleus segmentation coupled with U-Net-based
focus detection followed by MSER segmentation.

Compared to published approaches, the proposed algorithm
works with 3D confocal multichannel data instead of single-
channel 2D slices or maximum image projections. This feature
makes it possible to extract important additional information on
morphological and topological IRIF parameters and not only the
focus counts. We believe that the proposed software, whose code
is freely available, can substantially simplify DSB quantification
and IRIF analysis. Due to the possibility of extracting additional
morphometric IRIF and cell nucleus parameters, the software offers
numerous practical and research applications. Altogether, the pre-
sented software opens the door to a better understanding of IRIF
biology and (radiation-induced) DNA damage and repair.

6. Data availability

Data used in the manuscript are publicly available in the Zen-
odo repository (www.zenodo.com) and on GitHub (www.github.-
com). Dataset of confocal microscopy of y-H2AX and 53BP1 DNA
repair foci of cells exposed to y-irradiation - annotated nuclei
and IRIFs in primary cultures, pt. 1 (DOI https://doi.org/10.5281/z
enodo.4067741) and dose-dependent annotated IRIFs, pt. 2 (DOI
https://doi.org/10.5281/zenod0.5549971. MATLAB/Python code
for automatic segmentation and for labeling, https://github.com/t
omasvicar/DeepFoci).
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