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ABSTRACT Climate is the primary driver of the distribution of tree species worldwide, and the potential for
adaptive evolution will be an important factor determining the response of forests to anthropogenic climate
change. Although association mapping has the potential to improve our understanding of the genomic
underpinnings of climatically relevant traits, the utility of adaptive polymorphisms uncovered by such
studies would be greatly enhanced by the development of integrated models that account for the
phenotypic effects of multiple single-nucleotide polymorphisms (SNPs) and their interactions simulta-
neously. We previously reported the results of association mapping in the widespread conifer Sitka spruce
(Picea sitchensis). In the current study we used the recursive partitioning algorithm ‘Random Forest’ to
identify optimized combinations of SNPs to predict adaptive phenotypes. After adjusting for population
structure, we were able to explain 37% and 30% of the phenotypic variation, respectively, in two locally
adaptive traits—autumn budset timing and cold hardiness. For each trait, the leading five SNPs captured
much of the phenotypic variation. To determine the role of epistasis in shaping these phenotypes, we also
used a novel approach to quantify the strength and direction of pairwise interactions between SNPs and
found such interactions to be common. Our results demonstrate the power of Random Forest to identify
subsets of markers that are most important to climatic adaptation, and suggest that interactions among
these loci may be widespread.

KEYWORDS

Random Forest
adaptation
association
mapping

epistasis
phenology
cold hardiness
GenPred
shared data
resources

The health of forest tree populations is inextricably linked with the
ability of local populations to track phenotypic optimums enforced by
their respective climates. With anthropogenic climate change substan-
tially altering adaptive landscapes, tree populations are expected to
suffer maladaptation, become sources rather than sinks of carbon, and
ultimately be forced to adapt, migrate, or be extirpated (Savolainen
et al. 2007; Aitken et al. 2008). Paleoecological data suggest that

migration rates may be insufficient to realize range shifts predicted
by climate-based species distribution models (Malcolm et al. 2002;
McLachlan et al. 2005; Hamann and Wang 2006), and thus, the
importance of adaptive evolution in response to new climatic regimes
cannot be underestimated. To determine the potential for adaptation,
we must first have an understanding of the genomic underpinnings of
variation in climate-related phenotypic traits.

The current method of choice for elucidating the genomic
determinants of complex adaptive traits is association mapping (Neale
and Savolainen 2004; Gonzalez-Martinez et al. 2006b). Widespread
temperate and boreal tree species are well suited to this approach,
which has been successfully demonstrated in a variety of species
(Gonzalez-Martinez et al. 2007, 2008; Ingvarsson et al. 2008; Eckert
et al. 2009a; Holliday et al. 2010; Wegrzyn et al. 2010). Conventional
analytical approaches to association mapping studies estimate the
marginal effect of individual polymorphisms on the trait of interest
(Yu et al. 2006), but these approaches are not designed to predict
phenotypes from multilocus genotypes nor to detect interactions
among loci. There has been increasing interest in the use of multiple
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regression-like models that take all single-nucleotide polymorphisms
(SNPs) as predictor variables simultaneously. This approach is most
frequently applied to mapping populations generated by controlled
crosses for the purposes of selecting germplasm for deployment or
further crosses in breeding programs—so-called “genomic selection.”
The goal of these methods is not so much to identify trait-associated
SNPs as it is to saturate the genome with markers such that most
quantitative trait loci will be captured through linkage disequilibrium
(Meuwissen et al. 2001; Jannink et al. 2010). The extension of this
approach to trees has been suggested and the first test cases recently
reported (Grattapaglia and Resende 2011; Resende et al. 2012)

Although genomic selection has shown great promise in the fields
of animal and plant breeding, it is not currently feasible as a tool for
conservation genetics in natural populations because of the rapid
decay of linkage disequilibrium (LD), which would necessitate hundreds
of thousands to millions of markers be genotyped. Ideally, one would
be able to identify a small core set of ecologically relevant markers
that comprise much of the adaptive variation segregating in the wild,
which could then be targeted by land managers to assess the adaptive
portfolio of local populations. The decision tree algorithm ‘Random
Forest’ (RF) (Breiman 2001) is an alternative method to uncover the
relative importance of SNPs to the expression of adaptive traits and
to predict the phenotypes of adaptive traits by accounting for both
the cumulative effect of individual SNPs and the effect of all forms of
interactions among SNPs without the need to define these terms in
the model. The principle behind RF is to build decision trees (or
regression trees in the case of continuous dependent variables) by
categorizing observations using multiple predictor variables. In con-
trast to conventional decision and regression tree approaches, RF
constructs a large number of trees (the ‘forest’) by introducing two
layers of randomness—random bootstrap sampling of the data and
random selection of a subset of predictors for splitting at each node—
which improves predictive accuracy (Cordell 2009). The relative im-
portance of individual SNPs is assessed by permutation: SNPs with
no effect on phenotypes will not change the prediction of the tree
when their values are permuted, whereas SNPs with explanatory
power will. Several studies have used RF to detect loci involved in
binary disease phenotypes in humans (Bureau et al. 2005; Goldstein
et al. 2010; Chen et al. 2011;), and one study extended the RF approach
to quantitative variation in resistance to powdery mildew in Arabi-
dopsis (Nemri et al. 2010).

In addition to accounting for multilocus combined effects, RF can
be used to test for interactions (i.e., epistasis) among SNPs. Epistasis is
a fundamental component of complex trait variation that may be an
important driver of adaptation, but such effects are difficult to quan-
tify because of the computational burden of testing all possible pair-
wise interactions for hundreds or thousands of loci (Phillips 2008). In
the context of association mapping, several methods have been de-
veloped to detect interacting SNPs (Hahn et al. 2003; Lunn et al. 2006;
Moore et al. 2006; Zhang and Liu 2007), but these methods are still
computationally intensive (and in some cases intractable) for datasets
comprising more than a few hundred SNPs (Cordell 2009). By con-
trast, RF offers an efficient framework to test for epistasis, which does
not require that all possible pairwise interactions be specified in the
model. Any predictor SNP in an RF model that has a significant in-
teraction, even in the absence of a main effect, should be assigned high
importance because the phenotype prediction will change when its
values are permuted. Lunetta et al. (2004) simulated interacting dis-
ease risk-associated SNPs and found that selecting SNPs on the basis
of their importance value from an RF analysis lead to improved de-
tection of epistasis. Jiang et al. (2009) applied a sliding-window ap-

proach with RF to reduce the number SNPs tested for interactions in
a case-control binary trait study involving a huge number of SNPs.
However, to the best of our knowledge no report has been made that
tested SNP interactions for quantitative traits using RF. In particular,
no method is available to detect the directions of such interactions
between each SNP pair.

We recently completed an association study in Sitka spruce
encompassing 202 candidate genes related to local adaptation, and
identified numerous genotype-phenotype associations (Holliday
et al. 2010). Among 339 SNPs tested, 35 were significantly associated
with either timing of budset or cold hardiness. The current paper
uses the RF framework to analyze the same dataset by building an
integrated model to predict phenotypes on the basis of their multi-
locus genotypes, to select a subset of SNPs with the greatest pre-
dictive power, and uses a novel approach to detect the extent and
direction of epistasis among these predictive SNPs.

MATERIALS AND METHODS
We previously reported association mapping of climate-related traits
in Sitka spruce (Picea sitchensis) (Holliday et al. 2010). In this study,
the Illumina GoldenGate platform was used to genotype a range-wide
mapping population of 410 individuals, which were also measured for
timing of budset (defined as the Julian date on which the first bud
scales were visible, assessed weekly from July 7 through December 31,
2007) and cold hardiness (measured on December 1, 2007, using
electrolyte leakage as a proxy for cell death after Hannerz et al.
(1999)). Sampled populations, their origins, and cluster assignments
are described in supplementary materials (supporting information,
Table S1). Substantial variation both within and among populations
was observed for both of these traits. By using a mixed model ap-
proach that accounts for population structure, we found 35 SNP loci
(from a panel of 339 successful SNP assays) to be associated with
timing of autumn budset, autumn cold hardiness, or both.

We used the data from Holliday et al. (2010) to build a predictive
model for adaptive traits, for which dependent variables consisted of
the two phenotypes described previously, and independent variables
consisted of 339 SNPs that passed quality control and were polymor-
phic. Candidate gene names and genotype/phenotype data can be
found in supplementary materials (Table S2 and Table S3, respec-
tively). The procedure to build the random forest is as follows: (1)
take a bootstrap sample of observations (i.e., a random sample with
replacement; ~64% by default) from the total population, leaving the
rest ‘out of bag’ (OOB) to be used for independent predictions and
error checking; (2) at each successive node randomly sample a subset
of SNPs (approximately the square-root of the total by default, but
tuned for optimal values), and use the SNP that minimizes predictive
error to split observations at that node into ‘branches’; (3) continue
this process until there is no further improvement in predictive accu-
racy of terminal ‘leaves’; (4) repeat the aforementioned steps to build a
large number of regression trees forming the random forest; (5) pre-
dict the phenotypes for the OOB samples through the trees for which
they were OOB and take the average of the predictions across trees as
the final phenotype prediction for a given sample. The importance value
reflecting the relative contribution of each SNP to the model is esti-
mated by randomly permuting its values and recalculating the predic-
tive accuracy of the model. The difference of the model accuracy before
and after the random permutations, averaged over all trees in the forest,
tells us how important that predictor is for determining the outcome.
The amount of variance explained by the predicted values relative to the
total amount of variation in the observed phenotypes provides an esti-
mate of the explanatory power of the model.

1086 | J. A. Holliday, T. Wang, and S. Aitken

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.002733/-/DC1/TableS1.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.002733/-/DC1/TableS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.002733/-/DC1/TableS3.xlsx


Because population structure can increase type-one error rates
(false-positives) in association studies, model predictions are more
credible with population structure removed. Holliday et al. (2010)
used Structure software (Pritchard et al. 2000) to show that three
populations provides the most parsimonious solution to population
subdivision across the species range in Sitka spruce. To remove the
effect of population structure, we regressed the two phenotypic traits
on estimates of cluster membership derived from replicate runs of
Structure (that is, the Q matrix from Structure). The sums of the
general mean and the residue of each observation from this regres-
sion were used as dependent variable for RF analysis. However, as
Sitka spruce spans a wide latitudinal range, with latitude highly
correlated with climatic variables, but is restricted to a narrow lon-
gitudinal range, population structure covaries strongly with climate
gradients. The removal of the population structure may thus result
in overadjustment (false-negatives) for the effect of local adaptation
to climate. Therefore, phenotype prediction was conducted both with
and without an adjustment for population structure.

For this analysis, 1500 regression trees were constructed in the
model, although no further improvement was found after the number
of trees increased to 1000. The model was initially run with all 339
SNPs as predictors (the full model), followed by runs using various
numbers of selected SNPs based on their relative importance values to
optimize the model. In previous studies, the importance value of each
SNP assigned by the full model was used to rank the SNPs. However,
as RF accounts for interactions, the ranking changes when the com-
bination of the SNPs changes (i.e., adding or dropping one or more
SNPs to the model). To consider the effect of interactions among the
SNPs on phenotype prediction accuracy and on the ranking of their
importance, we developed a backward purging approach to purge the
least important SNP step by step. The minimum number of SNPs that
can explain the maximum amount of variance in observed phenotypes
was around 20. We thus applied this approach starting with a highly
bifurcating model with the top-ranked 50 SNPs included to avoid
excluding those SNPs with large interactions but insignificant main
effects. At each step, the model run was repeated three times, and the
SNP with the smallest importance value was eliminated from the
model. The amount of variance explained by each successive model
was averaged over the three runs. This step was repeated until there
were only two SNPs remaining in the model (the minimum number
of predictor variables that can be used).

To validate the effectiveness of our approach in selection of most
important SNPs for the adaptive traits, we compared the effect of our
selected SNPs on prediction of phenotypes with randomly selected
SNPs. For this, RF model was run with bootstrap samples of SNPs (i.e.
random combinations) with sample sizes of 2, 5, 10, 15, and 20 SNPs.
These were referred to as ‘random’models. The random sampling and
model runs were repeated 10 times with each sample size, from which
the average percentages of the amount of variance explained were
calculated for each sample size. All RF analyses were performed using
the R version of RF (Liaw and Wiener 2002).

Although RF accounts for epistasis without directly testing all
possible pairwise combinations of loci, which is computationally
efficient, it does not identify specific interacting SNPs. We have
extended the method to enable direct testing of putatively interacting
SNPs by removing SNPs with high importance values one-by-one
and recalculating the importance values of remaining SNPs. If two
SNPs interact, the absence of one of them would increase or decrease
the importance values of the remaining SNP. Therefore, we can
determine the amount and the direction (negative or positive) of the
two-way interactions among important SNPs through examining the

changes in their importance values when a SNP is removed from the
model. We did this for each of the 20 most important SNPs to
quantify both synergistic epistasis (i.e., when the importance of a
SNP decreases upon removal of another SNP) and disruptive epis-
tasis (i.e., when the importance value of a SNP increases upon re-
moval of another SNP). This procedure was repeated five times, and
the changes in the importance values were calculated for each locus
in each run. The student’s T-tests were applied to determine whether
the changes in the importance values were significant. The P-values
for the tests were adjusted for multiple testing using the qvalue
package in R [http://www.r-project.org/ (Storey and Tibshirani 2003].
Tests quantifying interactions among SNPs were carried out only for
the dataset with population structure removed. Interactions networks
were displayed using Cytoscape software (Shannon et al. 2003).

To determine whether interacting SNPs were also in LD, we used
our unphased genotypic data to calculate the probability that genotypes
at pairs of loci are independent by using the composite LD test im-
plemented in Genepop software (Rousset 2008). P-values obtained
from this test were adjusted for the false-discovery rate (FDR).

RESULTS

Phenotype prediction
When all 339 SNPs were used as predictors, RF explained 32.7% of the
phenotypic variation in budset timing (Figure 1A). When budset dates
were adjusted for population structure using multiple regressions be-
fore running RF, this value decreased to 24% (Figure 1B). The pre-
dictive value of the model improved when only the 20 most important
SNPs were used as predictors, which were selected using the backward
purging approach described in theMaterials and Methods (Figure 1, C
and D). The percentage of phenotypic variance explained (PVE) in-
creased to 44.6% and 37.2% for the population unadjusted and adjusted

Figure 1 Relationship between observed budset dates (given as days
from January 1) and those predicted by RF using all 339 SNPs (A)
without adjusting for population structure and (B) with adjustment. The
20 SNPs with highest importance [% mean squared error (MSE)] were
then used to similarly re-run RF both without adjusting for population
structure (C) and with adjustment for population structure (D). All
regressions were significant (P , 0.001).
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models, respectively. Accounting for population structure had a more
dramatic effect on prediction of cold injury, for which the unadjusted
model accounted for 41.7% of variation, whereas the adjusted model
accounted for only 22.5% (Figure 2, A and B). When only the top 20
SNPs were again selected, PVE was improved by 8.4% and 7.6% for the
uncorrected and corrected models, respectively (Figure 2, C and 2D).
These results are consistent with an increase in noise contributed by
additional uninformative SNPs, which is reflected in negative impor-
tance values for a substantial fraction of the 339 SNPs for both budset
(Figure 3A) and cold hardiness (Figure 3B).

The result of the backward purging approach suggests that for
both budset and cold hardiness, the first three to five SNPs account
for much of the variation, as PVE tended to reach a plateau with
only incremental increases with the inclusion of additional SNPs
(Figure 4, A and B, respectively). In contrast, randomly selected
SNPs collectively had much less explanatory power (less than 5%
in most cases) than the optimized models (Figure 4), a result con-
sistent regardless of the number of SNPs from 2 to 20 included in
the model.

Importance values for individual SNPs
Adjusting for population structure did not change the identity of the
top two SNPs for budset, whereas for cold injury the top SNP before
the adjustment decreased to fourth most important following popula-
tion adjustment (data not shown). For budset, seven of the top 10 SNPs
remained within the top 10 after adjustment for population structure,
and all of the top 10 SNPs after adjustment were among the top 15
SNPs in the unadjusted model. For cold hardiness, eight of the top 10
SNPs were in common between the adjusted and unadjusted models,
although the ranking changed in a few cases. The 10th most important
SNP in the population adjusted model increased in importance from
position 24 in the unadjusted model. Of the 339 predictor SNPs, 114
had negative importance values for the budset model (Figure 3A) and
105 had negative values for the cold hardiness model (Figure 3B).

Although RF and the mixed linear model (MLM), previously used
by Holliday et al. (2010) to identify genotype-phenotype associations,
assessed the explanatory power of our SNP markers in different ways,
the concordance between the two methods was high for the SNPs with
strongest associations with phenotype. This concordance broke down,
however, beyond the top 10 SNPs. For budset timing, after adjustment
for population structure, eight of the top 10 SNPs identified using RF
were also significant using the MLM, whereas only two of the next 10
were in concordance with the MLM (Figure 5A). For cold hardiness,
six of the top 10 SNPs and two of the next 10 from the RF analysis
were also significant using the MLM (Figure 5B).

Tests for epistasis
By sequentially removing SNPs from the model and recalculating
importance values for those that remained, we were able to quantify
cases of both synergistic and antagonistic epistasis. We conducted this
analysis using the top 20 SNPs based on importance values from the
initial RF analysis with adjustment for population structure and
followed by a backward purging approach described previously, and
the resulting epistasis networks were plotted using Cytoscape (Figures 6
and 7) (Shannon et al. 2003). Numerous statistically significant inter-
actions were identified among the top SNPs for each trait. A larger
number of pairwise interactions were found for budset (45 interac-
tions) than for cold hardiness (27 interactions). Interestingly, the SNPs
with the highest importance values for both traits also were among the
most highly connected in its respective network. For budset, per6 (573)
had eight interactions, whereas for cold hardiness, xth1 (350) had five
interactions. However, some SNPs with relatively small contribu-
tions to the model also exhibited high connectivity, including gp5
(98), which for cold hardiness had eight interactions. Conversely, the
second most important SNP for budset had only one interaction.

Finally, we calculated genotypic linkage disequilibrium for each
pair of interacting SNPs. For budset, 10 of 45 SNP pairs that exhibited
significant epistatic interactions were also in linkage disequilibrium

Figure 2 Relationship between observed cold injury (averaged across
three test temperatures) and that predicted by RF using all 339 SNPs
(A) without adjusting for population structure and (B) with adjustment.
The 20 SNPs with highest importance (% MSE) were then used to
similarly re-run RF both without adjusting for population structure (C)
and with adjustment for population structure (D). All regressions were
significant (P , 0.001).

Figure 3 Importance values for all 339 SNPs in the
study (vertical lines) for (A) budset date and (B) cold
hardiness, adjusted for population structure.
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(Q , 0.05), and for cold hardiness, 13 of 27 interacting SNPs
were in LD. Most interacting SNPs were found on different genes,
and significant LD was therefore not likely due tight physical linkage
in most cases, though our markers were not genetically mapped
and we therefore do not know the physical proximity of the candi-
date genes. However, given the size of the spruce genome (~18 Gb)
(Ahuja and Neale 2005), it is likely that most interacting SNPs
are separated by large physical distances or reside on different
chromosomes.

DISCUSSION
We used RF to identify subsets of SNPs that provide the greatest
power to predict adaptive phenotypes in the conifer Sitka spruce. This
integrated approach revealed that only a few SNPs are needed to
capture a large portion of the quantitative variation in adaptive traits,
a finding is somewhat surprising because the conventional analysis of
variance approach usually identifies a large number of SNPs that
contribute relatively small amounts of variation to the phenotype
(Eckert et al. 2009a, 2012; Quesada et al. 2010; Wegrzyn et al. 2010). A
possible explanation for this difference would be the inclusion of
interactions in the RF model used in this study. Specifically, with
our backward purging approach, higher-order interactions are con-
sidered in reducing the number of SNPs in the model, and direct tests
for epistasis showed that it is rampant among these SNPs. The role of
interactions in predicting phenotypes has increasingly been recog-
nized (Malmberg et al. 2005; von Korff et al. 2010; Pavlicev et al.
2011) although there are a paucity of data in plants. One study in
Arabidopsis showed that the magnitude of epistatic effects on several
fitness related traits was roughly double that of the effects of the

additive QTL (Malmberg et al. 2005). Our results advance an empir-
ical understanding of how populations may adapt to local climate
across many loci and should facilitate the screening of climatically
relevant adaptive variation in natural, breeding and deployment pop-
ulations, and to developing species-specific genetic resource manage-
ment and conservation strategies.

A small number of SNPs are sufficient to explain much
of the variation in adaptive traits in Sitka spruce
Many temperate and boreal plant species have expanded from glacial
refugia to occupy wide latitudinal ranges in a relatively short period of
time, on the order of 10215,000 years. Such expansions necessitate
ongoing adaptation to novel climates, which for annual plants is not
difficult to envision due to their short generation time. However, long-
lived tree species present somewhat of an adaptive paradox in that
they have a delay until reproductive maturity resulting in a generation
time on the order of 20 to 50 years or longer, depending on ecological
disturbance or harvesting rotations (Petit and Hampe 2006). This
presents two impediments to local adaptation, namely, a lower effec-
tive mutation rate and fewer opportunities for allele frequency adjust-
ments. How then have long-lived tree species been able to expand
their ranges so rapidly while simultaneously tracking relative pheno-
typic optima so closely? Our results suggest that although the average
effect of individual SNPs on trait variance is small, the genetic archi-
tecture of these traits is clearly finite. Of course, this study only
accounts for a small fraction of the segregating variation present in
the genome of spruce, and future work that capitalizes on next
generation sequencing technologies will no doubt improve on the
model we developed here.

Figure 4 Percentages of total variance explained in (A)
bud set and (B) observed cold injury with the number of
SNPs included in the RF models. SNPs were selected
using optimized combinations of between two and 20
SNPs from all 339 SNPs (Top 20) and using boot-
strapped random samples (Random).

Figure 5 Importance values for top 20 SNPs
for budset (A) and cold hardiness (B) identi-
fied by the initial run of RF that included all
339 SNPs. SNPs highlighted in dark gray had
significant main effects when the mixed
model (after Holliday et al. 2010) was used,
and those highlighted in light gray were only
significant using RF.

Volume 2 September 2012 | Adaptive Phenotype Prediction | 1089



It should be noted that the variation we explain with this sample,
as is the case in many genotype2phenotype association studies of
natural tree species, comprises both within and among-population
components. Hence, the relevant measure of quantitative genetic var-
iance with which to compare our model is QST (the proportion of
phenotypic variation attributable to differentiation among popula-
tions), which in Sitka spruce for the same populations was reported
to be ~0.89 for both cold hardiness and budset (Mimura and Aitken
2007). Our RF model therefore explains on the order of a third to
a half of the variation present in the studied collection of populations.
Adjusting for population structure reduced the explanatory power of
the SNPs. Although it was necessary to make this adjustment to avoid
false positives, Sitka spruce has a very wide latitudinal range but is
essentially restricted to coastal habitat, and population structure in this
species covaries with selective pressures related to climate. As such,
removing the effect of population structure inevitably removes some
of the SNP effects of interest, and hence reduces explanatory power
(Myles et al. 2009). Taken together, our results would seem to support
modern refinements of Fisher’s geometric model of adaptation, which
emphasizes the importance of a few mutations of moderate effect and
many mutations of small effect (Orr 1998, 1999). We have previously
shown that SNPs with phenotypic associations in this study segregate
in most populations throughout the range of Sitka spruce, including
populations well south of the maximum extent of glaciation, and they
are therefore likely to be evolutionarily old (Holliday et al. 2010).
Adaptation to anthropogenic climate change in this species may there-
fore proceed largely from standing variants, and our results suggest
this adaptation may involve fewer loci than is often assumed by the
infinitesimal model underlying classical quantitative genetics (Barrett
and Schluter 2008). If this is the case, allele frequency adjustments
within the loci described here, coupled with realistic migration rates
and epistasis, may provide the means for tree populations to track the
rapidly changing phenotypic optimums imposed by climate change.

Epistasis shapes adaptive traits in Sitka spruce
Phenotypes are the product of both genotype and environment
according to the central dogma of quantitative genetics, and it is the
goal of association genetics to localize genotypic effects while holding
environment constant, as in a common garden. These genotypic
effects can be further broken down into additive, dominance, and
epistatic components. The first two effects can be easily tested in a
conventional association analysis, but the computational burden of
testing all possible pairwise and higher-order interactions limits our
ability to determine the relative contribution of SNP-SNP interactions
to complex trait variation. We took a novel three-stage approach to
reduce the dimensionality of the data and directly test for epistasis.
First, we built a model that took all 339 SNPs as possible predictors.
Second, we paired this model down to include only the 20 SNPs with
the highest importance values through a backward purging approach.
Finally, we iteratively removed individual SNPs and recalculated the
importance values of those that remained. This allowed us to build an
interaction network describing both the strength and direction of
pairwise interactions between adaptive SNPs. The principle behind
this approach is that RF assigns an importance value to each SNP
based on its contribution to the model either through its main or
interactive effect, or both. Therefore, when the model is paired
down to a smaller number of SNPs through the backward purging
approach, the SNPs remained in the model represent the most
important SNPs contributing to the phenotype. If a SNP interacts
with other SNPs, the removal of this SNP will affect the importance
values of the interacting SNPs. If the importance value of an inter-
acting SNP is reduced, it suggests a positive interaction. Otherwise,
the interaction is negative. However, because the magnitude of the
interaction is determined based on the change in the importance values
rather than the effect on the phenotype as estimated with traditional
methods, these interactions only represent the relative importance of
the epistasis.

Figure 6 Cytoscape interaction network showing significant (Q , 0.05) pairwise epistatic interactions for budset among the top 20 SNPs
measured by their importance values. Line width indicates the relative strength of the interaction; dashed lines indicate negative (antagonistic)
epistasis, and solid lines indicate positive (synergistic) epistasis. Asterisks indicate significant genotypic linkage disequilibrium (Q, 0.05) between
interacting SNPs.
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Somewhat surprisingly, all 20 of the most important SNPs for
budset and 16 of 20 for cold injury exhibited at least one interaction.
This result might be attributable to the backward purging approach
we applied because it considered the effect of all levels of interactions
for a SNP being removed from the model, which is different from
other approaches reported (Jiang et al. 2009; Chen et al. 2011). SNPs
with the highest importance values (and which were significant in the
mixed model association tests) for each trait tended to have more
interactions than those with lower importance values. One strategy
that has been used in the search for epistasis is to specify tests for
interactions only among those SNPs with significant univariate asso-
ciations. Our results suggest that this approach is likely to capture
some of the genetic interactions relevant to complex trait variation,
but would miss many interactions involving SNPs with no significant
main effect. Although we only dealt with the top 20 SNPs from the RF
analysis in our tests for epistasis, this is an arbitrary cutoff that could
be relaxed to achieve a more comprehensive view of the interaction
network governing complex traits.

Linkage disequilibrium between interacting loci
Epistasis is expected to produce stable LD between interacting loci
(Feldman et al. 1980; Otto and Feldman 1997). Although LD may also
be generated by demographic phenomena such as migration, genetic
drift, and single-locus selection (Wade et al. 2001), background levels
of LD are low in most widespread tree species (Krutovsky and Neale
2005; Gonzalez-Martinez et al. 2006a; Eckert et al. 2009b). As such,
LD between putatively interacting SNPs, particularly for intergenic
interactions, provides additional evidence of bona fide epistasis. We

therefore sought to determine whether putatively interacting SNPs in
our study were also in linkage disequilibrium with one another. After
correcting for multiple testing, we found that many, although not all,
interacting SNPs exhibited LD. Interestingly, all but one of the inter-
acting SNP pairs that also exhibited LD were positive interactions.
This result reinforces the finding that negative epistasis promotes recom-
bination, which in turn breaks down LD (Otto and Feldman 1997).

Although most SNPs in this study represented individual genetic
loci presumably separated by some physical distance, and likely on
different chromosomes in many cases (though we have no genetic
map with which to test this assumption), there were a few cases of
adjacent SNPs from the same gene among the top 20 in terms of
importance values. One of the strongest interactions was for cold
hardiness, between two SNPs separated by only 61bp in the xth1
gene (SNPs 289 and 350). Each of these SNPs, as well as two others
within xth1, were significantly associated with both budset and cold
hardiness and explained between 3% and 5% of the variation in these
traits (Holliday et al. 2010). Given the close physical proximity of these
SNPs, we initially considered the possibility that LD was driving the
associations, leading to a high PVE for all the SNPs adjacent to the
quantitative trait nucleotide. However, given the strong epistasis for
the two SNPs described above, as well as between SNPs 199 and 289
for budset, it appears more likely that each of these SNPs shape the
phenotypic traits, alone and in combination. This result is not with-
out precedent: previous studies have identified intragenic epistasis
(da Silva et al. 2010), and in one case, conformational changes in the
protein products were directly linked to epistasis between allelic var-
iants within the relevant gene (Ortlund et al. 2007).

Figure 7 Cytoscape interaction network showing sig-
nificant (Q , 0.05) pairwise epistatic interactions for
cold hardiness among the top 20 SNPs measured by
their importance values. Line width indicates the relative
strength of the interaction; dashed lines indicate nega-
tive (antagonistic) epistasis, and solid lines indicate pos-
itive (synergistic) epistasis. Asterisks indicate significant
genotypic linkage disequilibrium (Q , 0.05) between
interacting SNPs.
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This study represents a significant step toward the goal of a com-
prehensive description of the genomic basis of local adaptation in
widely distributed plant species in general, and conifer trees in
particular. We conclude that dimensionality reduction using RF,
coupled with iterative tests for pairwise interactions, is an efficient
and fairly comprehensive approach to uncover SNPs and their in-
teractions that shape adaptive traits, and this approach should be
broadly applicable to other systems. The identification of a suite of
markers that collectively explain a substantial fraction of the pheno-
typic variation in budset and cold hardiness in Sitka spruce provides
an important resource for the conservation of genetic resources present
in wild populations of spruce species, and prediction of ability to adapt
to new climates. Future extensions of the RF approach may include the
search for interpopulation allelic covariance that some theoretical
and empirical work suggests may be responsible for high population
differentiation in adaptive traits found in many tree species (Latta 1998;
Le Corre and Kremer 2003; Ma et al. 2010; Kremer and Le Corre 2011;
Le Corre and Kremer 2012). In trees, high QST is often accompanied by
low FST (i.e., low genetic differentiation among populations), a result
of high pollen-mediated gene flow, and this apparent paradox has
yet to be reconciled by so-called FST-outlier approaches that search
for markers with unusually high levels of differentiation relative to
the neutral distribution. Kremer and Le Corre (2011) show that in
such situations, adaptation is likely the result of covariance between
alleles at many loci, leading to strong clines in quantitative traits
where clines in the underlying adaptive SNPs are weak and indis-
tinguishable from the neutral distribution of FST. Identifying allelic
covariance among many possible candidate SNPs is a challenge, and
the RF approach could be used to pare down the list of possible
allelic combinations that lead to advantageous trait values for differ-
ent populations. Such an analysis would likely be most successful if
relative fitness were used as the response variable rather than the
adaptive phenotypes themselves, since the optimal trait value for a
given environment would not be known.
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