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 Background: Endometrial carcinoma (EC) is the most common gynecological malignancy worldwide, and 15-20% of patients 
with EC have a rapid relapse within 3 years. This study aims to develop an autophagy-related genes (ARGs) sig-
nature to predict the prognosis of EC.

 Material/Methods: In our study, differentially expressed ARGs were identified by “edgeR” package in R and pathway enrichment 
analysis was performed to explore biological functions. Univariate and multivariate Cox regression analyses 
were employed to build autophagy signature. Gene set enrichment analysis (GSEA), Kaplan-Meier curve analy-
sis, and ROC curve analysis were conducted to compare the differences between the high- and low-risk groups.

 Results: A total of 60 differentially expressed ARGs (DEARGs) including 34 upregulated and 26 downregulated DEARGs 
were identified from the TCGAUCEC dataset, with the adjusted P<0.05 and |Fold Change| >1.5. By using uni-
variate and multivariate Cox regression analyses, ERBB2, PRKAB2, GRID2, NRG3, CDKN2A were identified to 
construct a prognostic signature with AUC 0.673, 0.719, and 0.791, at 1-, 3- and 5- years, respectively. Patients 
with EC were divided into low- or high-risk group by median risk score, and GSEA showed that low-risk group 
was enriched in adjacent cells communication pathways while high-risk group was involved in metabolism and 
immune pathways. The nomograms could also help to guide personal prognostic prediction and therapeutic 
strategies in EC.

 Conclusions: Our study not only determine 5 ARGs signature that could predict the prognosis of EC but also provide novel 
insights into the underlying mechanisms of autophagy.
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Background

Endometrial cancer (EC) is the most common gynecological ma-
lignancy worldwide, with an estimate of 61 880 new cases and 
12 160 deaths in 2019 in the United States [1]. Surgery is cur-
rently the primary treatment for early-stage EC, while adjuvant 
radiotherapy or chemotherapy are used in patients with high-
risk factors or at advanced stage. However, although most ECs 
are diagnosed at the early stage (FIGO I–II), the prognosis of re-
current endometrial cancer or advanced stage disease is poor 
and 15-20% of patients with EC have a rapid relapse within 3 
years [2]. Local recurrence or distant metastasis of EC can be 
clinically important and lead to worse outcomes [3]. Due to 
the lack of reliable biomarkers for EC, there is an urgent need 
to explore novel prognostic biomarkers for early risk assess-
ment and high-risk group identification in clinical practice.

Autophagy is a specialized self-degradation mechanism of the 
catabolic process, which is important in degradation and recy-
cling of cytoplasmic components for maintaining cellular ho-
meostasis [4]. In recent years, growing evidence has suggested 
that autophagy is critical in the development of various diseas-
es, including cancers [5]. However, the exact role of autopha-
gy in the onset and progression of tumorigenesis remains un-
known. Previous studies suggested several autophagy-related 
genes (ATGs) are involved in the development and progression 
of various cancers. For example, the upregulated autophagy 
pathway was reported to be significantly associated with pa-
clitaxel resistance in breast cancer MCF-7 cells [6]. In addition, 
PI3K/AKT/mTOR and p53 signaling pathways were found to 
activate or suppress autophagy and may become promising 
therapeutic targets in endometrial cancer [7]. Although these 
studies attempted to investigate the role of autophagy in the 
progression process of EC, most of them paid close attention 
to an individual gene or a single pathway, without defining an 
autophagy-based gene signature. In addition, accumulating ev-
idence shows that autophagy-related genes (ATGs) signatures 
can be used as biomarkers to robustly predict overall survival 
in several types of tumors, such as gastric cancer, glioblasto-
ma, lung cancer, cutaneous melanoma, and pancreatic ductal 
adenocarcinoma [8-12]. Therefore, comprehensive analysis of 
ATGs associated with prognosis are important in understand-
ing the pathogenesis mechanism and potential prognostic im-
plications, as well as clinical diagnosis and treatment in EC.

In this study, we downloaded RNA profiling and clinical data 
from The Cancer Genome Atlas (TCGA) database, and con-
structed a ATGs-based signature to predict clinical outcome 
in EC. Firstly, differentially expressed autophagy-related genes 
(DEARG) were screened. Subsequently, GO and KEGG analy-
ses were performed to display the enriched pathways of these 
DEARGs. Univariate and multivariate Cox regression analyses 
were employed to establish a robust signature associated with 

prognosis, and were confirmed in a validation dataset. GSEA 
was conducted to reveal and compare the biological pathways 
and gene sets between the low- and high- risk groups, which 
provides more interpretable results to biologists. Finally, a prog-
nostic nomogram was constructed using risk scores and clin-
icopathologic factors to predict individual survival outcomes.

Material and Methods

Data Acquisition and Processing

The Uterine Corpus Endometrial Cancer (UCEC) level 3 RNA-
Seq data (HTSeq counts) and corresponding clinicopathologi-
cal data were obtained from The Cancer Genome Atlas (TGGA) 
(https://cancergenome.nih.gov/). We excluded patients with in-
complete clinical information and less than 30 days of overall 
survival (OS). In total, 523 patients were included, of which 23 
patients had adjacent normal endometrial samples. Moreover, 
a total of 288 autophagy-related genes (ARGs) were curated 
from The Human Autophagy Database (HADb, http://www.au-
tophagy.lu/index.html) and REACTOME AUTOPHAGY in Molecular 
Signatures Database v6.2 (MSigDB, http://software.broadinsti-
tute.org/gsea/msigdb).

Differential	Expression	and	Pathway	Analysis	for	ARGs

Differentially expressed genes (DEGs) between tumor and ad-
jacent normal tissues was found using “edgeR” package in R 
software [13], with the thresholds of adjusted P<0.05 and fold 
change (FC) >1.5. The intersection of the DEGs and ARGs was 
considered as the set of differentially expressed autophagy-
related genes (DEARGs) for analysis. In addition, volcano plots 
and heatmap plots were constructed to screen the DEARGs 
among the datasets.

Pathway	and	Protein–protein	Interaction	(PPI)	Network	
Analyses

Gene ontology (GO) terms of biological processes (BP), cel-
lular components (CC), and molecular functions (MF) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses of the DEARGs were conducted using 
the Database for Annotation, Visualization and Integrated 
Discovery [14] (DAVID, http://david.ncifcrf.gov/) to predict the 
possible function of differentially expressed ARGs, and P val-
ues of <0.05 were considered to be statistical significant. In 
addition, the STRING database [15] (http://string-db.org) was 
employed to establish a PPI network based on differentially 
expressed ARGs. Cytoscape software [16] was applied for PPI 
networks visualization and MCODEs were used for modular 
analysis when the node score cutoff was 0.5 and K-core was 2.
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Establishment of Prognostic Model and Performance 
Assessment

The TCGA-UCEC cohort was randomly partitioned to into a 
training set and a validation set at a ratio of 1:  1 with the fol-
lowing criteria: (1) samples were randomly divided into train-
ing and testing datasets; (2) age distribution, clinical stage, 
follow-up time, and ratio of death between the 2 sets were 
similar. Univariate Cox regression analysis was conducted to 
identify the prognosis-associated DEARGs (P value <0.05) in 
the training set by using the “survival” package (http://bio-
conductor.org/packages/survival/) in R. A multivariate Cox pro-
portional hazards regression analysis was further applied to 
create an autophagy prognostic index model. The risk score 
formula was as follows: Risk score=(expr gene1×Coef gene1)+ 
(expr gene2×Coef gene2)+ (expr genei×Coef genei)+ …+ (expr 
genen×Coef genen), where “expr” is the value of gene expres-
sion and “b” indicates the regression coefficient of gene i. The 
likelihood ratio test was used to get the value of “Coef ge-
nei”. The median score was used as a cutoff point to classi-
fy UCEC patients into low-risk and high-risk groups. Kaplan-
Meier (K-M) survival curves and log-rank test were used to 
compare the OS differences between low-risk and high-risk 
groups. The area under the curve (AUC) of the time-depen-
dent receiver operating characteristic (ROC) curve was used 
to determine the prediction accuracy of the risk model with 
the survivalROC package in R.

Gene set Enrichment Analysis (GSEA)

We performed gene set enrichment analysis (GSEA) [17] to 
identify enrichment of gene sets that differed significantly be-
tween the high-risk and low-risk groups (http://www.broadin-
stitute.org/gsea/index.jsp). The GSEA parameters could be set 
as follows: 1000 times permutations were performed. The max 
gene set size was 500 and min size was 15. Enriched biolog-
ical pathways and co-regulated gene sets with a nominal P 
value <0.05 were considered to be significant.

Nomogram	Construction	and	Validation

A prognostic nomogram was generated by combining autoph-
agy risk scores and other clinicopathologic factors by using the 
“rms” package (https://cran.r-project.org/web/packages/rms/in-
dex.html) in R software. To further determine the performance 
of the nomogram, a concordance index (C-index) and calibra-
tion curves were plotted to evaluate the consistency between 
predicted survival and actual survival values.

Statistical Analysis

All the statistical tests were performed by R software (version 
3.5.2, https://www.r-project.org/). Boxplots were drawn us-
ing the “ggplot2” package in R. All analyses performed were 
two-sided, and P<0.05 was considered statistically significant.

Download TCGA UCEC (n=523)

Pathway enrichment &
PPI analysis

Obtain di�erentially expressed
autophagy related genes (DEARGs)

UCEC Training set (n=262)

DEARGs with overall survival

Establishment of 5-autophagy related
signature for prognosis ofUCEC

Univariate Cox model

Multivariate Cox model
Validation set

TCGA testing set (n=261)

TCGA entire set (n=523)

GSEA pathway analysis

Construction of prognostic nomogram

Figure 1.  An entire workflow for identification of 
UCEC prognostic autophagy signature 
in our study.
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Results

Identification	of	Autophagy-related	Risk	Signature	in	UCEC	
Patients

The workflow of our study is shown in Figure 1. The expres-
sion data of 523 UCEC and 23 adjacent normal tissues were 
obtained from TCGA. A total of 288 ARGs were obtained from 
the HADb and MSigDB database. Based on the cutoff crite-
ria of adjusted P<0.05, | FC | >1.5), 60 differentially expressed 
ARGs (DEARGs) were identified by “edgeR” package in R soft-
ware. Of these 60 DEARGs, 34 were upregulated and 26 were 
downregulated. The differentially expressed genes between tu-
mor and adjacent normal tissues are shown in the volcano plot 
(Figure 2A) and heatmap plot (Figure 2B). In addition, KEGG 
and GO enrichment analyses were conducted to explore the 
biological pathways of DEARGs by using DAVID tools. GO anal-
ysis revealed that they were significantly enriched in apoptot-
ic process, autophagy, protein binding, and cytoplasm in the 
aspect of biological process (BP), molecular function (MF), and 
cellular component (CC) (Figure 3A-3C). KEGG enrichment re-
sults suggested that most of them were involved in Pathway 
in cancer, MicroRNAs in cancer, protein HIF-1 signaling path-
way, and ErbB signaling pathway (Figure 3D).

Autophagy-related	PPI	Network	Construction	and	Modular	
Analysis

A protein–protein interaction (PPI) network of DEARGs was next 
constructed according to STRING database and visualized by 

Cytoscape software. A total of 51 nodes and 184 edges mapped 
from STRING were put into the PPI network (Supplementary 
Figure 1A). The MCODE plug-in from Cytoscape was employed 
to search the hub modules in the network with the param-
eters of Node score cutoff=0.5 and K-core=2. Among them, 
MCODE1 had 22 nodes and 95 edges, with the highest score 
(Supplementary Figure 1B), MCODE2 contained 6 nodes and 
10 edges (Supplementary Figure 1C), MCODE3 contained 3 
nodes and 3 edges (Supplementary Figure 1D), and MCODE4 
contained 3 nodes and 3 edges (Supplementary Figure 1E).

Construction of Autophagy-related Prognostic Markers in 
the	Training	Cohort	of	TCGA-UCEC

To identify DEARGs associated with prognosis in patients with 
EC, univariate Cox proportional hazards regression analysis was 
performed using the coxph package in R in the training cohort. 
As a result, only ERBB2, PRKAB2, GRID2, NRG3, CDKN2A were 
found to be significantly associated with OS in the EC cohort 
(Table 1). Subsequently, a risk score model was built by mul-
tivariate Cox regression based on the 5 genes selected in the 
univariate Cox regression model, and the risk score for pre-
dicting prognosis was obtained as follows: 
Risk Score=1.09252× (expression value of CDKN2A)+1.18840× 
(expression value of ERBB2)+1.07332× (expression value of 
GRID2)+1.12024× (expression value of NRG3)+1.39906× (ex-
pression value of PRKAB2).

We applied this model to calculate the risk score for each pa-
tient in the training cohort. Using the median risk score as the 
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Figure 2.  The expression of differential autophagy-related genes (ARGs) in TCGA-UCEC cohort. The expression of differential ARGs 
between EC tissues (n=523) and normal tissues (n=23) was shown in the plots. (A) In the volcano plot, red dots stand for 
upregulated ARGs, blue dots stand for downregulated ARGs, and the gray dots stand for the ARGs that were not differentially 
expressed. (B) The heatmap plot shows ARGs between EC tissues and normal tissues. Red color is upregulated ARGs and 
blue color is downregulated ARGs.
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Figure 3.  KEGG and GO functional enrichment analysis for differentially expressed autophagy-related genes. The vertical axis 
represents GO or KEGG pathways. The horizontal axis represents the number of genes assigned to the corresponding 
annotation (A) The top 20 significant terms of CC. (B) The top 20 significant terms of BP. (C) The top 20 significant terms of 
MF. (D) The top 11 significant terms of KEGG pathways. BP – biological process; CC – cellular component; MF – molecular 
function.

Gene HR HR	95%CI Cox P-value log2FC DEGs P-value

CDKN2A 1.157 1.008-1.329 0.038 5.4 0

ERBB2 1.341 1.1-1.633 0.009 1.295 0

GRID2 1.18 1.043-1.335 0.013 -1.5 0.002

NRG3 1.218 1.038-1.428 0.022 -2.855 0

PRKAB2 1.58 1.13-2.21 0.011 -1.053 0

Table 1. Genes significantly associated with the OS of patients with EC.

HR represents hazard ratio; HR 95% CI represents hazard ratio (HR) with 95% confidence interval (CI); Cox P value represents P 
value in Cox proportional hazards model. log2FC represents the log2 fold change in differential gene analysis (DEGs); DEGs P value 
represents P value in differential gene analysis (DEGs).
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optimal cutoff, the training cohort was partitioned into high-
risk (n=131) and low-risk groups (n=131). In the training co-
hort, the risk score distribution, overall survival status, and the 
expression profiles of autophagy genes ranked by the increas-
ing risk score are shown in Figure 4A. Notably, the heatmap 
displayed that the patients in the high-risk group had signif-
icantly higher expression of autophagy genes than those in 
the low-risk group.

Our data suggested that the patients in the low-risk group 
tended to have better OS than those in the high-risk group 
(median time=2.95 years vs 2.46 years, P<0.001, Figure 4B). In 
addition, to assess the predictive efficacy of the autophagy-re-
lated signature, receiver operating characteristic (ROC) curves 
analysis was conducted. The area under the ROC curves (AUCs) 
of the signature for 1-, 3-, and 5-year overall survival predic-
tions were 0.673, 0.719, and 0.791, respectively (Figure 4C).

Validation of Autophagy-related Signature for Prognostic 
Prediction

To confirm that the 5-gene autophagy-related signature had 
consistent prognostic value in different datasets, we first ap-
plied the signature to an independent validation cohort of TCGA-
UCEC (n=261). By using the same risk formula, patients were 
classified into high-risk (n=130) and low-risk (n=131) groups 
according to the median risk score. Figure 5A shows the distri-
bution of risk score, survival status, and the autophagy genes 
expression profiles in the validation cohort. Consistent with 
the training set, the high-risk group had significantly poorer 
OS than that in the low-risk group (median time=2.20 years vs 
2.97 years, log-rank test P<0.001) (Figure 5B). Moreover, the 
AUCs for 1-, 3-, and 5-year OS predictions for the risk scores 
were 0.648, 0.736, and 0.713, respectively, which exhibited 
a good performance to predict survival outcome (Figure 5C).
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We additionally validated this autophagy-related signature in 
the entire TCGA set (n=523). In the entire TCGA set, the distri-
bution pattern of risk score, survival status, and the autoph-
agy genes expression profiles had similar trends to those in 
the training set (Figure 6A). As shown in Figure 6B, Kaplan-
Meier plot analysis indicated that the 5-autophagy gene sig-
nature could predict the survival outcomes efficiently, with 
log-rank test P<0.0001. The 1-, 3-, and 5-year AUCs for the OS 
were 0.684, 0.708, and 0.743, respectively (Figure 6C). Taken 
together, these findings suggested that the 5- gene autopha-
gy-related signature could achieve a stable predictive effica-
cy of the OS in EC.

Gene Set Enrichment Analysis (GSEA) in Characterizing 
High-risk and Low-risk Groups in EC

To explore the biological process associated with the autophagy 
signature, GSEA was conducted to identify signaling pathways 

that differed between the high-risk and low-risk groups. GSEA 
results in the entire TCGA set showed that the genes in the 
low-risk group were enriched in adjacent cells communication 
pathways, including Axon guidance (NES=1.78, P=0), Cell–cell 
communication (NES=1.58, P=0.0086), and Tight junction inter-
actions (NES=1.77, P=0.002), while genes in the high-risk group 
were involved in metabolism and immune pathways, such as 
Synthesis of Glycosylphosphatidylinositols (GPIs) (NES=-1.85, 
P=0.01), P53 Hypoxia pathway (NES=-1.84, P=0.004), and IL12 
pathway (NES=-1.62, P=0.015) (Figure 7A-7F).

Construction	and	Validation	of	the	Nomogram	in	EC

To provide clinicians a quantitative prediction of the survival 
in patients with EC, a prognostic nomogram was constructed 
by integrating autophagy risk factors and other clinicopatho-
logic features. The nomogram was used to evaluate survival 
prediction, including the risk scores, age, sex, and TNM stage. 
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(C) Time-dependent ROC curves for the efficacy evaluation of the 5-gene autophagy-related signature.
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As shown in the nomogram (Figure 8A), each variable was as-
signed points in proportion to its risk contribution to the OS. 
The C-index to evaluate the OS of the model was 0.785. The 
calibration curve plot showed a good consistency between ac-
tual and ideal observation (Figure 8B-8D).

Discussion

Endometrial carcinoma (EC) remains one of the most common 
types of gynecological malignancy worldwide, with high mor-
tality rates. The tumor, node, metastasis (TNM) classification 
is considered as the most clinically useful cancer staging sys-
tem of EC [18]. However, patients at the same TNM stage can 
have heterogeneity in clinical outcomes and different response 
to therapy. Therefore, it is urgent to identify reliable and early 
indicators that can predict the prognosis of EC. Autophagy is 
regarded as a highly conserved protective process that plays 

fundamental roles in cellular stress response and homeostasis 
maintenance. A variety of autophagy-related genes (ATG) have 
been found to influence the cellular homeostasis and self-re-
newal processes. Recent studies have demonstrated that au-
tophagy plays a role as a tumor suppressor at an early stage, 
but acts as a tumor promoter later on. However, most of these 
studies were only performed at the individual gene level, and 
multi-gene patterns were not systematically developed. The 
present study is the first to comprehensively assess the prog-
nostic value of ARGs signatures of patients with EC.

In this present study, EC patients were obtained from TCGA 
database and a systematic analysis was conducted to inves-
tigate the associations between autophagy signature and 
clinical outcomes. A total of 60 DEARGs were identified from 
TCGA-UCEC dataset, including 34 upregulated and 26 down-
regulated DEARGs. GO and KEGG functional enrichment anal-
yses revealed that the most significantly enriched terms were 
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Figure 6.  Characteristics of differential expression autophagy-related genes (DEARGs) autophagy signature, Kaplan-Meier plot, and 
AUC curves in the TCGA entire set. (A) Distribution of risk score, patient survival status, and heatmap of autophagy-related 
gene expression profiles. (B) Kaplan-Meier curves of the prognostic predictors for high-risk and low-risk patients with UCEC. 
(C) Time-dependent ROC curves for the efficacy evaluation of the 5-gene autophagy-related signature.
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Figure 7.  GSEA enrichment analysis in TCGA-UCEC. (A) “Axon guidance”, (B) “Cell-cell communication”, (C) “Tight junction 
interactions”, (D) “Synthesis of Glycosylphosphatidylinositols (GPIs)”, (E) “P53 Hypoxia pathway”, (F) “IL12 pathway”.

related to the autophagy process in cancer. Results from KEGG 
pathways showed that pathway in cancer, MicroRNA pathway 
in cancer, HIF-1 signaling pathway, and ERBB signaling path-
way were significantly enriched, suggesting that deregulated 
autophagy genes influence a variety of biological processes 
related to cancer. In addition, Cox regression analysis identi-
fied 5 hub prognostic genes – ERBB2, PRKAB2, GRID2, NRG3, 
and CDKN2A – that could be potential prognostic biomarkers 
and possible targets for treatment of EC. ERBB2 (also known 
as HER2) is a 185-kDa transmembrane glycoprotein recep-
tor tyrosine kinase (RTK) that plays a crucial role in activat-
ing signaling pathways of cell growth, survival, and differen-
tiation. HER2 was observed to be amplified or overexpressed 
in 15-30% of breast cancer and gastric cancer samples [19]. 
Notably, it has been reported that HER2 overexpression (by IHC) 
exists in 17%-80% of endometrial cancer [20]. Moreover, high 
HER2 expression in EC has been strongly linked to aggressive 
status and high risk. Another study reported that HER2 could 
regulate autophagy through signaling and receptor complex-
es with autophagy-related genes to affect cancer cell survival 

and death [21]. For example, HER2 plays crucial roles in modu-
lating autophagic retinal pigment epithelium cell death during 
oxidative stress [22]. Thus, targeted HER2 therapy or combina-
tion therapy might regulate the autophagy process and may 
be as a promising individualized strategy against EC.

PRKAB2 is the b2 subunit of AMP-activated protein kinase, 
which maintains cellular energy homeostasis [23]. AMPK can 
activate energy generating pathways of glycolysis, b-oxidation 
of fatty acids, and oxidative phosphorylation, and also sup-
presses energy consuming processes, including lipid synthesis, 
carbohydrate, and protein translation. PRKAB2 is amplified in 
many types of cancer [24]. A pan-cancer study demonstrated 
that PRKAB2 amplification was significantly associated with 
MYC amplification across various types of cancer, including 
melanoma, breast, and bladder cancers. In addition, AMPK sig-
naling is important for cellular metabolism, and it mediates 
autophagic degradation activity and adapts efficiently to the 
energetic status of the cell [25].
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GRID2 (Glutamate Ionotropic Receptor Delta Type Subunit 2) 
belongs to the ionotropic glutamate receptor family, which 
was originally described to mediate excitatory neurotrans-
mitters [26]. Functional experiments suggested that changes 
in the expression level of ionotropic glutamate receptors or 
their single subunits were critical in proliferation and invasion 
of cancer cells. A study conducted by Roy et al also showed 
that GRID2 was a common fragile site easily deleted in some 
non-primary effusion lymphoma (PEL) tumor cell lines [27]. 
Similarly, GRID2 is significantly deleted in uterine corpus en-
dometrioid carcinoma, with a q value=8.28E-05 [28]. In our 
study, the log2 FC of GRID2 expression was -1.50, which was 
consist with the above studies. Moreover, it was reported that 
autophagy was activated in Lurcher heterozygous mice with 
absence of wild-type GRID2 receptors, which induced early 
and massive Purkinje cells death [29].

NRG3 belongs to a growth factor family of an EGF-like domain 
that binds to ErbB4 or ErbB4/ErbB2 heterodimers exclusive-
ly, which stimulates tyrosine phosphorylation of RTK receptor, 
ultimately contributing to a poor signaling molecule in cancer 
cells [30,31]. Moreover, NRG3 has reported to bind exclusive-
ly to ErbB4 or ErbB4/ErbB2 heterodimers [32], and can affect 
autophagy through ERBB family signaling.

In general, CDKN2A (p16Ink4a) is considered to be a tumor sup-
pressor, which is often viewed as loss or downregulation in 
the tumor to negatively regulate G1/S cell cycle progression. 
In contrast, overexpression of p16Ink4a has also been observed 
in several kinds of cancers, including invasive endometrial can-
cers, breast carcinoma, and basal cell carcinoma [33]. Moreover, 
overexpression of p16Ink4a has been shown to be significantly 
associated with unfavorable prognosis. In addition to the cell 
cycle regulation, p16Ink4a protein is also involved in other abnor-
mal signal transduction, such as apoptosis, cell invasion, and 
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Figure 8.  Nomogram for predicting the 1-, 3-, and 5-year survival with risk score. (A) A prognostic nomogram for patients with UCEC in 
TCGA; (B–D) Calibration curves for the nomogram at 1, 3, and 5 years.
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angiogenesis, and the activities of these pathways are associ-
ated with the overexpression p16Ink4a in cancer [34]. A previous 
study showed that the cytotoxic effect of the CDK inhibitors 
enhanced apoptosis in CDKN2A-defective SqCLC cells, which 
is a sign of autophagy during this process [35].

Although previous studies have shown that these genes are re-
lated to the autophagy process, most of them only focused on 
individual genes. Our study suggests that these genes may in-
fluence the cancer development process within a specific pat-
tern, from which autophagy shows a combined effect on the 
prognosis of EC. Our robust autophagy signature was built by 
multivariate Cox regression in a training cohort, and validat-
ed in a testing cohort and the entire cohort from TCGA, which 
showed a consistent effect in predictive efficiency. Moreover, 
the 5-gene autophagy-related signature could successfully 
divide patients into high-risk and low-risk groups. It was ob-
served that patients with higher risk scores had shortened 
survival outcomes. Hence, the 5-gene signature could serve 
as a joint prognostic biomarker in EC and provide further in-
sight into the clinical practice. GSEA results showed that the 
low-risk group tended to be enriched in adjacent cells com-
munication pathways, while the high-risk group was involved 
in metabolism and immune pathways, which suggests there 
are significant differences between the 2 subgroups at path-
way levels. Moreover, a nomogram was constructed to pre-
dict each individual survival outcome by risk scores and clin-
icopathologic factors, which could provide a more accurate 
risk assessment of OS for the patients with EC. Currently, ge-
nomic-based classification can stratify endometrial carcinoma 
into 2 groups: type I carcinomas, which are associated with 
favorable prognosis, often harbor CTNNB1 mutations and mi-
crosatellite instability (MSI), while type II carcinomas are de-
fined by the risk factors of TP53 mutations and high Ki-67 
score, which are related to adverse prognosis [36]. We next 
analyzed the current risk assessing tools of endometrial carci-
noma such as POLE, MSI, CTNNB1, and TP53 to compare with 

the high- or low-risk groups divided by our autophagy gene 
signature. We observed that MSI (P<0.001, OR=0.24), CTNNB1 
(P=0.015, OR=0.53), and TP53 (P<0.001, OR=3.58) were signif-
icantly associated with high risk. These findings show a high 
concordance between risk groups divided by our autophagy 
genes and current risk factors in EC.

Taken together, our study reveals that the autophagy-associ-
ated pattern could help to distinguish between high-risk and 
low-risk patients with EC. However, several limitations to our 
study should be considered. First, our research was only based 
on RNA-Seq data, and protein expression of these autophagy 
genes should be validated in the future. Second, other types 
of clinicopathologic factors such as tumor size and lymph 
node metastasis, which might be responsible for the progno-
sis, should be considered. Third, the underlying mechanism of 
these autophagy genes remains unclear, and in vitro or in vivo 
laboratory experiments are needed to confirm our findings.

Conclusions

In summary, this present study developed a robust 5-gene au-
tophagy-related signature that can accurately predict OS out-
comes in patients with EC. We hope this novel autophagy-based 
prognostic signature will be helpful for the clinical guidance 
of individualized treatment of patients with EC.
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