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Abstract

Providing less prepared students with supplemental instruction (SI) in introductory STEM

courses has long been used as a model in math, chemistry, and biology education to

improve student performance, but this model has received little attention in physics educa-

tion research. We analyzed the course performance of students enrolled in SI courses for

introductory mechanics and electricity and magnetism (E&M) at Stanford University com-

pared with those not enrolled in the SI courses over a two-year period. We calculated the

benefit of the SI course using multiple linear regression to control for students’ level of high

school physics and math preparation. We found that the SI course had a significant positive

effect on student performance in E&M, but that an SI course with a nearly identical format

had no effect on student performance in mechanics. We explored several different potential

explanations for why this might be the case and were unable to find any that could explain

this difference. This suggests that there are complexities in the design of SI courses that are

not fully understood or captured by existing theories as to how they work.

Introduction

Supplemental instruction (SI) is a commonly used approach in mathematics and chemistry

education to provide additional help to students. The basic premise is that students who desire

extra help or are determined to be at risk in introductory STEM courses will take an additional

SI course to provide them with more targeted practice, individual attention, and, in some

cases, social-psychological interventions. In some cases, SI resulted in improved grades for all

students [1], and in other cases, disproportionately benefited underrepresented students [2]. SI

courses taught by instructors or graduate TAs [3,4], as well as courses lead by undergraduate

“peers” of enrolled students [5–10] have been shown to have a substantial impact in chemistry.

Despite the popularity of SI in other disciplines, we could find no published studies in the

physics education literature documenting the effects of SI courses, though there exist SI

courses in physics and some more general studies suggesting positive benefits of such courses

in physics [11,12]. We also note that SI courses are not always offered by the same department
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as the target course, but sometimes by centers of teaching and learning, the organizing college

or school (e.g., the AEW program at Cornell University), or other campus groups.

Despite evidence of the positive effects of SI, the review by Dawson et al. found that SI is

not consistently defined in the literature, and that most articles on the subject do not actually

specify what happens in a particular session of the SI courses [13]. Rath et al. [14] provided the

following description:

“Typical activities included guided discussions with extensive class participation (often fol-

lowing small group work), worksheets that were completed both individually and in groups,

peer instruction, preparation of study resources, kinesthetic and visual modeling of prob-

lems, practice tests, and trivia-style games. Particular emphasis was placed on the concepts,

content, and vocabulary from the lecture, but before lab exams some time was spent review-

ing methods, data analysis, and the interpretation and principles underlying observed out-

comes of various laboratory experiments”.

However, Dawson et al. note that such descriptions, when present, are rarely supported by

observations that support these descriptions [13]. They also find large variations in the number

of participants in a particular session, and what constitutes sufficient attendance to qualify as

an SI participant. Dawson et al. say that the role of the leader of a SI course session (often a suc-

cessful undergraduate student, but sometimes an instructor or graduate student) is “facilitating

discussion around course content, and related study skills, and for preparing learning activities

such as worksheets, group work, problem-solving exercises, or mock exams for their students.”

They also say that students in attendance are responsible for “teaching each other the course

content and for working together to solve problems.” Despite variations in SI course design,

they often share a common element: cooperative group problem-solving [15–17]. In this

model, students work together in small groups on relevant problems while the instructors cir-

culate the room to monitor discussion and provide targeted feedback to the groups. This inter-

vention is thought to be effective because it encourages students to better monitor and be

more aware of their own learning [18–20].

The effectiveness of SI courses is most often measured by grades in the target course (the

course which the SI course is accompanying). Typically, researchers will use a quasi-experi-

mental design and compare the course grades of students in the SI course with students not

enrolled in the SI course, but they do not randomly assign students to these groups. They will

then use t-tests to determine if the difference is significant, though Dawson et al. report that

few studies provide effect sizes (e.g., Cohen’s d) [13]. However, this literature on SI is likely

generally biased to only report instances in which SI courses were beneficial, so it is difficult to

say how helpful these interventions are across all iterations. Another common problem in the

literature on SI courses is the issue of self-selection bias. Even if there seems to be a positive

effect of the SI course when examining final exam grades, it is difficult to disentangle the effects

of the intervention from student characteristics that may have made students more likely to

enroll in the SI course, which are nearly always optional. Indeed, some research has shown

that providing additional benefits to students does not work as intended, because the students

most at risk are less likely to use those resources [21]. Researchers have used measures of prior

preparation (e.g., SAT/ACT scores, GPA) and measures of motivation as control variables to

try and address the non-random nature of participation in SI courses. Some studies still find

effects of SI using these controls (E.g., Ref. [22]). One study [23] suggests that the effects of SI

courses are greater when attendance is mandatory, but that motivation is lower among stu-

dents for whom the SI courses are mandatory. This suggests that, while motivation plays some

role in the positive effects of SI courses, it is not the whole story.
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Stanich et al. addressed the issue of self-selection in their work [9]. They recruited SI course

participants by emailing students who scored in the bottom quartile of the chemistry place-

ment exam and working with the Office of Minority Affairs and Diversity at their university.

More students volunteered for the SI course than they were able to accept into the program, so

they had a natural control group. Students were randomly selected to participate in the pro-

gram from the list of volunteers. In that work, their SI course, which included cooperative

group problem-solving, study skills development, and social-psychological writing interven-

tions, showed a substantial positive effect. SI course participants scored much better than

those who volunteered for the course but were not accepted, and they scored the same as the

other students in the class who scored in the top three quartiles on the placement exam.

Stanford University has long used SI courses in introductory chemistry and math courses.

More recently, the physics department implemented SI courses for physics 1 and physics 2 –

the introductory calculus-based mechanics and electricity and magnetism (E&M) courses for

scientists and engineers; these supplemental courses were called Phys 1A and Phys 2A. Student

feedback on these courses was very positive, but there was no analysis of whether these SI

courses had a positive impact on student course performance (i.e., grades in the course or on

exams). To this end, we conducted a quantitative study of Phys 1A and 2A to determine if

these courses were helping the students the courses were created to help—less prepared stu-

dents. We posed the following research question:

1. Do Phys 1A and 2A have a positive effect on students’ final exam grades in Phys 1 and 2,

and do these courses disproportionately benefit less prepared students?

To answer this question, we use multiple linear regression to predict final exam grades as a

function of high school physics preparation (measured by concept inventory scores, SAT/ACT

math scores, and prior math coursework) and participation in Phys 1A or 2A. We use final

exam score rather than course grade because it is a comprehensive measure of content knowl-

edge covered in the course that is the primary determinant of the students’ grades in these

courses, and in prior work we have found that it is a more linear and consistent measure of

performance than the course grades. The latter tend to be a very non-normal distributions,

compressed to the top of the scale in a nonlinear way. As a result, we find that linear regression

models explain much less of the variance in course grades than they do in final exam grades.

In the next section, we provide a detailed description of Phys 1A and 2A. We then present our

quantitative analysis and discuss the results.

Course descriptions

Phys 1 & 2

The structures of Phys 1 and Phys 2 were nearly identical. Both courses had three 50-minute

lectures a week and an 80-minute discussion section once a week that was led by a teaching

assistant. The lectures made limited use of clicker questions. In the discussion sections, stu-

dents would solve problems, often adaptations from Tutorials in Introductory Physics, but

there was no formal group problem-solving activity. Both courses had two midterm exams

and a final exam which constituted approximately 80% of the final course grade. The remain-

der of the grade, which had little variation, consisted of grades from weekly problem-sets

(which included problems from Mastering Physics and typically required several hours each

week) and in-class participation (measured by answers to clicker questions). Phys 1 covered

kinematics and projectile motion, forces and static equilibrium, uniform circular motion, con-

servation of energy, conservation of momentum, and torque and conservation of angular

momentum. Phys 2 covered Coulomb’s law and electrostatics, Gauss’ law, capacitance and
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dielectrics, simple circuits, Ampere’s law, the Biot-Savart law, Faraday’s law, Lenz’s law, and

Maxwell’s equations. Phys 1 used the textbook by Young and Freedman [24], while Phys 2

used that by Knight [25]. Both courses also had optional labs, which were separate courses

taken by approximately half the students in Phys 1 and 2. The enrollments for each course in

2017 and 2018 are given in Table 1.

Phys 1A

Phys 1A was a one-unit course which met for 110 minutes (with typically a 10-minute break in

the middle) once per week in addition to the regular Phys 1 discussion sections. Thus, it was

typically 100 minutes per week of supplemental instruction, on top of the regular 230 minutes

per week of instructional time students had in Phys 1 and Phys 2. Originally, this course was

optional and there was no screening of students who wanted to enroll based on need. Over a

period of several years, we found that students in Phys 1A consistently rated the course highly,

but on the final exam they consistently scored about 0.5 standard deviations lower than the

other students in Phys 1, on average. There were several changes in the course over the years

in an unsuccessful attempt to reduce this difference. Initially, the course focused on reviewing

lecture material. Then it was changed to small group problem-solving. Eventually, an applica-

tion and screening process was implemented, and the course started to focus more on funda-

mental ideas and problem solving. The 0.5 standard deviation difference remained unchanged

throughout these changes.

In 2017 and 2018, students had to complete an application and be approved by the instruc-

tor to enroll in Phys 1A. Applicants were screened to give preference to students with less

physics and math preparation. Most of the class time was spent with students working in small

groups of 3–6 on problems, while the instructor and TAs circulated throughout the room to

monitor discussion and answer questions. These problems were written by the course instruc-

tors and were designed to cover the ideas that were most difficult for students (e.g., adding vec-

tors, identifying relevant forces, etc.), and to teach elements of good problem-solving practice

[26]. The instructor would call students back from their small groups to review the solutions to

the problems with the whole class at specified intervals. In addition to this small group work,

students would practice timed exam problems so that they could get used to high-stakes time-

constrained problem-solving. An example course worksheet may be found in the Supplemen-

tal Material. In 2017 we conducted a detailed analysis of performance in Phys 1A similar to the

analyses we present below. We found no effect of Phys 1A in 2017 on course or exam perfor-

mance, and thus reformed the course again for 2018. S. S. and C. E. W. designed a template to

help students learn good problem-solving practices, based on prior research [26]. The template

asked students to explicitly engage in steps of problem-solving such as planning their

approach, listing the assumptions they were making, and reflecting on their solution [27]. For

all iterations of both Phys 1A and 2A, the TA to student ratio was large (and similar for both

courses), and the TAs were specially selected on the basis of having previously shown them-

selves to be particularly good at working with struggling students.

Table 1. Enrollment numbers for Phys 1(A) and Phys 2(A).

Course 2017 Enrollment 2018 Enrollment

Phys 1 463 518

Phys 1A 120 79

Phys 2 422 460

Phys 2A 22 (21 also in Phys 1A) 44 (23 also in Phys 1A)

https://doi.org/10.1371/journal.pone.0249086.t001
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Phys 2A

Phys 2A was very similar to Phys 1A. It was a one-unit course which met for 110 minutes

(with 10-minute break) once per week in addition to the regular Phys 2 discussion sections.

Enrollment was open in 2017, but in 2018 students had to complete an application to enroll in

Phys 2A. Prior enrollment in Phys 1A did not guarantee a student a spot in Phys 2A. Like Phys

1A, the majority of class time was spent with students working in groups of 3–4 on problems

while the instructor and TAs circulated the room to monitor discussion and answer questions.

The class sessions would begin with a recapitulation of ideas covered in lecture that week, with

particular focus on ideas that students struggled with, similar to the early iterations of Phys 1A.

Students would be asked to discuss relevant ideas in small groups and come up with mathe-

matical and conceptual definitions of different ideas. The instructor would then ask groups of

students to share their definitions with the whole class to develop the ideas fully for the whole

class. Students would then begin working in their small groups on problems. The problems

were either examples used in other parts of the Phys 2 course or from the textbook [25]. For an

example worksheet from Phys 2A, see the Supplemental Material. The worksheets would con-

tain problems that reviewed materials already covered in lecture or prepared students for

upcoming lectures. The instructor would call students back from their small groups to review

the solutions to the problems with the whole class. After midterm exams, the instructor would

sometimes review answers to the free-response questions with students to make sure they

understood the problems. All of these were similar to the conduct of 1A, except for more care

in the creation of the 1A problems in the later iterations, to try to better target specific areas of

student difficulty.

Phys 1A and 2A had applications required for enrollment, so the prior literature suggests

that these students are more motivated than students who do not enroll in the SI courses, but

have similar levels of high school physics and math preparation. Furthermore, grades in the SI

courses were based only on attendance, ensuring that attendance was high.

Methods

We collected data on students’ incoming physics and math preparation, as well as their physics

1 & 2 course performance (as measured by final exam grades), to determine whether Phys 1A

and 2A had any effect on course performance after controlling for student prior preparation.

For Phys 1A, we collected students’ FMCE pre-scores and SAT/ACT math scores, as we had

previously found those two variables were the only predictors of Phys 1 course performance

[28]. For Phys 2A, we collected FMCE pre-scores, SAT/ACT math scores, CSEM pre-scores,

Phys 1 final exam scores, and whether a student had already taken vector calculus prior to

Phys 2A. We found these variables to be predictors of performance in Phys 2 in previous work

[29]. The FMCE is a short conceptual test of mechanics and motion commonly used in physics

education research, and the CSEM is a short conceptual test of basic electricity and magnetism

concepts. Students provided written consent for the use of anonymized course data in future

research at the beginning of each course when taking the FMCE or CSEM. Students who did

not give consent were removed from analysis. This work was determined exempt from review

under Stanford University protocol IRB-48006.

We then ran multivariable regression analysis for both 2017 and 2018 to predict Phys 1 and

Phys 2 final exam scores as a function of incoming preparation and participation in Phys 1A

or Phys 2A, and the interaction of incoming preparation and participation in 1A or 2A, respec-

tively. We scaled final exam scores and measures of incoming preparation such that the regres-

sion coefficients as shown below would be in units of standard deviations. We used multiple

imputation with predictive mean matching to account for missing data. We imputed 20
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different data sets, and then pooled the results of the regression models of all 20 data sets using

the mice package in R.

Multiple imputation is an alternative to complete case analysis—simply deleting partici-

pants for whom complete data is not available. Complete case analysis is known to introduce

biased errors of parameters [30]. Multiple imputation is an appropriate solution to this prob-

lem when data are missing at random—i.e. when the probability of data being missing is

dependent on other observed variables, but not on the missing values themselves. For example,

we are missing some FMCE pre-scores. It is possible that missing the first day of class is more

likely for students who are less likely to perform well on the final exam. Thus, the missingness

of the FMCE score is explained by the final exam score and not dependent solely on the FMCE

score itself. Thus multiple imputation can account for these differences. For more detail on

multiple imputation, see [30].

Results

The results from the analysis of Phys 1 final exam scores are in Table 2. In 2017 model a, we

calculate whether there was an overall effect of Phys 1A enrollment after controlling for stu-

dents’ prior preparation. In 2017 model b, we add an additional term to model a to see if the

effect of Phys 1A enrollment is different for students with different levels of prior preparation.

2018 model a and 2018 model b are the same, except with the population of students from

2018. As in previous work, we found that FMCE pre-score, and SAT/ACT math score are

strong predictors of course performance. We also tested for the differences associated with tak-

ing different levels of calculus courses and found no effect. However, controlling for these

measures of incoming preparation, we found no statistically significant main effect or interac-

tive effect of taking Phys 1A. This indicates that two students with the same scores on these

measures of incoming physics and math preparation, one enrolled in Phys 1A and the other

not, will receive the same final exam score in Phys 1. The lack of main effect for Phys 1A, as

shown by the insignificant coefficient of Phys 1A in row 4 of Table 2, shows that the SI course

has not improved the performance in Phys 1 of students who took it. The lack of an interactive

effect, as suggested by insignificant coefficient of Phys 1A x SAT/FMCE (rows 5 and 6,

Table 2), shows that taking this SI course did not moderate the effect of incoming preparation

on Phys 1 final exam performance, and thus, this SI was not effective in addressing the impact

of differences in prior preparation on performance in Phys 1. This apparent lack of benefit is

in notable contrast to the student evaluations of the 1A course, which were overwhelmingly

Table 2. Regression models for Phys 1 final exam performance as a function of incoming preparation and enrollment in Phys 1A. Coefficients are in units of stan-

dard deviations and the numbers in parentheses are the standard errors.

Phys 1 Final Exam 2017 Model a 2017 Model b 2018 Model a 2018 Model b

FMCE Pre-Score 0.44��� (0.043) 0.45��� (0.045) 0.35��� (0.045) 0.35��� (0.048)

SAT/ACT Math Score 0.22��� (0.043) 0.26��� (0.053) 0.32��� (0.044) 0.33��� (0.053)

Phys 1A -0.021 (0.070) -0.082 (0.090) 0.059 (0.11) -0.042 (0.13)

Phys 1A x SAT -0.055 (0.048) -0.038 (0.098)

Phys 1A x FMCE -0.053 (0.092) -0.14 (0.14)

R-squared 0.30 0.31 0.31 0.32

��� p < 0.001,

�� p < 0.01, � p < 0.05, † p < 0.10. 2017 models and b include all students enrolled in Phys 1 in 2017 (N = 463). 2018 models a and b include all students enrolled in

Phys 1 in 2018 (N = 518).

https://doi.org/10.1371/journal.pone.0249086.t002
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positive, many making comments such as “I would never have survived physics 1 without

1A!”.

The results from the similar analysis of Phys 2 final exam scores are in Table 3. In 2017

model a, we calculate whether there was an overall effect of Phys 2A enrollment after control-

ling for students’ prior preparation. In 2017 model b, we add an additional term to model a to

see if the effect of Phys 2A enrollment is different for students with different levels of prior

preparation. 2018 model a and 2018 model b are the same, except with the population of stu-

dents from 2018. Adding the interaction term between incoming preparation and enrolling in

SI did not improve the model fit for either year (as suggested by the same R2 of model a and

model b), and neither of the interaction terms was significant at the P = 0.05 level. Therefore,

we take 2017 Model a and 2018 Model a to be the simplest, best-fitting models for interpreting

SI course effects. As in previous work, we find that SAT/ACT math score, CSEM pre-score,

and prior Vector Calculus experience are all significant predictors of performance in Phys 2.

In 2018, FMCE is also a significant predictor, stronger than in 2017, likely due to differences in

the respective Phys 2 final exams. We find an inconsistent effect of Phys 2A. In 2017, for two

students with the same FMCE, CSEM, and math SAT scores, one enrolled in 2A and one not,

the student enrolled in 2A performed 0.79 (0.19) standard deviations better on the final exam

(2017 model a row 6), which is a large effect size. In 2018, the effect size was 0.13 (0.14) stan-

dard deviations and was not statistically significant (Model 2018 a). In both 2017 and 2018, we

found no significant interaction effects between incoming preparation and enrolling in SI

course, suggesting that if Phys 2A is effective, it is equally effective for all students.

A different perspective is provided by adding to the model the students’ Phys 1 final exam

score as shown in Table 4. When this is included in the model, not surprisingly, the other mea-

sures of prior preparation are less important. This score is a very strong predictor of Phys 2

final exam grade and including it in the model explains far more variance in final exam scores

than the models in Table 3. This is not surprising as the Phys 1 final exam score measures skills

related to performance in physics beyond those measured by the concept inventories and

SAT/ACT math scores—e.g., study skills, problem-solving, psychological adjustments to uni-

versity physics, instructor expectations in this department, etc. These are more complete mea-

sures of preparation for performance in Phys 2.

Table 3. Regression models for Phys 2 final exam performance as a function of incoming preparation and enrollment in Phys 2A. Coefficients are in units of stan-

dard deviations and the numbers in parentheses are the standard errors.

Phys 2 Final Exam 2017 Model a 2017 Model b 2018 Model a 2018 Model b

FMCE Pre-Score 0.14† (0.070) 0.14† (0.070) 0.22��� (0.061) 0.22�� (0.065)

SAT/ACT Math Score 0.23�� (0.069) 0.25�� (0.080) 0.23��� (0.054) 0.24��� (0.062)

CSEM Pre-Score 0.35��� (0.055) 0.33��� (0.055) 0.23��� (0.046) 0.25��� (0.060)

Prior Vector Calculus 0.44�� (0.11) 0.44��� (0.12) 0.24� (0.099) 0.24� (0.11)

Phys 2A 0.79��� (0.19) 0.56 (0.56) 0.13 (0.14) -0.31 (0.36)

Phys 2A x FMCE -0.25 (0.29) 0.0028 (0.23)

Phys 2A x SAT -0.11 (0.13) -0.072 (0.14)

Phys 2A x CSEM 0.092 (0.42) -0.43 (0.27)

Phys 2A x Vector 0.040 (0.47) 0.15 (0.33)

R-squared 0.33 0.33 0.32 0.32

��� p < 0.001,

�� p < 0.01,

� p < 0.05,
† p < 0.10 2017 models and b include all students enrolled in Phys 2 in 2017 (N = 422). 2018 models a and b include all students enrolled in Phys 2 in 2018 (N = 460).

https://doi.org/10.1371/journal.pone.0249086.t003
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Less obvious, when Phys 1 exam score is added to the model, the impact of 2A became

larger and statistically significant for 2018, as did the 2017 Phys 2A x Phys 1 final exam interac-

tion term. As can be seen in, the interaction effects show that Phys 2A had a greater benefit for

those who performed poorly in Phys 1 in 2017 (as indicated by the negative sign on the coeffi-

cient, which when multiplied by a below average, or negative, z-score becomes a positive

effect), and it provided a significant benefit for everyone in 2018, regardless of their Phys1 final

exam grades, although a smaller benefit than in 2017. This result is encouraging, because it

suggests that Phys 2A is making Phys 2 more equitable for students who were less successful in

Phys 1. The reason that Phys 2A is significant in the 2018 model in Table 4 but not Table 3 is

not clear but is related to the correlation between the different variables in the regression mod-

els. In the discussion below, we will use the results in Table 4 to interpret the effectiveness of

Phys 2A, as it is a better model, in that it explains more variance of Phys 2 final exam score

(compare R2 in Table 4 with R2 in Table 3).

Discussion

The most notable result is that the two SI courses, despite very similar structures and

approaches, varied greatly in their effectiveness. Phys 1A is never effective across many years,

enrollments, and instructional approaches. In contrast, Phys 2A appears to be effective,

although with different results for different years. We have seen a fairly similar analysis of the

impact of the SI course in the first term general chemistry course at Stanford, and although the

data was not as detailed as what we present here, the lack of measurable benefit was the same

as we see here with Phys 1A. This indicates that the mechanisms behind SI course interven-

tions need to be better understood before such interventions are widely adopted. In the follow-

ing section, we examine three possible reasons why Phys 1A was ineffective while Phys 2A was

effective: differences in the student populations, differences in students’ abilities to navigate

college courses, and differences in course structure. We then discuss possible reasons for the

difference in the effectiveness of Phys 2A between 2017 and 2018.

Possible reasons for differences in benefit between Phys 1A and Phys 2A

Differences in student populations. Phys 1 was 55% first-year students, while Phys 2 was

only 38% first-year students. Many students choose to wait a year between taking Phys 1 and

Table 4. Regression models for Phys 2 final exam performance including Phys 1 final exam as a predictor. Coefficients are in units of standard deviations and the

numbers in parentheses are the standard errors.

Phys 2 Final Exam 2017 Model a 2017 Model b 2018 Model a 2018 Model b

FMCE Pre-Score -0.015 (0.062) -0.018 (0.063) 0.047 (0.054) 0.043 (0.051)

SAT/ACT Math Score 0.11 (0.069) 0.12† (0.070) 0.081 (0.046) 0.076 (0.047)

CSEM Pre-Score 0.16�� (0.048) 0.16�� (0.049) 0.034 (0.047) 0.041 (0.047)

Prior Vector Calculus 0.29�� (0.10) 0.29�� (0.10) 0.12 (0.074) 0.12 (0.080)

Phys 1 Final Exam 0.55��� (0.060) 0.56��� (0.061) 0.71��� (0.041) 0.71��� (0.043)

Phys 2A 0.63��� (0.17) 0.54�� (0.17) 0.30�� (0.11) 0.30� (0.14)

Phys 2A x Phys 1 -0.36� (0.18) 0.014 (0.11)

R-squared 0.51 0.52 0.62 0.62

��� p < 0.001,

�� p < 0.01,

� p < 0.05,
† p < 0.10 2017 models and b include all students enrolled in Phys 2 in 2017 (N = 422). 2018 models a and b include all students enrolled in Phys 2 in 2018 (N = 460).

https://doi.org/10.1371/journal.pone.0249086.t004
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Phys 2, because Phys 1 is a prerequisite for many introductory engineering courses, while Phys

2 is not. Could it be that the SI course is effective for more experienced students and not for

the first-year students, and as there were more first year students Phys 1A, the course was not

effective? We tested this by running the regression models above separately on the students

who are and are not first-year students. We saw the same results. Phys 1A had no effect for

first-year or beyond-first-year students, and Phys 2A had an effect for both first year and

beyond-first-year students in 2017, thus ruling out this potential explanation.

Differences in students’ abilities to navigate college courses. Another possible explana-

tion for the difference between Phys 1A and Phys 2A is that students in Phys 2A have now

taken a physics course and better understand how university physics courses are structured

and how to best navigate them. Could the additional instructional time measurably help the

2A students, because things like time management and test-taking issues are not major factors

for students in Phys 2 but were in Phys 1? We tested this by seeing if Phys 2A had a larger effect

for students who were more successful in Phys 1. The negative sign on the significant interac-

tion effect in Phys 2 2017 showed just the opposite effect, while for 2018 the interaction term

was not significant (row 8 Table 4). This indicates this explanation is unlikely.

Differences in course structure/instruction. Another possible explanation for the differ-

ence between the effects of Phys 1A and Phys 2A is that they were taught differently. The

instructors in Phys 2A might simply have been more effective than those in Phys 1A. This also

seems unlikely. As noted above, the basic structure and methods of both SI courses were essen-

tially identical. In addition, most of the instructors involved in teaching both of the courses

had many years of experience teaching using active learning methods, and one of the instruc-

tors for Phys 2A in 2017 was also an instructor for Phys 1A in 2018. The other instructor of

Phys 1A in 2018 was C. E. W., who is highly experienced in active learning and had provided

guidance as to how to teach both 1A and 2 A in previous years. The consistent performance

gap between Phys 1A students and Phys 1 students not-in-1A through multiple years of differ-

ent instructors and different instructional foci also suggests there are more fundamental rea-

sons for its lack of impact. There is some possibility that an instructor effect contributed to the

differences in impact between the two years in 2A, as discussed below.

Another possible reason for the 1A-2A difference might be the exam format. The Phys 2

exams were 40% multiple choice questions which test students’ memorization of important

facts and concepts from E&M, while the Phys 1 exams were entirely free-response questions.

Perhaps Phys 2A was only successful because they reinforce the concepts needed to succeed on

the multiple-choice section? We were able to rule out this explanation by running the models

from Table 4 using the scores from multiple choice and free response questions as separate

outcome variables. In 2017, we found a slightly larger effect of Phys 2A on the multiple-choice

section (0.70 standard deviations), but the effect on free-response questions was still large

(0.50 standard deviations). So, this difference in exam format does not explain the difference

between in the impacts of the two SI courses.

A final potential explanation concerns the range of student preparation in the two courses

relative to the material covered. Students in Phys 1 had a very wide range of relevant prepara-

tion. Some students had little or no high school physics preparation, while many others had

taken good AP physics courses covering essentially all the material in Phys 1. Comparatively,

in Phys 2, few students had any experience with E&M content, so they all had approximately

the same level of prior preparation in that material. Thus, the average Phys 1A student starts

much farther behind the average Phys 1 student with regard to knowing the material covered

in the course than is the case with Phys 2A and Phys 2 students. This can be seen in Table 5.

The average differences between the Phys 1 and Phys 1A students’ scores on the FMCE, as well

as the standard deviations for Phys 1A students’ FMCE score, are substantially higher than the
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corresponding values for Phys 2 on the CSEM. We hypothesize that a 100 minute per week

intervention is simply insufficient to make a measurable impact on final exam grades for the

Phys 1A students, because the incoming preparation gap is so large, and the typical Phys 1 stu-

dents are already having 230 minutes of instructional time plus spending another 200–300

minutes per week studying the material and doing homework. In principle, we would expect

that if this explanation were correct, it would show up as an interaction term between prepara-

tion and taking Phys 1A. However, if the gap in preparation was too large that interaction

effect would also be insignificant. This remains the explanation we believe is most likely.

One limitation to this analysis is that the selection of students to participate in Phys 1A and

2A was not random. Students were recruited into Phys 1A based on FMCE scores. We were

able to control for differences in students’ academic preparation, but not other student charac-

teristics, such as growth mindset, test anxiety, and other social psychological factors. However,

in our previous analysis of performance in Phys 1 at Stanford, we found no impact of various

social-psychological factors (including test anxiety) on final exam grades after controlling for

academic preparation. Thus, it seems likely that the analysis we have conducted is a fair com-

parison for students who did and did not enroll in Phys 1A or 2A.

Differences between 2017 and 2018 in Phys 2A

As noted, Phys 2A was much more effective in 2017 than in 2018, and only in 2017 was it pro-

viding the greatest benefit to the less prepared students (Table 4). Here we explore possible

explanations for these differences.

Almost all the students who took Phys 2A in 2017 also took Phys 1A, while only half of the

2018 Phys 2A students took Phys 1A. So, one potential explanation for the 2017–18 difference

is that Phys 2A was only effective when paired with Phys 1A. To test this explanation, we ran

the 2018 model from Table 4 including an interaction term between Phys 1A and Phys 2A.

This showed that the benefits of taking Phys 2A were the same, whether or not a student took

Phys 1A, indicating this was not the explanation for the difference.

A second potential explanation is a slight shift in course structures between 2017 and 2018.

In 2018, students stopped attending the regular Phys 2 discussion sections and instead

attended a special section just for Phys 2A students (along with the regular Phys 2A course).

This was done because of consistent feedback from students in 2017 that they were completely

lost during Phys 2 discussion sections, as the other students and TAs rushed through the mate-

rial too fast for them to follow. The Phys 2A special discussions focused on conceptual under-

standing of E&M. It seems unlikely that this shift would make Phys 2A less effective, as

students likely learned more from these special discussion sections than they would in regular

discussion sections, which were unstructured and attended mainly for attendance points. Note

that, in both years, students spent the same total amount of time in class.

A more plausible explanation for at least some of the 2017–2018 difference concerns the

teaching. In 2017, both instructors of Phys 2A were highly experienced at teaching in active

Table 5. Mean and standard deviation of FMCE scores for Phys 1 and Phys 1A, and CSEM pre-scores for Phys 2

and Phys 2A.

2017 2018

Phys 1A FMCE Score 37% (s.d. = 19%) 35% (s.d. = 22%)

Phys 1 FMCE Score (excluding Phys 1A students) 61% (s.d. = 26%) 56% (s.d. = 27%)

Phys 2A CSEM Score 36% (s.d. = 9.5%) 27% (s.d. = 12%)

Phys 2 CSEM Score (excluding Phys 2A students) 48% (s.d. = 21%) 43% (s.d. = 19%)

https://doi.org/10.1371/journal.pone.0249086.t005
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learning settings. In 2018, one of the instructors was a new teacher, and thus may not have

been as effective. However, both instructors used the same materials and class structure, and

the new teacher had previously been a TA for Phys 2A, so it seems unlikely the difference in

teacher effectiveness would be very large.

The explanation that we find most likely is the change in the student population. The

recruitment process for Phys 2A changed between 2017 and 2018. In 2017, Phys 2A was open

to any student who wished to take it, and there was only one section offered. In 2018, there

was an application process to enroll in the course and recruitment that explicitly encouraged

the less prepared students to enroll and discouraged better prepared students, and there were

two sections available. As a result, there were twice as many students in 2018, and they were

less prepared. The CSEM pre-scores were 0.33 standard deviations higher in 2017 compared

with 2018, and the SAT/ACT math scores were 0.63 standard deviations higher in 2017. Thus,

in 2018, the preparation gap between the Phys 2 students in Phys 2A, and those not in 2A was

larger, and the same SI had a smaller impact. This is consistent with the explanation that we

proposed above for the difference in effectiveness between Phys 1A and Phys 2A: if the gap in

preparation between students enrolled in SI and the ones who are not enrolled is too large,

there will be little benefit for a modest two-hour SI instruction to be effective.

This explanation appears to be at odds with the significant interaction term in Table 4,

-0.36� (0.18), indicating that Phys 2A selectively benefitted the less well-prepared students in

2017. How can an intervention simultaneously benefit this population, but not be effective if

the students are too far behind? We hypothesize that it has to do with the average preparation

level in the SI course. If some students in the SI course have moderate levels of preparation,

they can help the less prepared students by serving as peer “instructors”. However, if all stu-

dents are quite poorly prepared, then the students might experience scenarios in which no one

in the group knows what to do, so little progress is made [31]. This would suggest that Phys 2A

was less effective in 2018 because the average level of preparation in the course was lower, and

thus there were no sufficiently well prepared students to help the students with the lowest lev-

els of preparation. Similarly, in Phys 1A, the average preparation level was too low, and there

were no better prepared students to help lift up the students with lower levels of preparation.

One can think of this in terms of Vygotsky’s “zone of proximal development”. The size of that

zone depends both on the preparation of individual students and the range of preparation

across the group. If the preparation level of the individual is high enough, they can benefit

from the range of preparation of the group, with larger being better. However, if the prepara-

tion of the individual student is too low, or the range of preparation of the group is too low, a

student will not benefit as much. All students in Phys 1A and quite poorly prepared relative to

the average Phys 1 student, and the intervention was simply insufficient to help them catch up.

We hypothesize that this was also the case for a greater fraction of Phys 2A students in 2018

than was the case in 2017.

Comparison with previous results

Our finding that Phys 2A is effective is in line with previous results suggesting that SI is an

effective strategy in physics [11,12]. Unlike the previous studies that report results from phys-

ics, our study uses measures of students’ prior physics and mathematics preparation to control

for potential population differences in SI courses that lead to self-selection bias in reported

results. Indeed, our findings for Phys 2A agree with the findings of Stanich et al., which was a

randomized controlled study [9], though the magnitude of the effects we find in this study are

somewhat larger. Indeed, Dawson et al. [13] also find other studies suggesting that SI is effec-

tive after controlling for student’s prior academic achievement.
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To our knowledge, there are no published studies that align with our findings that Phys 1A

is not effective. Null results are rarely published in educational research, so the lack of prior

studies reporting this is not surprising. Additionally, we are not aware of any universities that

have done rigorous internal reviews of their own SI programs and similarly found no positive

effects. We hope that with this study, we will encourage more institutions to critically examine

their SI programs so that we can assemble a more comprehensive feature of what makes SI

work or not.

Conclusions

We present a mixed result for the effectiveness of a cooperative group problem-solving based

SI course. In the cases presented here, with a very similar instructional team and an identical

instructional approach, the results vary drastically across different courses. In 2017, the group

problem-solving model worked well for the introductory E&M course and improved all stu-

dents’ performance, but that improvement was more pronounced for the less prepared stu-

dents. In 2018, we found that the intervention benefitted all students equally, but the effect size

was about half as large. However, the SI course did not improve the performance of students

in the introductory mechanics course. The results presented here indicate that designing an

effective SI course is complex and demands careful examination of the course and the student

population. We were able to test and rule out many potential explanations for these varying

results. The one explanation that we find the most plausible was that the SI course was not

effective if the students enrolled were too far behind the other students in the target course.

We are unable to provide data to confirm this explanation, but we can argue that would be

true in the limiting cases. If freshman students are placed in an advanced graduate course, a

modest supplemental instruction will make no difference, and if all students in a course are

completely equivalent, giving a subset of them two hours of additional well-designed instruc-

tional time is almost certain to make a measurable difference.

We conclude that a modest amount of additional instructional time does not necessarily

translate to better student outcomes, even with good teaching methods. We hypothesize that

this is especially true when the preparation gap to be bridged is large, as was the case here in

Phys 1, though do not have enough data to prove this hypothesis. Although this work is only

looking at two courses at one institution over two years, we think it is an important example

that raises questions about the underlying assumption behind supplemental instruction,

namely that more well-designed instruction time translates to better student outcomes. As

institutions and instructors seek to help their students with relatively weak high school prepa-

ration to succeed, future work should carefully measure the impact of the supplemental

instruction they provide. Also, instructors and researchers need to further examine the com-

plexities of designing effective supplemental instruction for different courses and student pop-

ulations. It is likely that when the differences in preparation are too large, they are better

addressed by having additional courses or some other instructional interventions, rather than

supplemental instruction in existing courses.
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