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Background: Influenza is a seasonal infectious disease, and meteorological parameters

critically influence the incidence of influenza. However, the meteorological parameters

linked to influenza occurrence in semi-arid areas are not studied in detail. This study

aimed to clarify the impact of meteorological parameters on influenza incidence during

2010–2019 in Lanzhou. The results are expected to facilitate the optimization of

influenza-related public health policies by the local healthcare departments.

Methods: Descriptive data related to influenza incidence and meteorology during

2010–2019 in Lanzhou were analyzed. The exposure-response relationship between

the risk of influenza occurrence and meteorological parameters was explored according

to the distributed lag no-linear model (DLNM) with Poisson distribution. The response

surface model and stratified model were used to estimate the interactive effect between

relative humidity (RH) and other meteorological parameters on influenza incidence.

Results: A total of 6701 cases of influenza were reported during 2010–2019. DLNM

results showed that the risk of influenza would gradually increase as the weekly mean

average ambient temperature (AT), RH, and absolute humidity (AH) decrease at lag 3

weeks when they were lower than 12.16◦C, 51.38%, and 5.24 g/m3, respectively. The

low Tem (at 5th percentile, P5) had the greatest effect on influenza incidence; the greatest

estimated relative risk (RR) was 4.54 (95%CI: 3.19–6.46) at cumulative lag 2 weeks. The

largest estimates of RRs for low RH (P5) and AH (P5) were 4.81 (95%CI: 3.82–6.05) and

4.17 (95%CI: 3.30–5.28) at cumulative lag 3weeks, respectively. An increase in AT by 1◦C

led to an estimates of percent change (95%CI) of 3.12% (−4.75% to −1.46%) decrease

in the weekly influenza case counts in a low RH environment. In addition, RH showed

significant interaction with AT and AP on influenza incidence but not with wind speed.

Conclusion: This study indicated that low AT, low humidity (RH and AH), and high air

pressure (AP) increased the risk of influenza. Moreover, the interactive effect of low RH

with low AT and high AP can aggravate the incidence of influenza.
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INTRODUCTION

Influenza is an acute respiratory disease caused by the influenza
virus, which belongs to category C infectious diseases in
China. The influenza virus easily mutates and spreads mainly
through aerosol droplets and contact (1, 2). Therefore, influenza
infections can transform into outbreaks or epidemics. According
to the World Health Organization, approximately 290,000–
650,000 patients died due to respiratory tract infection, and
3–5 million people develop serious related diseases each year
(3). Considering that the influenza virus is highly infectious
and can cause severe morbidity, the burden of influenza cannot
be neglected. Although China has established an influenza
surveillance network, the latest research suggests that an average
of 88,100 people die each year due to influenza-related respiratory
diseases across the country (4, 5). It is essential to comprehend
the epidemiological characteristics of influenza to reduce the
burden of this disease. Because of global warming, the influence
of meteorological parameters on the spread and incidence of
influenza has become more critical. Seasonal changes in the
incidence of respiratory diseases especially influenza reveal
that the peak time of their occurrence is during winter and
spring (6–9). The onset of influenza is sensitive to the climate,
particularly temperature and humidity, giving rise to influenza
seasonality in temperate regions. Low temperature significantly
increases the incidence of influenza (10, 11). A study suggested
that low humidity contributed to the spread of influenza
in Shenyang, China (12). However, the relationship between
influenza incidence and meteorological parameters such as air
pressure (AP) and wind has yet to be clarified. Furthermore, it
is difficult to hold a certain factor responsible for the occurrence
of the disease because the effects of meteorological parameters are
comprehensive and interdependent.

Lanzhou, located in northwestern China, experiences
low precipitation, strong evaporation, and relatively lower
temperature and is considered a typical arid city with a temperate
semi-arid climate (13). The association between meteorological
parameters and influenza incidence in semi-arid areas has
rarely been reported. Therefore, this study was conducted to
analyze the association between meteorological parameters and
influenza in Lanzhou and to evaluate the interactions of RH
with other meteorological parameters during 2010–2019. The
results are expected to assist in the prevention and control of
influenza infections, thereby reducing the burden of influenza in
the future.

MATERIALS AND METHODS

Data Collection
Data related to influenza cases were obtained from the Lanzhou
Center for Disease Control and Prevention (CDC) legally
reported infectious disease database from January 01, 2010 to
December 31, 2019. The descriptive data included gender, age,
diagnosis date, etc. Meteorological data were obtained from the
daily report of Lanzhou Meteorological Bureau, including daily
average ambient temperature (AT), RH, AP, Sunshine hours

(SH), and wind speed (WS). Several demographic studies (14–
17) have reported a significant relationship between the spread of
influenza and absolute humidity (AH); therefore, this parameter
was also included in the analysis.

Calculation of AH
AH is the weight of water content per unit volume of gas, usually
expressed as vapor pressure (VP) in g/m3. The ideal gas law (1)
was combined with the Clausius–Clapeyron relationship (18) to
calculate the saturated VP Es(T) (mb) from daily temperature (2)
and then included the relative humidity (RH) (3) to derive the
AH (19, 20) as shown below:

ρv = 1000×
v

GvT
(1)

ES (T) = ES (T0) × EXP

[

L

Gv

(

1

T0
−

1

T

)]

(2)

VP = 100× Es (T) ×
RH

100
(3)

WhereGv is the gas constant of water vapor [461.53 J/(kg·K)]; v is
the VP; T is the daily AT (K); ES (T) is the saturated VP; T0 is the
reference temperature (273.15K); L is the standard latent heat of
evaporation for 1 kg of water (2,257 kJ/kg).

Case Definition
The influenza case was defined as a person with a sudden
onset of fever (≥38◦C), chills, cough and/ or sore throat, a
generalized feeling of weakness and pain in the muscles, together
with varying degrees of soreness in the head and abdomen.
Influenza cases should meet the standard diagnostic criteria for
influenza (WS 285-2008) from the National Health Commission
of the People’s Republic of China. All these influenza cases were
diagnosed and confirmed by a positive pathogenic test of the
influenza virus. Once diagnosed, each case must be reported
to the National Information System for Disease Control and
Prevention immediately and we thus obtained the daily incidence
data of influenza from this reporting system.

Statistical Analysis
Considering the over-dispersion of the daily incidence of
influenza, a weekly time-series database of influenza incidence
and meteorological parameters was established for the period
of 2010–2019 in Lanzhou. First, a descriptive analysis was
performed on the collected data. Then, the Spearman
correlation analysis was used to explore the correlation
between meteorological parameters and weekly influenza
case counts. The distributed lag non-linear model (DLNM)
with Poisson distribution was applied to explore the effects
of meteorological parameters on influenza incidence, which
included weekly mean average AT, RH, AP, WS, AH, and weekly
cumulative SH. Next, the response surface model and stratified
model were used to indicate the interaction effects between
RH and other meteorological parameters (AT, AP, and WS) on
influenza incidence. Finally, a sensitivity analysis was performed
by changing the degree of freedom of the penalized smoothing
spline function from 3 to 8 for Tem and humidity (AH and RH)
and either controlling or not controlling the autocorrelation.
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The DLNMmodel was established for each variable including
AT, AH, RH, AP, SH, and WS, while controlling for long-
term trend and seasonality by using a time-stratified method
(employing simple indicator variables) (21, 22). Considering the
delayed impact of infection andmorbidity (23), themaximum lag
period was determined to be 3 weeks to estimate the cumulative
effect (relative risk, RR) of the meteorological parameters
on influenza incidence. By using the median level of each
meteorological parameter as a reference, the cumulative RR and
95% confidence interval (CI) were calculated to determine the
extreme effects of low and high levels in the 5th and 95th
percentiles (P5 and P95) in the model. For example, the effect of
low RH on influenza incidence was analyzed by comparing the
5th percentile with the median level. The main model (24) was
as follows:

log [E(Yi)] = α + cb(Xi,l)+
∑

ns(Zi,t , df )+ strata

+ log (Yi−1) (4)

Where i is the week of the observation; Yi is the observed
weekly case counts in Lanzhou during week i; E(Yi) is the
expected number of influenza case counts during week i; α

is the intercept; cb() represents the two-dimensional model
used to fit the non-linearity and lag weeks of meteorological
parameters by using cross-basis function; Xi,l represents the
meteorological parameters during week i, indicates the weekly
mean AT (ATi,l), mean RH (RHi,l), mean AH (AHi,l), mean
AP (APi,l), mean WS (WSi,l ), and SH (SHi,l), respectively.
Zi,t refers to other meteorological parameters except for Xi,l;
the strata variable represents an indicator to control the long-
term trend and seasonality for the combination of year and
month; log (Yi−1) represents the number of influenza cases in
the previous week to control the autocorrelation; the degree
of freedom (df ) of the natural spline smoothing function in
the formula was selected according to the Akaike’s information
criteria. Concerning the collinearity, two variables having a high
correlation (Spearman correlation coefficient >0.7) were not
included in the same model.

Considering the characteristics of the temperate semi-arid
climate in Lanzhou, the response surface model and stratified
model (25) were established to fit the interaction effect of RHwith
other meteorological parameters on influenza incidence through
three-dimensional maps. In the stratified model, the 5th and 95th
percentiles were used as tangents for the RH to be divided into
two-categorical variables, which were divided into two levels:
“low” and “high.” Low-RH referred to the case when RH was less
than the 5th percentile, and High-RH referred to the case when
the RH was higher than the 95th percentile. The model is shown
in Equations (5) and (6):

log [E(Yi)] = α + tp(RH,Xi)+ ns
(

weather
)

+ strata

+ log (Yi−1) (5)

log [E (Yi)] = β1Xi + β2RHb + β3Xi :RHb+ns(weather)

+strata+ log (Yi−1) (6)

Where tp() represents the response surface function; Xi

represents the meteorological parameters (AT, SH, and WS)
that interact with RH; weather represents other meteorological
parameters exceptXi; RHb represents two-categorical variables of
RH; β3 is the interaction effect of RH with other meteorological
parameters on influenza case counts; other variables are the same
as those in foregoing model.

All analyses were conducted by using the “mgcv” and “dlnm”
packages in R4.0.0 in this study. Results were considered
statistically significant when P < 0.05.

RESULTS

Descriptive Data Related to Weekly
Influenza Case Counts and Meteorological
Data
During the study period (2010–2019), a total of 6,701 cases of
influenza were reported in Lanzhou, of which 3,905 were in
males and 3,374 were in females (sex ratio 1.13). Among the
patients, 53.93% were children under the age of 14 years. Table 1
shows the summary statistics of the meteorological variables. The
mean values of AT, RH, AH, AP, SH, and WS were respectively
11.12◦C, 51.21%, 6.01 g/m3, 848.01 hPa, 43.42 h, and 1.15 m/s.
Table 2 shows the correlation between influenza case counts
and meteorological parameters. All meteorological parameters
including AT, RH, WS, AH, and SH were negatively correlated
with influenza incidence (P < 0.05), while AP was positively
correlated with influenza incidence. The correlation of AT and
AH with influence incidence was stronger (rAT = −0.53 and
rAH = −0.55, respectively) than that of others. The time-series
distribution of weekly meteorological parameters and influenza
case counts from 2010 to 2019 demonstrated a clear seasonal
pattern (Figure 1).

Lag Effect of Meteorological Parameters
on Influenza Incidence
The correlation between meteorological parameters and weekly
influenza case counts was estimated by the cumulative RR

TABLE 1 | Basic information related to influenza case counts and meteorological

parameters in Lanzhou, China during 2010–2019.

Variable Mean S.D. Min Percentiles Max

25 50 75

AT (◦C) 11.12 9.88 −8.84 1.72 12.76 19.93 29.86

AP (hPa) 848.01 4.38 838.47 844.31 848.38 851.40 858.26

RH (%) 51.21 12.28 18.39 42.92 52.04 60.43 87.00

WS (m/s) 1.15 0.22 0.56 0.99 1.14 1.30 1.76

AH (g/m3) 6.01 3.62 1.24 2.51 5.26 8.96 14.40

SH (h) 43.42 14.45 1.30 32.70 43.30 53.95 83.20

Cases (counts) 12.79 25.07 0.00 2.00 5.00 12.00 311.00

S.D., standard deviation; Min, minimum; Max, maximum. AT, RH, AH, AP, WS, and

SH represent, respectively, weekly mean average ambient temperature, mean relative

humidity, mean absolute humidity, mean air pressure, mean wind speed, and weekly

cumulative sunshine hours, respectively. “Cases” represents weekly influenza case counts.
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after a lag of 3 weeks from the DLNM model (Figure 2).
After controlling for the long-term trend and seasonality,
the median of each meteorological parameter was taken as
reference, and an approximately “L”-shaped correlation was
observed between AT, RH, and AH and the risk of influenza.

TABLE 2 | Spearman correlation between influenza case counts and

meteorological parameters in Lanzhou, China during 2010–2019.

Variable Cases AT RH WS AH AP SH

Cases 1.00

AT −0.53* 1.00

RH −0.21* 0.03 1.00

WS −0.24* 0.41* −0.41* 1.00

AH −0.55* 0.92* 0.41* 0.23* 1.00

AP 0.38* −0.79* 0.16* −0.52* 0.16* 1.00

SH −0.20* 0.47* −0.59* 0.46* 0.20* −0.44* 1.00

“*”Represents P< 0.05. AT, RH, AH, AP,WS, and SH represent, respectively, weekly mean

average ambient temperature, mean relative humidity, mean absolute humidity, mean air

pressure, mean wind speed, and weekly cumulative sunshine hours, respectively. “Cases”

represents weekly influenza case counts.

The risk of influenza gradually increased as the AT, RH, and
AH decreased, when they were lower than 12.16◦C, 51.38%,
and 5.24 g/m3, respectively. A “J”-shaped correlation was
observed between AP and the risk of influenza. When AP
was higher than 853.47 hPa, the risk of influenza rapidly
increased as the AP increased. Medium WS increased the
risk of influenza. Sensitivity analysis displayed steady results
which were insensitive to the specifications of the parameters
(Supplementary Figures 1, 2).

Based on the above results, we analyzed the lag effect of
various meteorological parameters on the onset of influenza at
different lag days under extreme conditions fitted by the DLNM
model, such in cold (<-4.64◦C, P5 of AT) and hot (>24.49◦C,
P95 of AT) conditions (Figure 3). With various lag weeks, a
significant effect of cold and hot weathers was observed on
influenza incidence during 1–3 lag weeks. Low AT (P5) exhibited
the largest estimated effect at lag 2 weeks, and the cumulative RR
was 4.54 (95%CI: 3.19–6.46). Significant effects of dry RH and
dry AH were observed during 0–3 lag weeks. Dry RH (P5) and
dry AH (P5) exhibited the largest estimated effect at lag 3 weeks,
and the cumulative RRs were 4.81 (95%CI: 3.82–6.05) and 4.17
(95%CI: 3.30–5.28), respectively. The relative wet effect [RH (P95)
and dry AH (P95)] reduced the risk of influenza. The extreme

FIGURE 1 | Time-series distribution of daily influenza case counts and daily meteorological parameters in Lanzhou, China during 2010–2019.
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FIGURE 2 | Exposure-response relationship between the risk of influenza and AT (A), AH (B), RH (C), AP (D), SH (E), and WS (F) at a three-week lag in Lanzhou,

China during 2010–2019. The red line represents the cumulative relative risk (RR) of influenza, and the gray shaded region represents the 95% confidence interval (CI).

FIGURE 3 | Cumulative lag effect of meteorological parameters on the onset of influenza under extreme conditions at different lag weeks in Lanzhou, China during

2010–2019. P5 represents the 5th percentile. P95 represents the 95th percentile.

Frontiers in Public Health | www.frontiersin.org 5 February 2022 | Volume 10 | Article 833710

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Effects and Interaction of Meteorology

effect of AP and WS was not significant, and a dangerous effect
was observed at every lag week. The significant extreme effect of
SH on influenza incidence showed that lesser SH increased the
risk of influenza.

Interaction Effect of Meteorological
Parameters on Influenza Incidence
Because Lanzhou is a typical temperate semi-arid climate, the
interaction effect of RH with other meteorological parameters
on influenza incidence was studied. The hierarchical model
analysis is shown in Table 3. At lag 3 weeks, there was an
interaction effect of Low-RH with AT, AP, and WS (P < 0.05)
on influenza incidence, while the interaction effect of High-
RH was not significant. An increase in AT by 1◦C led to an
estimates of percent change (95%CI) of 3.12% (−4.75 to−1.46%)
decrease in the weekly influenza case counts with in the Low-
RH environment. Influenza case counts were affected by various
meteorological parameters and the interaction between various
meteorological parameters. The interactive model also showed
that there was an obvious interaction effect of RHwith AT andAP
on influenza incidence (Figure 4). In three-dimensional analysis,
the strongest interaction was observed under conditions of low
RH, low AT, and high AP.

TABLE 3 | Estimates of percent change (95% CI) in weekly influenza cases

associated with a 1-unit increase in other meteorological parameters stratified by

RH.

Low-RH High-RH

AT −3.12% (−4.75%, −1.46%)* 0.42% (−2.38%, 3.30%)

AP −5.42% (−7.99%, −2.22%)* −1.03% (−1.03%, 3.99%)

WS 97.80% (29.78%, 201.46%)* 104.90% (−42.85%, 634.27%)

“*”represents significance at the level of 0.05. Taking the 5th and 95th percentiles as

tangent points of the binary categorical variables, relative humidity (RH) was divided into

two levels of “low” and “high.” When RH was less than the 5th percentile, the environment

was defined as Low-RH. When RH was greater than the 95th percentile, the environment

was defined as High-RH.

DISCUSSION

The antigenic drift and transfer of the influenza virus are
constantly changing, imposing huge economic losses and disease
burdens to the public on a global scale (5, 26–28). In this
study, the relationship between meteorological parameters and
influenza incidence was analyzed in a semi-arid area (Lanzhou)
for the first time. Low AT, low humidity (AH and RH), and
high AP could accelerate the spread of influenza with obvious lag
effects. Moreover, in this dry area, the interaction effect of low RH
with low AT and high AP on influenza incidence was significant.

From January 1, 2010 to December 31, 2019, a total of 6701
influenza cases were reported in Lanzhou. Children under the
age of 14 years were a high-risk group, accounting for 53.93%
of the total influenza patient population, consistent with other
studies (9, 29). The seasonality of change trend demonstrated
in previous studies (30–32) has indicated that the incidence of
influenza peaks in winter and spring, particularly when the AT is
the lowest. In an animal experiment, the airborne transmission
of influenza virus was enhanced when guinea pigs were housed
at a low AT (5◦C), while at a high AT (30◦C), the spread was
interrupted under all conditions of RH (33). The reasons for
low AT facilitating the spread of influenza may be as follows:
(1) Influenza virus can survive at 0–4◦C for several weeks and
for a long time below −70◦C or after freeze-drying, but its
infectivity is quickly lost at room temperature. The average
temperature during winter in Lanzhou is close to its optimum
growth temperature, making it easier to spread and infect. Some
studies also indicated that the influenza virus envelope was more
complete and the survival time was longer at low temperatures
than at high temperatures (34, 35). (2) Children under the age
of 14 years were at high risk for influenza, probably because they
had poor awareness of disease prevention, habit of hygiene, and
immune system, making this population group more susceptible
to be infected in cold weathers (36). (3) People spend more time
indoors during cold weather, which could lead to higher infection
rates and epidemics (37).

In this study, low humidity (RH and AH) was more beneficial
to the activity of influenza, and a significant dry effect of RH and

FIGURE 4 | Three-dimensional map of the interaction effect of relative humidity (RH) with other meteorological parameters on influenza incidence in Lanzhou, China

during 2010–2019 after a lag of 3 weeks. (A) Interaction effect of RH with AT. (B) Interaction effect of RH with AP. (C) Interaction effect of RH with WS.

Frontiers in Public Health | www.frontiersin.org 6 February 2022 | Volume 10 | Article 833710

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Effects and Interaction of Meteorology

AH was observed during 0–3 lag weeks. The results of this study
were consistent with those of studies on the impact of humidity
on influenza (12, 38, 39). It is suggested that low humidity
improves the survival stability of the virus when the salt content
of droplets in winter allows the virus to maintain high vitality
at low RH (<50%), and the viability of influenza virus increased
with decreasing RH (40). Low humidity exposure impaired
host responses to infection, resulting in higher viral burden
such as decreasing mucociliary clearance in mouse trachea (41).
However, conflicting views have been reported regarding the
impact of RH on influenza. The findings of the current study on
RH were not in line with those reported by studies in Poland,
Zhejiang, and Chongqing, in which the influenza incidence was
moderately positively correlated with RH, and higher RH could
increase the risk of influenza incidence (42–44). The difference
in the results may be because of the difference in the latitude,
climate type, demographic characteristics of the study area,
and the statistical methods and models used. Therefore, the
reported associations related to influenza incidence are specific
to the regions.

The interaction model in this study showed the interaction
effect of RHwith othermeteorological parameters. The condition
of low RH with low AT could increase the influenza case counts.
Recent laboratory and epidemiological evidence have confirmed
that influenza virus transmission depends on RH and AT, and
the onset of influenza exhibits a synchronous change pattern
with cold and dry climate conditions, revealing that low RH with
low AT increases the risk of influenza epidemic (33, 45, 46).
Temperature and humidity were the lowest when influenza was
most active during winter and spring. Therefore, temperature
and humidity play important roles in the spreading of influenza.
Previous studies had been carried out in temperate or humid
regions, but the present study shows how temperature and
humidity influence the incidence of influenza in an arid region.

Besides the commonly studied parameters of temperature
and humidity, other meteorological parameters (WS, SH, and
AP) were also analyzed in this study. The risk of influenza
rapidly increased as AP increased, when the AP was >853.47
hPa, and the interactive effect of low RH with high AP could
increase the incidence of influenza, revealing a synergistic
effect. A study similarly reported that under high pressure, the
number of influenza cases increased when AP was >1,005 hPa
(47). It is well-known that high AP usually accompany cold
and dry weather, which promote indoor activities and more
communication among people, this may increase the spread risk
of influenza infection. Besides, the cold and dry weather would
also make the nasal mucosa vulnerable to be cracked, which may
increase the risk of influenza invasion.

Limitations
This study deepens the understanding of the effects of
meteorological parameters on influenza incidence by using
weekly data in a temperate semi-arid region. However, some
limitations must be acknowledged. First, individuals most often

overlook influenza and choose to isolate themselves at home
due to its relatively mild symptoms, increasing the chances of a
missed diagnosis. Second, the influenza virus was not classified
in this study, and the impact of meteorological parameters
may be different on different types of influenza viruses. Third,
sandstorms, smog, and other extreme weather events in Lanzhou
during peak times and air pollutants can also affect influenza
seasonality (10, 42, 48–50). The number of days of extreme
weather are increasing each year due to global climate change,
which may pose more threats to public health. Finally, this is an
ecological study, so the ecological bias could not be avoided. But
it at least provide a hypothesis and indicate the significant effect
of environmental factors on the influenza infection, which may
be important for the government to place suitable medical cares
against influenza in different weathers.

CONCLUSIONS

Low AT, low humidity (RH and AH), and high AP increased
the risk of influenza. Moreover, the interaction effect of low
RH with low AT and high AP can aggravate the incidence of
influenza. Considering these significant effects of meteorological
parameters, relevant government departments could actively
implement appropriate measures to optimize influenza-related
public health policies such as monitoring the mutations of
influenza virus in a timely manner and providing increased
vaccine coverage during the cold and dry season.
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