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A B S T R A C T

We study thermodynamics of a heat-conducting ideal gas system. The study is based on i) the first law of thermodynamics from action formulation 
which expects heat-dependence of energy density and ii) the existence condition of a (local) Lorentz boost between an Eckart observer and a 
Landau-Lifshitz observer–a condition that extends the stability criterion of thermal equilibrium. The implications of these conditions include: i) 
Heat contributes to the energy density through the combination 𝑞∕𝑛Θ2 where 𝑞, 𝑛, and Θ represent heat, the number density, and the temperature, 
respectively. ii) The energy density has a unique minimum at 𝑞 = 0. iii) The temperature upper bound suppresses the heat dependence of the energy 
density inverse quadratically. This result explains why the expected heat dependence is difficult to observe in ordinary situation thermodynamics.

The lower bound of temperature, referred to as the absolute zero in Kelvin, is determined by the behavior of the ideal gas 
volume (or pressure) in thermal equilibrium, contingent upon the temperature changes. On the other hand, a precise upper bound of 
temperature lacks a unique definition. In the theory of particle physics, the ‘Hagedorn temperature’ [1] for hadrons serves as an upper 
bound. Beyond this temperature ordinary matter is no longer stable, and must either “evaporate” or convert into other (quark-gluon) 
phase. Similarly, the string Hagedorn temperature [2] plays a comparable role for strings. Given that temperature is a thermodynamic 
quantity, it is natural to inquire about the implications of the existence of the temperature upper bound on thermodynamics. In this 
work, we show that it affects the nature of heat conduction.

In the kinetic theory picture, an ideal gas is a theoretical gas consisting of numerous randomly moving, non-interacting point 
particles. The model is useful as it adheres a simplified equation of state known as the ideal gas law, effectively approximating the 
states of most physical gases under non-extreme conditions. The thermodynamic properties of an ideal gas can be described by two 
equations. The first is the ideal gas law, Ψ𝑉 =𝑁𝑘𝐵Θ, where Ψ, 𝑉 , 𝑁 , 𝑘𝐵 and Θ denote the pressure, the volume, the total number 
of particles, the Boltzmann constant, and the temperature, respectively. Dividing both sides of the equation by the volume 𝑉 and 
adopting the natural units with 𝑘𝐵 = 1, the law presents a simple relation between pressure and temperature:

Ψ= 𝑛Θ, (1)

where 𝑛 (≡𝑁∕𝑉 ) denotes the number density. Because we are interested in the relativistic thermodynamics based on local description 
of the theory, we write physical quantities in terms of densities such as 𝑛. The other equation expresses the energy density 𝜌 (≡ 𝐸∕𝑉 )
of the gas consisting of particles with mass 𝑚 as:

𝜌(𝑛, 𝑠) = 𝑛𝑚+ 𝑐𝑣𝑛Θ, (2)

where 𝑐𝑣 is a constant denoting the dimensionless specific heat capacity at constant volume, approximately 3∕2 or 5∕3 for monoatomic 
or diatomic gases, respectively. Other quantities can be obtained from these two laws. For example, one can calculate the entropy 
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using the first law of thermodynamics. Then, the specific entropy, 𝜎∗ ≡ 𝑠∗∕𝑛, where 𝑠∗ ≡ 𝑆∗∕𝑉 denotes the entropy per unit volume 
for the system in thermal equilibrium,1 takes the form

𝜎∗ = 𝑐𝑣 log
Θ
Θ0

− log 𝑛

𝑛0
. (3)

This ideal description of the gas is valid only when the following assumptions hold: First, the atoms or molecules do not interact or
collide perfectly elastically with each other, so one can ignore intermolecular attractions. Second, the particles are so small that one 
can ignore their volume relative to the volume occupied by the gas. In a general situation such as at ultra-high temperatures, the 
pressure of the gas may not be written in this form due to an increase in collisions between particles, but follows different rules, e.g., 
in polytropic form Ψ ∝ 𝜌𝛾 . However, for gases satisfying the ideal gas assumptions, it has been shown that the pressure still follows 
the rule (1), even for ultra-high temperatures or in the presence of a strong gravity [8], with slightly modified specific heats. Because 
we are considering a generalization of an ideal gas, we still adhere to the law (1). When dissipation occurs between gases or when the 
system size is too small to experience intermolecular forces, the ideal gas approximation may not be valid. This condition necessitates 
that the system size be larger than the atomic scale.

Given the utility of the ideal gas approximation, several attempts have been made to generalize the ideal gas. Generalizations 
of the ideal gas obeying fractional statistics were explored [5]. In the context of self-gravitating systems, the ideal gas under the 
influence of Newtonian [6] and Einstein gravity [7,8] were investigated. These studies were based on the energy density derived from 
thermal equilibrium systems. References [3,4] demonstrated the possibility of describing out-of-equilibrium system in stationary state 
using the ideal gas, portraying global thermodynamic functions. In their works, the authors developed a heat conducting massive 
mono-atomic ideal gas model. They considered 𝑁 -gas particles of mass 𝑚 > 0 contained in a square box maintaining local thermal 
equilibrium. When the temperatures at both ends of the box are Θ2 and Θ1, respectively, and heat flows continuously, the total 
entropy of the system is,2

𝑆 = 𝑆∗ +𝑁(𝑐𝑣 + 1) log

[(
Θ2
Θ1

)1∕2 log(Θ2∕Θ1)
Θ2∕Θ1 − 1

]
≈ 𝑆∗ −

𝑁(𝑐𝑣 + 1)
24

(
Θ2
Θ1

− 1
)2

+⋯ , (4)

where in the second equality we use the approximation Θ2∕Θ1 ∼ 1. Here, 𝑆∗ is interpreted as 𝜎∗𝑉 from Eq. (3) for an equilibrium 
state with the same total energy and volume as the heat-conducting model. Because both the total entropy 𝑆 of the heat-flowing 
system and the entropy 𝑆∗ of the corresponding equilibrium system are extensive quantities, their difference Δ𝑆 ≡ 𝑆 − 𝑆∗ is also 
an extensive quantity. When Θ2 → Θ1, we easily notice Δ𝑆 → 0. However, when Θ2 ≠ Θ1, heat flows, and the entropy becomes 
dependent on the temperature difference (and consequently on heat).

Noting that relativistic description requires local forms for physical quantities, we need to denote the contribution of heat in a 
local form. To accomplish this purpose, we consider a macroscopic system of thickness 𝐿 consisting of several subsystem layers of 
thickness 𝛿𝐿 along 𝑥-direction, which have the form described above and satisfy 

∑
𝛿𝐿 = 𝐿 with 𝛿𝐿 ≪𝐿. Now, we assume that 𝛿𝐿

is small enough on a macroscopic scale, even though it should be still large enough on a microscopic scale so that a statistically 
sufficient number of particles are contained in the box, atomic interactions can be ignored, and quantum properties of the particles 
are hidden. Let Θ2 = Θ(𝑥 + 𝛿𝐿) and Θ1 = Θ(𝑥) denote the temperatures of the ends of a subsystem, respectively. Then, Θ2 ≈ Θ1 and 
we can use the approximation,

Θ2
Θ1

− 1 ≈ 𝛿𝐿
𝜕𝑥Θ
Θ

=−𝛿𝐿 𝑞

𝜅Θ
,

where we use the Newtonian definition of heat, 𝑞𝑘 = −𝜅∇𝑘Θ. Here, 𝜅 denotes the heat conductivity. Even though it vanishes in the 
𝛿𝐿 → 0 limit, we keep the first order term to express the contribution of heat. This assumption is justified because one cannot ignore 
this value 𝛿𝐿 on a microscopic scale. Later in this work, we evaluate the heat conductivity of an ideal gas and write this formula in a 
form proportional to the ratio between this length 𝛿𝐿 and the light traveling distance during the mean free time of the gas particles. 
Dividing both sides of Eq. (4) by 𝑁 , the difference in specific entropy, 𝛿𝜎 ≡ 𝜎 − 𝜎∗, has a non-trivial value:

𝛿𝜎 ≡ 𝜎 − 𝜎∗ ≈ −
𝑐𝑣 + 1
24

(
𝛿𝐿𝑞

𝜅Θ

)2
. (5)

From now on, the notations such as Θ(𝑥𝑎), 𝜌(𝑥𝑎), 𝑛(𝑥𝑎), 𝑠(𝑥𝑎), 𝜎(𝑥𝑎) and 𝑞(𝑥𝑎) denote the thermodynamic quantities defined at the 
subsystem located at the point 𝑥𝑎. The ‘locality’ we mention is defined in this way.

In the realm of relativistic thermodynamics, the variational formulation [9–16] suggests that the energy density 𝜌 should depend 
not only on the typical number and entropy densities but also on heat. Such a dependence does not manifest in the original ideal 
gas model in Eq. (3), or even for other well-known equation of states constructed based on thermal equilibrium state. In this let-
ter, we explore the incorporation of heat dependence such as in Eq. (5) into an ideal gas equation of state without compromising 
the assumptions inherent in ideal gas behavior. There are several compelling reasons to consider incorporating heat dependence 
into the energy density. Notably, many (astro-)physical objects exhibit heat conduction. The investigation of such out-of-equilibrium 

1 Here, the asterisk denotes a thermal equilibrium quantity. For example, the character 𝑆∗ represents the entropy in thermal equilibrium. The character without 
the asterisk, 𝑆 , is designated to represent that with heat flux.
2

2 In their work, they considered a monoatomic gas, so 𝑐𝑣 = 3∕2.
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systems relies heavily on an understanding of states involved in heat conduction. The connection between gravity and thermodynam-
ics [17–25], highlighted since Hawking’s work on black hole thermodynamics [26], further motivates investigations into gravitating 
systems. Examining self-gravitating systems in thermal equilibrium has been a longstanding effort, contributing significantly to our 
comprehension of astrophysical systems. Notably, studies on the entropy of spherically symmetric self-gravitating radiation and its 
stability have been conducted over the years [25,27–29]. These investigations have demonstrated that the requirement of maxi-
mum entropy for self-gravitating radiation in a spherical box reproduces the Tolman-Oppenheimer-Volkoff equation for hydrostatic 
equilibrium [22,30,31]. The necessity for studying out-of-thermal equilibrium situations in these areas is high, which requires an 
understanding of heat dependence. We endeavor to establish a foundation for future research in understanding heat dependence in 
out-of-equilibrium situations in this work.

The variational formulation for relativistic thermodynamics involves a Lagrangian-like function, often referred to as the master 
function Λ, which incorporates matter and entropy fluxes. At the second order in the deviation from thermal equilibrium [32], this 
formulation is essentially equivalent to the Israel-Stewart theory [33–35], known to be stable and causal [36]. The variational formu-
lation has advantage of naturally leading to an extended Gibbs relations in various models of extended irreversible thermodynamics. 
The axiomatic formulation has been extended to encompass dissipations and particle creations [13,14]. Recently, the binormal equi-
librium condition was proposed [15] to address the perceived incompleteness [37] of relativistic heat conduction theory. The steady 
thermal state were studied based on this proposal [16].

In this letter, we consider a two-fluid system consisting of a number flux 𝑛𝑎 and an entropy flux 𝑠𝑎. Typically, the heat conduction 
equation is expressed in the Eckart decomposition, where the observer’s four-velocity 𝑢𝑎 is parallel to the number flux. The misalign-
ment between the entropy flux 𝑠𝑎 and the number flux 𝑛𝑎 gives rise to entropy creation generated by the heat flux 𝑞𝑎 . Explicitly, 
given the number density 𝑛, entropy density 𝑠, and the heat flux 𝑞𝑎, the particle number and the entropy fluxes are

𝑛𝑎 ≡ 𝑛𝑢𝑎, 𝑠𝑎 ≡ 𝑠𝑢𝑎 + 𝜍𝑎; 𝜍𝑎 ≡
𝑞𝑎

Θ
, (6)

where the heat flux 𝑞𝑎 is normal to the matter flow, 𝑞𝑎𝑢𝑎 = 0. Then, the heat strength is defined to be 𝑞 ≡
√
𝑞𝑎𝑞𝑎. This procedure 

uniquely defines heat in a coordinates-independent manner at least for this two-fluid model. Assuming that matter does not have 
explicit directional dependence, the fluid Lagrangian must be a function of scalars composed of the matter and caloric fluids. Therefore, 
Λ depends on the three scalars: 𝑛 ≡

√
−𝑛𝑎𝑛𝑎, 𝑠 ≡ −𝑢𝑎𝑠𝑎, and 𝜍 ≡

√
𝜍𝑎𝜍𝑎, constructed from 𝑛𝑎 and 𝑠𝑎. Starting from the master function 

Λ(𝑛, 𝑠, 𝜍), the energy density was constructed through the Legendré transformation: 𝜌(𝑛, 𝑠, 𝜗) = 𝜍𝜗 −Λ [12], where 𝜗 is the conjugate 
variable to 𝜍.

In this work, we use two distinct results of the relativistic thermodynamics. First is the first law of thermodynamics (the generalized 
Gibbs relation) [12,13]:

𝑑𝜌(𝑛, 𝑠, 𝜗) = 𝜒𝑑𝑛+Θ𝑑𝑠+ 𝜍𝑑𝜗, (7)

derived from the variational law of the master function, where 𝜒 denotes the chemical potential. The extended Gibbs relation resem-
bles those postulated in many approaches to extended thermodynamics [38]. A key distinction is that this relation emerges naturally 
from the variational relation of the action. Note that the variation of the specific entropy (5) contains heat dependence explicitly, 
signifying the appearance of the last term of the extended Gibbs relation (7). Noting the result, it is natural to ask when does this 
heat dependence appear and what is its role in thermodynamics.

The second is the stability condition of a thermal equilibrium state, derived from perturbative studies based on relativistic thermo-
dynamics. Even when the geometry is dynamical, (local) thermal equilibrium with respect to a comoving observer is characterized by 
the vanishing of the Tolman vector, 𝑎 ≡

𝑑

𝑑𝜏
(Θ𝑢𝑎) +∇𝑎Θ = 0, where 𝑑∕𝑑𝜏 ≡ 𝑢𝑏∇𝑏 and ∇𝑎 denotes the covariant derivative for a given 

geometry. When the spacetime is static, the Tolman temperature gradient [39,40], Θ(𝑥𝑖) = 𝑇∞∕
√
−𝑔00(𝑥𝑖), appears naturally from 

the equation. Here 𝑔00 and 𝑇∞ represent the time-time component of the metric on the static geometry and the physical temperature 
at the zero gravitational potential hypersurface usually located at spatial infinity. There were arguments [41,42] for the modification 
of the original form of the temperature; however, the result is generally accepted because of the universality of gravity [43,44] and 
the maximum entropy principle [27,28]. For a two-fluid system with one number flow 𝑛𝑎, the other equation characterizing thermal 
equilibrium is Klein’s relation [42,45]. The stability and causality of the thermal equilibrium state were also analyzed [15,46,47]. 
For the thermal equilibrium state to be stable, the thermodynamic quantities must satisfy the inequality3

1
𝑛

[
1 − 𝜌+Ψ

Θ
𝜗

𝑞

]
< 0, (8)

where Ψ = 𝑛𝜒 + 𝑠Θ − 𝜌 denotes the pressure of the system. Recently, this inequality was re-derived [16] as an existence condition for 
Local Lorentz Boost based on the fact that there exists a local Lorentz transformation between the Eckart [48] and the Landau-Lifshitz 
observers [49] for a generic values of 𝑞 ≠ 0 because the comoving vectors of both observers are time-like. Because the proof is non-
perturbative, the inequality (8) holds even for out-of-equilibrium states. This result presents a crucial observation on the stability and 

3 Originally, this equation was stated in the form 1
𝑛

[
1 − 𝜌+Ψ

Θ
𝛽
]
< 0 for a thermal equilibrium, where 𝜗 = 𝛽𝑞 by definition and the regularity of 𝛽 is implicitly 

assumed. Originally this inequality was derived perturbatively as a stability condition of thermal equilibrium. Because the result was proven even when 𝑞 ≠ 0 non-
3

perturbatively [16], we use the heat 𝑞 explicitly in the formula.
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temperature of a thermodynamic system with heat conduction, as will be shown soon. This inequality constrains the value of 𝜗 to be 
larger than Θ𝑞∕(𝜌 +Ψ). Therefore, this inequality must be a truth rather than a stability condition unless there does not exist a local 
Landau-Lifschitz decomposition.

As shown in Eq. (7), the first law of thermodynamics, derived from the variational formulation, naturally predicts that the energy 
density 𝜌 will have contributions from heat. Therefore, we anticipate that the energy density is expressed as a function of three 
quantities: 𝑛, 𝑠, and 𝜗, where 𝜗 contains the heat dependence. Let us explore how heat contributes to the density when the system is 
out-of-equilibrium. When the interactions between molecules are activated, such as collisions between molecules, heat will propagate 
in a different direction from that of the number flux allowing 𝑞𝑎 ≠ 0 in Eq. (6). Since we aim for the system to be described by the 
ideal gas law, we require that the energy density 𝜌 = 𝜌(𝑛, 𝑠, 𝜗) formally retains the same structure as that without heat contribution, as 
depicted in Eq. (2). Then, the dependence of 𝜌 on 𝜗 can be inferred through the temperature, Θ = Θ(𝑛, 𝑠, 𝜗). Because we develop the 
model based on the thermal equilibrium case, the model reproduces the equilibrium result when 𝑞 = 0. The reproduction of ordinary 
thermal equilibrium, based on the instantaneous velocity distribution, is evident in the Θ2 = Θ1 limit of Eq. (4).

Now, we additionally require that both the ideal gas law (1) and the constancy of the specific heat capacity for constant volume 
are also kept. We constrain the form of the energy density by implementing these conditions one by one. From the first law, using 
the assumption that 𝑐𝑣 is constant, the temperature and the chemical potential become

Θ(𝑛, 𝑠, 𝜗) ≡
(
𝜕𝜌

𝜕𝑠

)
𝑛,𝜗

= 𝑐𝑣𝑛
(
𝜕Θ
𝜕𝑠

)
𝑛,𝜗

, 𝜒(𝑛, 𝑠, 𝜗) =
(
𝜕𝜌

𝜕𝑛

)
𝑠,𝜗

=𝑚+ 𝑐𝑣Θ+ 𝑐𝑣𝑛
(
𝜕Θ
𝜕𝑛

)
𝑠,𝜗

. (9)

From the ideal gas law (1) and the thermodynamic identity 𝜌 +Ψ = 𝑛𝜒 + 𝑠Θ, we get 𝜒 = 𝑚 +Θ(𝑐𝑣 + 1 − 𝜎), where 𝜎 ≡ 𝑠∕𝑛 denotes 
the specific entropy, entropy per particle. Comparing this equation with the last equation of Eq. (9), we get

𝑛

Θ

(
𝜕Θ
𝜕𝑛

)
𝑠,𝜗

= 1 − 𝜎

𝑐𝑣
. (10)

Solving the first equation in Eq. (9) and Eq. (10), we get the temperature formally

Θ(𝑛, 𝑠, 𝜗) = Θ0

(
𝑛

𝑛0

)1∕𝑐𝑣
exp

[
Φ(𝜗) + 𝜎

𝑐𝑣

]
, (11)

where Φ(𝜗) is an unidentified function of 𝜗 only independent of 𝑛 and 𝑠, which will define how the density varies with heat. When 
Φ(𝜗) = 0, this formula reproduces that of the thermal equilibrium. Here, we check the constancy of the specific heat capacity for 
constant volume and 𝜗:

𝑐𝑣,𝜗 ≡Θ
(
𝜕𝜎

𝜕Θ

)
𝑛,𝜗

= 𝑐𝑣. (12)

The first law (7) also presents 𝜍 from the variation of the energy density with respect to 𝜗:

𝑞

Θ
= 𝜍 ≡

(
𝜕𝜌

𝜕𝜗

)
𝑛,𝑠

= 𝑛𝑐𝑣ΘΦ′(𝜗).

Rewriting this equation, we get a relation between 𝜗 and the heat 𝑞:

Φ′(𝜗) ≡ 𝑑Φ(𝜗)
𝑑𝜗

= 𝑞

𝑐𝑣𝑛Θ2 . (13)

Until now, we have not fixed the form of the function Φ(𝜗). The behavior of the function will depend on the explicit physical 
situation of the gas in general. However, the stability requirement, the inequality in Eq. (8), highly constrains the functional form. 
Rewriting by using Eqs. (1), (2), and (13), we get

𝑚∕Θ + 𝑐𝑣 + 1
𝑐𝑣Θ2

𝜗

Φ′(𝜗)
> 1. (14)

This inequality constrains Φ′(𝜗) should have the same signature as that of 𝜗. Therefore, Φ(𝜗) should be monotonically increases/de-
creases for 𝜗 ≷ 0. In other words, there is no local minimum of Φ(𝜗) other than 𝜗 = 0. The energy density, therefore, will have a 
minimum value at 𝜗 = 0 corresponding to the thermal equilibrium configuration. Consequently, Φ′(0) = 0 if the function Φ(𝜗) is a 
differentiable at 𝜗 = 0. This property is directly related to the stability of the thermal equilibrium system at 𝜗 = 0. Now, the function 
Φ can be written in a series form,

Φ(𝜗) = 𝛾

2

(
𝜗

𝜗0

)2
+ 𝛾 ′

3!

(
𝜗

𝜗0

)3
+⋯ . (15)

Because 𝜗 = 0 is a minimum, 𝛾∕𝜗20 > 0. Because of the property, Φ′(𝜗) must be an invertible, one-to-one function around 𝜗 ∼ 0. We 
write 𝜗 as a function of 𝑄:

𝜗 ≡ 𝜗(𝑄) = Φ′−1( 𝑞 ) = 𝜗 𝑄

[
1 +

∞∑
𝑔 𝑄𝑗

]
, 𝑄 ≡

𝜗0𝑞
, (16)
4

𝑐𝑣𝑛Θ2 0
𝑗=1

𝑗
𝛾𝑐𝑣𝑛Θ2
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where the coefficient 𝑔𝑗 must be determined from the series form of Φ(𝜗) in Eq. (15). To the linear order in 𝑄, we have

𝜗 ≈
𝜗20𝑞

𝛾𝑐𝑣𝑛Θ2 .

Note that, given 𝜗, the inequality (14) can be written as a third-order polynomial function for 1∕Θ. By defining 𝑋 ≡
√
𝜗∕Φ′(𝜗)∕Θ, 

we rewrite the inequality (14) in the form:

𝑓 (𝑋) ≡ 𝑚

(1 + 𝑐𝑣)Θub
𝑋3 +𝑋2 − 1 > 0, Θub ≡

√
1 + 𝑐𝑣

𝑐𝑣

𝜗

Φ′(𝜗)
. (17)

Since mass is non-negative, 𝑓 (𝑋) is a monotonically increasing function of 𝑋 > 0. This constrains the value of 𝑋 to be larger than the 
root, 𝑋min ≥ 0, of the equation, 𝑓 (𝑋min) = 0. Ultimately, this inequality presents an upper bound on temperature in terms of given 
physical parameters:

Θ <Θmax, Θmax(𝜗) =
Θub(𝜗)
𝑋min

, (18)

where, Θmax denotes the upper bound. The value of 𝑋min reaches its maximum, 𝑋min = 1, when the mass of the particles is negligible, 
i.e., 𝑚 → 0. In this case, the upper bound on the temperature becomes Θmax = Θub.

Let us examine the result around the thermal equilibrium 𝑞 ∼ 0. In this limit, lim𝑞→0 𝜗∕Φ′(𝜗) = 𝜗20∕𝛾 , where the right-hand side is 
nothing but the coefficient of second order term in the series expansion of Φ(𝜗). Now, Θub becomes

lim
𝑞→0

Θub =

√
1 + 𝑐𝑣

𝑐𝑣

𝜗20
𝛾
.

It is noteworthy that the maximum temperature tends to infinity only when 𝛾 → 0, i.e., when the quadratic part of the series form 
of Φ(𝜗) vanishes. This observation is an interesting because once we understand how the energy density depends on heat, we can 
identify a maximum temperature for a stable equilibrium system based on physical parameters.

Let us calculate the function Φ(𝜗) for the case of the monoatomic ideal gas in Eq. (5) with 𝑐𝑣 = 3∕2. Now, we compare this result 
with Eq. (11) to find:

Φ(𝜗) = 5
72

(
𝑞𝛿𝐿

𝜅Θ

)2
. (19)

To compare this form with Eq. (15), we write the heat conductivity 𝜅 explicitly. The heat conductivity of a gas is usually takes the 
form,

𝜅 =
3𝑘𝐵
2𝑚

𝜚
Δ𝑥2
𝜏

=
3𝑘𝐵
2𝑚

𝑛⟨𝑚𝑣2
2

⟩2𝜏
3

=
3𝑘𝐵
4𝑚

𝑛Θ𝜏

where 𝜚, Δ𝑥, 𝑣 ≡ Δ𝑥∕𝜏 , and 𝜏 are the mass density, the mean free path along the direction of heat flow, the velocity of particle 
between collisions, and the time between two nearby collisions of the gas particles (mean free time), respectively.

Substituting the result to Eq. (19), we obtain, for the gas system consisting of particles of mass 𝑚 > 0:

𝜗20
𝛾

=
3(1 + 𝑐𝑣)

4𝑐4
𝑣

(
𝑚𝛿𝐿

𝜏

)2
= 10

27

(
𝑚𝛿𝐿

𝜏

)2
. (20)

Therefore, Θub becomes

Θub =

√
1 + 𝑐𝑣

𝑐𝑣

𝜗20
𝛾

=
5
√
2

9

(
𝛿𝐿

𝑐𝜏

)(
𝑚𝑐2

𝑘𝐵

)
. (21)

In the last equality, we recover the light velocity 𝑐 and the Boltzmann constant 𝑘𝐵 to compare the value of the upper bound. As seen 
in this equation, the upper bound is of the order of the mass-scale temperature times the ratio between the two length scale 𝛿𝐿 and 
𝑐𝜏 . Here, the lowest value 𝛿𝐿 can represent the scale that the ideal gas nature of the particles breaks down, such as the quantum 
de-Broglie length scale or the scale that the inter-particle interactions become important. The term 𝑐𝜏 represents the length that the 
light travels during the mean free time of the gas particles. Note that we cannot use this result for a gas consisting of massless particles 
because the Newtonian heat equation and the formula for the average kinetic energy may not hold in the massless case.

Let us describe the behaviors of the temperature, entropy, internal energy and physical behaviors for a generic form of Φ(𝜗). 
As an example of generic form (15), we consider Φ(𝜗) shown in Fig. 1, which has an inflection point at 𝜗𝑖 with Φ′(𝜗𝑖) = 0. Now, 
from Φ′(𝜗) = 0 in Eq. (13), the absence of heat, 𝑞 = 0, corresponds to two distinct values, the minimum, 𝜗 = 0, and the inflection 
point, 𝜗 = 𝜗𝑖. Note that heat flows along the same direction at both sides of the inflection point. The inequality in Eq. (14) still 
holds. Around the inflection point, the function takes the form, Φ ≈ Φ(𝜗𝑖) + 𝛼∕3! × (𝜗 − 𝜗𝑖)3 + ⋯ with 𝛼 ≷ 0 for 𝜗𝑖 ≷ 0. Then, |𝑞|∕𝑛Θ2 ≈ (𝛼𝑐𝑣∕2)(𝜗 − 𝜗𝑖)2 increases as 𝜗 becomes farther from the inflection point. This behavior is evident in the right-panel of 
5

Fig. 2. Note also that the maximum temperature at 𝜗𝑖 is infinite. The energy density 𝜌(𝑛, 𝑠, 𝜗𝑖) is higher than that at 𝜗 = 0 because 
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Fig. 1. A general form for Φ(𝜗). The function Φ(𝜗) has a global minimum ‘A’ at 𝜗 = 0 and may have an inflection point 𝜗𝑖 .

Fig. 2. The behaviors of the temperature (L) and the specific entropy (R) with respect to the change of heat 𝑞 for the behavior Φ(𝜗) in Fig. 1. In the left panel, we 
choose 𝑐𝑣 = 3∕2, 𝜎 = 1, and 𝑛∕𝑛0 = 2, 1, 1∕5, and 1∕100, respectively from the top. The temperature and the specific entropy take its minimum/maximum at 𝑞 = 0. 
Here, 𝜎∗ is given in Eq. (3). The minimum/maximum value is nothing but the thermal equilibrium ones.

Φ(𝜗𝑖) > Φ(0). This energy difference will infer a stability issue for the system in the inflection point and suggests a kind of phase 
transition from one state 𝜗 = 𝜗𝑖 to the equilibrium state at 𝜗 = 0.

Let us illustrate the generic behaviors of the temperature, entropy, internal energy as we vary 𝑞. From Eqs. (11) and (13), we can 
express heat as a function of 𝑛, 𝑠, and Θ:

𝑞 = 𝑐𝑣𝑛0Θ2
0
𝑛

𝑛0

(
Θ
Θ0

)2
Φ′

(
Φ(−1)

(
log Θ

Θ0
−
𝜎 + log𝑛∕𝑛0

𝑐𝑣

))
(22)

where Φ(−1) denotes the inverse function of Φ(𝜗). We interpret this equation as an implicit function between the temperature Θ and 
the heat 𝑞. We then plot the temperature as a function of 𝑞 in the left panel of Fig. 2 for various 𝑛 and 𝑠 for Φ(𝜗) in Fig. 1. A crucial 
observation is that temperature reaches its minimum value at 𝑞 = 0 and increases with |𝑞|. We can also utilize this equation to express 
the specific entropy as a function of 𝑛, Θ, and 𝑞:

𝜎(𝑛,Θ, 𝑞) − 𝜎∗(𝑛,Θ) = −𝑐𝑣Φ
(
(Φ′)(−1)

( 𝑞

𝑐𝑣𝑛Θ2

))
. (23)

Here 𝜎∗ is defined in Eq. (3). The contribution of heat to the specific entropy is plotted in the right panel of Fig. 2. As shown here, 
the (specific) entropy is maximized when 𝑞 = 0 and 𝜗 = 0. At the inflection point, 𝜗𝑖, the heat vanishes but the entropy does not have 
a local maximum. The behavior of the internal energy 𝜌 and kinetic energy with respect to 𝑞 are determined implicitly through the 
dependence of Θ on 𝑞 because of Eq. (2).

When energy is poured into an ideal gas system while holding 𝜗 and 𝑛 constant, entropy increases indefinitely as dictated by the 
first law of thermodynamics (7). Subsequently, Eq. (11) appears to show that the temperature also increases without bound. On the 
contrary, beyond the ‘Hagedorn temperature’ [1] for hadrons, the particle number cannot remain constant but instead increases with 
energy, while keeping the temperature bounded. Assuming a Hagedorn-like temperature, 𝑇Hagedorn, to be the temperature upper-
6

bound for an ideal gas, we determine the quadratic part of the Φ (15) to the form:
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𝛾

𝜗20

=
1 + 𝑐𝑣

𝑐𝑣𝑇
2
Hagedorn

→ Φ(𝜗) ≈
1 + 𝑐𝑣

2𝑐𝑣
𝜗2

𝑇 2
Hagedorn

.

This equation tells that the heat contribution to the energy density is suppressed quadratically by the Hagedorn temperature. Conse-
quently, in the absence of the bound (when the bound diverges), the energy density should be independent of heat.

The temperature upper bound established in this work stems from the stability condition of a thermal equilibrium state in rela-
tivistic thermodynamics. This condition is generalized to a relation for a boost transformation between the Eckart and Landau-Lifshitz 
observers, rooted in the theory of relativity. Since the derivation is grounded in first principles, the result may not be limited to the 
ideal gas but could be universal for various forms of matter. In the present formulation, the upper bound of the temperature depends 
on the value 𝛾∕𝜗20, which must be independent of other thermodynamic parameters by definition. For the case of a simple ideal gas, 
the upper bound is of the order of the mass-scale temperature times the ratio between the two length scale 𝛿𝐿 and 𝑐𝜏 (21). The 
undetermined length 𝛿𝐿 must be short enough in a macroscopic scale but large enough in a microscopic scale. The mean free time 𝜏
of the particles is dependent on the microphysics of the theory. In a general case, the mean free time may depend on the temperature 
and the number density of particles. In that case, a better description for the gas will be required.
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