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Lymphoma is a serious malignant tumor that contains more than 70 different types and seriously endangers the body’s lymphatic
system. The lymphatic system is the regulatory center of the immune system and is important in the immune response to foreign
antigens and tumors. Studies showed that multiple genetic variants are associated with lymphoma but determining the pathogenic
mechanisms remains a challenge. In the present study, we first applied the Gene Ontology (GO) and KEGG pathway enrichment
analyses of lymphoma-associated and lymphoma-nonassociated genes. Next, the Boruta and max-relevance and min-redundancy
feature selection methods were performed to filter and rank features. Then, features preselected and ranked using the incremental
feature selection method were applied for the decision tree model to identify the best GO terms and KEGG pathways and extract
classification rules. Results indicate that our predicted features, such as B-cell activation, negative regulation of protein processing,
negative regulation of mast cell cytokine production, and natural killer cell-mediated cytotoxicity, are associated with the
biological process of lymphoma, consistent with those of recent publications. This study provides a new perspective for future
research on the molecular mechanisms of lymphoma.

1. Introduction

Lymphoma, as one of the major cancer subtypes involving
the lymphatic system, is a severe subgroup of malignancies
in human beings [1, 2]. The lymphatic system is the center
of the circulation immune system, thereby regulating the
immune response against external antigens, germs, virus,
and even cancers [3]. As a system throughout the body,
the lymphatic system includes multiple levels of organs,

including lymph nodes, spleen, thymus, and bone marrow
[1, 3, 4]. Considering that the lymphatic system can affect
the whole body, the malignant transformation of the lym-
phatic system, also known as lymphoma, is also a severe
kind of malignancy affecting the whole body.

Multiple subtypes of lymphoma, including chronic lym-
phocytic leukemia [5], cutaneous B-cell lymphoma [6],
Hodgkin’s lymphoma [7], and non-Hodgkin’s lymphoma
[7, 8], are identified in clinics. Despite the diversity of lym-
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phoma, most patients with lymphoma share similar symp-
toms, including painless swelling of lymph nodes, persistent
fatigue, fever, and itchy skin [7]. Although the detailed path-
ogenesis of lymphoma remains unclear, external environ-
mental effects, like Epstein–Barr virus [9] and Helicobacter
pylori [10] infection, and genetic variations are shown to
be associated with the disease. In recent years, with the
development of sequencing techniques, genetic variations
from multiple functional genes including CASP10 [11],
ATM [12], RAD54L [13], BRAF [14], and CARD11 [15] have
been shown to be associated with lymphoma. However,
revealing the pathogenic mechanisms based on only a group
of genes remains challenging. Further functional explora-
tion, like gene ontology (GO) and pathway enrichment anal-
yses, may help explore the biological foundation for the
initiation and progression of lymphoma.

In this study, we summarized and compared the func-
tional enrichment patterns of lymphoma-associated and
lymphoma-nonassociated genes for the first time. By using
Boruta, max-relevance and min-redundancy (mRMR), and
incremental feature selection (IFS) methods and decision
tree (DT) algorithms, we attempt to identify key functional
enrichment terms (GO terms [16] or KEGG pathways
[17]) contributing to the identification of lymphoma-
associated genes. The identified functional enrichment terms
are associated with the pathogenesis of lymphoma. Overall,
our study has identified lymphoma-associated GO terms
and KEGG pathways for the first time, thereby helping vali-
date previous reports on the key biological effects of identi-
fied lymphoma biomarkers and establishing a novel
approach to explore disease-associated pathogenesis at the
functional level.

2. Materials and Methods

In this study, we investigated the functional enrichment pat-
terns of lymphoma genes by using machine learning
methods. The procedures are shown in Figure 1.

2.1. Dataset. In this study, we summarized 1548 lymphoma-
associated genes from the DisGeNET database (https://www
.disgenet.org/, v7.0) [18]. These genes were termed as posi-
tive samples, whereas the rest of the human genes were
termed as negative samples. Given that the purpose of this
study was to analyze the functional terms of lymphoma-
associated genes, positive and negative samples without
GO or KEGG pathway information were discarded. A total
of 1330 positive and 16338 negative samples remained.

2.2. Feature Construction. Certain informative features
should be used to express genes and identify distinctions
between positive and negative samples. In this study, GO
and KEGG enrichment scores were used as features of each
gene.

GO enrichment denotes the association between a gene
and a GO term. The ESGOðg, GOjÞ score, which is com-
monly called the GO enrichment score, is produced between
each gene g and each GO term GO j. This score is defined by
−log10 of the hypergeometric test P value [19] of the set G

composed of the direct neighbors of g in STRING and
another set consisting of genes annotated by GO term GOj

and calculated as follows:
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where N indicates the overall number of human genes, M
indicates the number of genes annotated by the GO term
GOj, n indicates the number of genes in G, and m indicates
the number of genes in G that are also annotated by GOj.

Similarly, the KEGG enrichment score ESGOðg, GOjÞ for
each gene g and each KEGG pathway Pj can be computed as
follows:
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where N and M indicate the number of human genes and
number of genes annotated by the KEGG pathway Pj,
respectively, whereas n and m indicate the number of pro-
teins in G and number of proteins in G that are also anno-
tated by Pj, respectively.

Certainly, a high enrichment score of a gene with one
GO term or KEGG pathway indicated a strong relationship.
In this study, 20681 GO and 297 KEGG enrichment scores
were obtained for each gene. Thus, these 20978 features
might be used to represent gene g, which can be expressed
using the following formula:

v gð Þ = ESGO g, GO1ð Þ,⋯, ESGO g, GO20681ð Þ,ð

ESKEGG g, P1ð Þ,⋯, ESKEGG g, P297ð ÞÞT : ð3Þ

2.3. Feature Selection. As shown in Figure 1, we used the
Boruta [20], mRMR [21], and incremental feature selection
(IFS) [22] algorithms to perform feature selection. The Bor-
uta method eliminated nonrelevant features, the mRMR
method sorted the features into a feature list, and the IFS
combined specific classifiers to determine the optimal num-
ber of features.

2.3.1. Boruta Feature Selection. The presence of a large num-
ber of features in the dataset could cause some technical
problems. Thus, we applied the Boruta algorithm to assess
the importance of features and eventually selected significant
features. As a wrapper feature selection method, the Boruta
algorithm was designed on the basis of the random forest
classification algorithm. The algorithm randomly created
shadow features from original features and operated a ran-
dom forest classifier on the collection of original and shadow
features to filter important and unimportant features. In
accordance with the outcomes of statistical tests (e.g., z
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-scores), the algorithm iteratively eliminated features that
had lower z-scores compared with shadow features. The
algorithm was implemented using the “boruta” package in
https://github.com/scikit-learn-contrib/boruta_py.

2.3.2. mRMR Feature Selection. To evaluate the degree of
importance for each feature, we used the mRMR algorithm
to sort features in terms of their importance. The informa-
tive features selected by this method had the maximum rel-
evance to class labels and the minimum redundancy with
each other. The method calculated the relationship between
features or classified labels by using mutual information
(MI). The MI values of variables x and y could be expressed
as follows:

I x, yð Þ =∬p x, yð Þ log p x, yð Þ
p xð Þp yð Þ dxdy, ð4Þ

where pðxÞ and pðyÞ indicate the marginal probability densi-
ties of variables and pðx, yÞ refers to the joint probability
density of two variables. The features that had the highest
relevance to class labels and least redundancy with those
already in the list were chosen from the remaining features
one by one. If all features were in the list, the program was
stopped. The mRMR program was retrieved from http://
home.penglab.com/proj/mRMR/and executed using default
parameters.

2.3.3. IFS. Although the mRMR method ranked the features
by importance, which features were essential in the feature
list remained a problem. The IFS method was used to deter-
mine the optimum features in the feature list. In the first
step, IFS had output a set of feature subsets from the list.
For example, when the step size was set to 5, the 1st and

2nd feature subsets were composed of the top 5 and top 10
features, respectively, in the list. The training samples repre-
sented by features in each subset were next trained with the
desired classifier. The classifier was assessed by 10-fold
crossvalidation and synthetic minority oversampling tech-
nique (SMOTE) to obtain the performance metrics of the
classification model, and the best classification model could
be determined by performance metrics.

2.4. DT. Different from other algorithms, such as the support
vector machine (SVM) [23] and random forest (RF) [24],
DT [25] is a white box model that constructs classification
or regression models that are easy to interpret. DT creates
a tree structure in the IF–THEN format and generates rules
that can be understood, thereby further enhancing the
knowledge of the model prediction mechanism. This study
adopted the DT program implemented by python in
Scikit-learn (https://scikit-learn.org/stable/) [26]. Such pro-
gram implements the CART tree with the Gini index to
expand the tree.

2.5. SMOTE. An imbalance problem is present between the
sizes of positive and negative samples in the abovemen-
tioned constructed dataset, where the positive sample size
is much smaller than the negative sample size. To address
this issue, we used the SMOTE [27] algorithm in this
research. The SMOTE algorithm analyzes and simulates a
minority class of samples by using the kNN technique and
adds the newly synthesized samples to the dataset to produce
a new training set. The SMOTE program that was run in this
work was sourced from https://github.com/scikit-learn-
contrib/imbalanced-learn, and parameters were set to
default.

Lymphoma-associated
genes

Lymphoma-non-
associated genes

Dataset Feature construction

Gene ontology (GO)
enrichment

KEGG pathway
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mRMR feature
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Figure 1: Flow chart for classifying samples for two types of genes in lymphoma. The gene ontology (GO) and KEGG pathway enrichment
are used to construct the features of the dataset, and the Boruta and mRMR feature selection methods are used to filter and rank features.
The optimal number of features and optimal classifiers are obtained by the incremental feature selection method with DT.

3BioMed Research International

https://github.com/scikit-learn-contrib/boruta_py
http://home.penglab.com/proj/mRMR/and
http://home.penglab.com/proj/mRMR/and
https://scikit-learn.org/stable/
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn


2.6. Performance Measurements. Evaluation metrics, such as
accuracy (ACC), sensitivity (SN) (same as recall), specificity
(SP), precision, F1-measure, and MCC [28–31], were used in
the 10-fold crossvalidation [32–38] process to assess the per-
formance of prediction models. The formulas of these evalu-
ation metrics are shown as follows:

ACC = tp + tn
tp + fp + tn + fn ,

SN = tp
tp + fn ,

SP = tn
tn + fp ,

ð5Þ

Precision = tp/tp + fp,

F1 −measure = 2 × precision × recall
precision + recall ,

MCC = tp × tn − fp × fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tp + fpð Þ tp + fnð Þ tn + fpð Þ tn + fnð Þp ,

ð6Þ

where tp, tn, fp, and fn represent the true-positive, true-neg-
ative, false-positive, and false-negative samples, respectively.
Among the abovementioned measurements, F1 −measure
was selected as the key measurement to evaluate the perfor-
mance of different DT classifiers.

3. Results

3.1. Results of Boruta and mRMR Methods on the Dataset.
The Boruta and mRMR feature selection methods were
adopted to analyze the dataset and select key features. A total
of 1075 features were retained after processing the original
dataset by using the Boruta method. These preserved fea-
tures are listed in Table S1. These features are composed of
1034 GO terms and 41 KEGG pathways. Further, these
features were sorted by the mRMR method to evaluate
their importance. Results are also listed in Table S1.

3.2. Results of the IFS Method with DT. A series of feature
subsets was generated when the step size was set to 5 from
the mRMR feature list and subjected to the IFS method to
acquire the best features for classifying lymphoma-related
genes and other genes and obtain the best number of fea-
tures. The classification results using the different number
of features are provided in Table S2. IFS curves were
plotted by setting the number of features as the x-axis and
the F1 −measure as the y-axis. As shown in Figure 2, the
DT reached the highest F1 −measure of 0.486 when the
top 805 features were used. Therefore, we considered these
top 805 features as the best feature set and constructed the
best DT classifier. The ACC and MCC of such classifier
were 0.891 and 0.455, respectively. Furthermore, the SN,
SP, and precision were 0.683, 0.908, and 0.378,
respectively. As the positive samples were much less than
the negative samples, SN was much lower than SP and
precision was also not very high. Although the

performance of the best DT classifier was not very high, it
can still provide new clues, which can help us uncover the
differences between lymphoma-associated genes and other
ones.

805 features were used in the best DT classifier, which
are the top 805 features in Table S1. Among them, 41
features were related to KEGG pathways, whereas the
remaining 764 features were about GO terms. It is known
that all GO terms can be divided into three groups:
biological process (BP), cellular component (CC), and
molecular function (MF). The distribution of 764 GO
features on three groups is illustrated in Figure 3. It can be
observed that BP GO terms were the most, followed by MF
and CC GO terms.

3.3. Results of Classification Rules by Using the Optimal DT
Classifier. The DT is a white-box model that provides clear
decision rules and is beneficial for further analysis. Thus,
we used these 805 features to construct a DT by using all
samples. From such DT, 799 decision rules were extracted
(Table S3). A detailed description of these rules is provided
in “Discussion.”

4. Discussion

The functional enrichment annotations of lymphoma-
associated genes were used to identify a group of functional
enrichment terms, i.e., GO and KEGG pathway terms, and
reveal the key biological effects distinguishing lymphoma-
associated genes and other genes. On the basis of machine
learning models, we identified a group of terms associated
with lymphoma. The detailed discussion on these terms are
shown as follows.

4.1. Functional Enrichment Terms Associated with
Lymphoma-Associated Genes. The first identified functional
enrichment term is GO:0042113, describing B-cell activa-
tion. Early in 2002, researchers from the University of Cali-
fornia, Los Angeles, confirmed that the activation of B cells
participates in the initiation and progression of lymphoma,
such as in patients with HIV [39]. Further, similar results
are validated in South Africa by researchers from the Uni-
versity of the Western Cape in 2018, indicating that B-cell
activation is associated with the pathogenesis and progres-
sion of lymphoma [40]. Therefore, B-cell activation is an
effective biological process associated with lymphoma.

The next identified functional enrichment term is
GO:0044424, which describes a cellular component as the
obsolete intracellular part and is now named as the intracel-
lular anatomical structure. Although no direct report con-
firmed that any intracellular structure is specifically
associated with the pathogenesis of lymphoma, structural
variants associated with programmed cell death-associated
proteins are specifically associated with Epstein–Barr virus-
associated lymphomas [41]. This finding is consistent with
our prediction.

The next identified GO term is the general GO term
GO:0010955 that describes the negative regulation of protein
processing. Such GO term summarizes any process
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associated with peptide bond cleavage frequency and protein
maturation efficacy. According to recent publications, BAFF
has been regarded as an important driver for B-cell non-
Hodgkin lymphoma. BAFF and its pathway BAFF/BAFF-R
pathway are processed by cleavage from the plasma mem-
brane and transformation into a soluble form [42]. There-
fore, functional protein processing, like bond cleavage, may
also be essential to trigger lymphoma.

The next two identified GO terms are GO:0032764 (neg-
ative regulation of mast cell cytokine production) and
GO:0002643 (regulation of tolerance induction). Early in
1982, a long-term in vitro culture of mast cells in mouse
models confirmed that mast cell cytokines are associated
with the growth and maturation of mast cells and that such
cytokines are validated in T-cell lymphoma [43], confirming
the correlations between mast cell cytokines and T-cell lym-

phoma. As for the regulation of tolerance induction, toler-
ance induction describes a physiological status in which
immune cells do not react against antigens or external stim-
ulations. During the pathogenesis of lymphoma, tolerance is
quite common in multiple lymphoma subtypes especially for
B-cell lymphoma [44–46].

Similarly, although not in the top, we identified KEGG
pathways, like hsa04650 (natural killer cell-mediated cyto-
toxicity) and hsa05202 (transcriptional misregulation in
cancer). Early in 1995, T lymphomas are reported to induce
optimal natural killer cell-mediated cytotoxicity [47], reveal-
ing the correlations between such pathway and lymphoma.
Recent reports [48–50] also validated that natural killer cells
play an irreplaceable role during lymphoma pathogenesis.
As for another KEGG pathway, i.e., transcriptional misregu-
lation in cancer, researchers from the Massachusetts
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Figure 2: Incremental feature selection (IFS) curves of the DT classifier on the different number of features. DT provides the highest F1
−measure of 0.486 when the top 805 features are used.
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Institute of Technology summarized disease-associated tran-
scriptional regulation and validated that T-cell lymphoma is
associated with transcriptional regulations in 2013 [51],
thereby validating our prediction.

4.2. Quantitative Rules for Functional Enrichment Terms
Associated with Lymphoma-Associated Genes. Apart from
the identification of lymphoma-associated biological pro-
cesses, we established quantitative rules by using enriched
functional terms. The detailed analyses on top features from
three optimal rules are shown as follows.

The first rule involves 59 features. Here, we selected two
features for discussion. The first selected feature is the GO
term GO:0042113, describing B-cell activation. As we have
discussed, such GO term is associated with lymphoma path-
ogenesis, thereby validating our prediction. The next feature
is GO:0007568 (aging). Aging has been shown to be associ-
ated with the initiation and progression of lymphoma [52].
Therefore, predicting that aging is a determinative biological
process associated with lymphoma is reasonable.

The next rule involves 44 features. Apart from B-cell
activation (GO:0042113) and aging (GO:0007568), the GO
term GO:0002705, the positive regulation of leukocyte-
mediated immunity as a candidate to be associated with
lymphoma, is identified. In 2019, researchers from Shanghai
Rui Jin Hospital reported that leukocyte-mediated immune
responses are associated with the pathogenesis of lym-
phoma, thereby validating our prediction. In addition, the
negative regulation of mitophagy (GO:1901525) has been
reported to be associated with lymphoma and this finding
has also been supported by recent publications [53, 54].
Overall, such quantitative rule can help the identification
of lymphoma-associated genes.

The third rule also includes multiple lymphoma-
associated functional terms (GO terms and KEGG path-
ways). Except for shared GO terms with the abovemen-
tioned two rules, like GO:0042113 and GO:0007568,
GO:0048539, as another predicted GO term, describes the
bone marrow development and has been shown to be asso-
ciated with lymphoma. According to recent publications,
bone marrow biopsy has been regarded as one of the major
methods for clinical diagnosis on lymphoma [55]. The
development of bone marrow is tightly associated with the
initiation and progression of lymphoma, thereby validating
our prediction.

Overall, by using machine learning models, we identified
a group of functional enrichment terms associated with lym-
phoma and established quantitative rules for lymphoma pre-
diction. The prediction results that we presented can help
promote the exploration on the fundamental pathological
mechanisms for lymphoma and provide us a new tool to
analyze the functional characteristics of complex diseases.

5. Conclusion

This study is aimed at identifying key GO terms and KEGG
pathways for lymphoma-associated genes. A total of 805 key
features and 799 quantitative rules were identified using a
machine learning approach, which has been validated by

research results in recent years. This study contributes to a
deep understanding of the underlying pathological mecha-
nisms of lymphoma and provides us with new tools to ana-
lyze the functional characteristics of the disease.
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