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Differentiation of recurrent 
glioblastoma from radiation 
necrosis using diffusion radiomics 
with machine learning model 
development and external 
validation
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Jong Hee Chang4, Se Hoon Kim5, Ho Sung Kim3 & Seung‑Koo Lee1

The purpose of this study was to establish a high-performing radiomics strategy with machine learning 
from conventional and diffusion MRI to differentiate recurrent glioblastoma (GBM) from radiation 
necrosis (RN) after concurrent chemoradiotherapy (CCRT) or radiotherapy. Eighty-six patients with 
GBM were enrolled in the training set after they underwent CCRT or radiotherapy and presented 
with new or enlarging contrast enhancement within the radiation field on follow-up MRI. A diagnosis 
was established either pathologically or clinicoradiologically (63 recurrent GBM and 23 RN). Another 
41 patients (23 recurrent GBM and 18 RN) from a different institution were enrolled in the test set. 
Conventional MRI sequences (T2-weighted and postcontrast T1-weighted images) and ADC were 
analyzed to extract 263 radiomic features. After feature selection, various machine learning models 
with oversampling methods were trained with combinations of MRI sequences and subsequently 
validated in the test set. In the independent test set, the model using ADC sequence showed the best 
diagnostic performance, with an AUC, accuracy, sensitivity, specificity of 0.80, 78%, 66.7%, and 87%, 
respectively. In conclusion, the radiomics models models using other MRI sequences showed AUCs 
ranging from 0.65 to 0.66 in the test set. The diffusion radiomics may be helpful in differentiating 
recurrent GBM from RN.
.
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MI	� Mutual information
MRI	� Magnetic resonance imaging
MRS	� Magnetic resonance spectroscopy
PET	� Positron emission tomography
SMOTE	� Synthetic minority over-sampling technique
SVM	� Support vector machine
T1C	� Postcontrast T1WI
T2	� T2WI
GBM	� Glioblastoma
RN	� Radiation necrosis
RT	� Radiation therapy

The current gold standard treatment for glioblastoma (GBM, World Health Organization [WHO] grade IV) 
is maximum safe tumor resection, followed by concurrent chemoradiotherapy (CCRT) with temozolomide1,2. 
In cases of elderly patients with unmethylated 6-methylguanine-DNA methyltransferase (MGMT) promoter 
status or patients with Karnofsky performance status (KPS) index lower than 70, radiotherapy (RT) alone is the 
standard treatment2,3. Radiation necrosis (RN) usually occurs within 3 years after radiation therapy and is often 
indistinguishable from recurrent tumor because it manifests as an enhancing mass lesion with varying degrees 
of surrounding edema and progressive enhancement on serial magnetic resonance imaging (MRI)4,5. Thus, dis-
tinguishing between recurrent GBM and RN has clinical importance in deciding the subsequent management; 
recurrence indicates treatment failure and requires the use of additional anticancer therapies, whereas RN is 
treated conservatively.

Multiple studies have made efforts to distinguish GBM recurrence from RN using various imaging methods, 
including conventional imaging, diffusion-weighted imaging (DWI), diffusion tensor imaging, dynamic sus-
ceptibility contrast (DSC) imaging, MR spectroscopy, amide proton transfer imaging, and positron emission 
tomography4–13. However, there is no gold standard imaging method for the differentiation between recurrence 
and RN, due to high degree of overlapping findings. Currently, the definitive diagnosis is based on histopathology 
which is both invasive and difficult. In addition, the pathology results may be variable depending on the surgical 
sampling sites due to the coexistence and admixture of recurrence and RN14.

Radiomics involves the identification of ample quantitative features within images and the subsequent data 
mining for information extraction and application15. Recent studies have shown promising results in predict-
ing the molecular status, grade, and prognosis of gliomas16–20. Because radiomics models use high-throughput 
features, there are prone to discover invisible information which are inaccessible with single-parameter analysis.

The aim of this study was to develop and validate a high-performing radiomic strategy using machine learning 
classifiers from conventional imaging and apparent diffusion coefficient (ADC) to differentiate recurrent GBM 
from RN after concurrent CCRT or radiotherapy.

Results
Baseline characteristics of the patients.  The baseline demographic and clinical characteristics are 
summarized in Table 1. Of the 86 patients in the training set, 63 (73.3%) were classified as recurrent GBM and 
23 (26.7%) as RN cases. The 41 patients in the test set consisted of 23 (56.1%) recurrent GBM and 18 (43.9%) 
RN cases. There were no significant differences in age, sex, extent of resection, first line treatment (either CCRT 
or RT alone/RT plus temozolomide), total radiation dose, isocitrate dehydrogenase 1 (IDH1) mutation status, 
and MGMT methylation status between patients with recurrent GBM and those with RN within both training 
and test sets.

Qualitative imaging analysis.  The radiologists’ assessment of conventional imaging features showed no 
significant difference between recurrent GBM and RN in maximum lesion diameter, involvement of corpus cal-
losum, and “Swiss cheese” or “spreading wavefront” enhancement pattern in both the training set and test sets 
(all p-values > 0.05), respectively.

Best performing machine learning models from radiomics features for differentiating recur‑
rent GBM from RN in the training set.  Using radiomic features, in each combination of the selected 
MRI sequence, the 3 feature selection, 3 classification methods, and 2 oversampling methods were trained.

The performance of each combination of the models is shown in Fig. 1. In the training set, the area under 
the curve (AUCs) of the models showing the best diagnostic performance ranged from 0.86 to 0.93 in each 
combination. AUCs with oversampling were higher than those without oversampling in all combinations. In the 
ADC sequence, the combination of least absolute shrinkage and selection operator (LASSO) feature selection, 
and support vector machine (SVM) showed the best diagnostic performance in the training set. The selected 
18 features consisted of 3 first-order features, 10 s-order features, and 5 shape features (Detailed information at 
Supplementary Table 3). This model demonstrated an area under the curve (AUC), accuracy, sensitivity, speci-
ficity of 0.90 (95% confidence interval [CI] 0.84–0.95), 80.5%, 78.3%, and 82.9%, respectively. In the T2WI (T2) 
sequence, the combination of LASSO feature selection and SVM showed the best diagnostic performance in the 
training set with an AUC of 0.86 (95% CI 0.80–0.91). In the postcontrast T1WI (T1C) sequence, the combination 
of mutual information (MI) feature selection and SVM showed the best diagnostic performance in the training 
set with an AUC of 0.91 (95% CI 0.86–0.95). In the combined sequence (ADC + T2 + T1C), the combination of 
LASSO feature selection, and SVM showed the best diagnostic performance in the training set with an AUC of 
0.93 (95% CI 0.89–0.97). (Hyperparameters for each model are summarized at Supplementary Table 4).
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Table 1.   Baseline demographic data and clinical characteristics of patients. GBM glioblastoma, RN radiation 
necrosis, KPS Karnosfky performance status, MGMT oxygen 6-methylguanine DNA methyltransferase. Data 
are presented as either mean ± standard deviation or numbers of patients (%). a Calculated from Student t test 
for continuous variables and Chi-square test for categorical variables for comparison of recurrent GBM and 
RN in training and test sets. b Calculated from Student t test for continuous variables and Chi-square test for 
categorical variables for comparison of training and test sets.

Variables

Training set (n = 86) Test set (n = 41)

P-valuebRecurrent GBM RN P-valuea Recurrent GBM RN P-valuea

Patient no 63 23 – 23 18 –

Age (years) 54.4 ± 13.0 57.9 ± 10.6 0.255 60.7 ± 11.8 57.0 ± 13.7 0.358 0.571

Female sex 20 (31.7) 7 (30.4) 0.908 10 (43.5) 8 (44.4) 0.951 0.851

KPS 73.8 ± 17.0 73.9 ± 19.2 0.974 60.7 ± 11.8 57.0 ± 13.7 0.394 0.961

Extent of resection 0.644 0.556 0.757

 Biopsy 7 (11.1) 1 (4.3) 1 (4.3) 1 (5.6)

 Partial 11 (17.5) 5 (21.7) 7 (30.4) 3 (16.7)

 Subtotal 24 (38.1) 11 (47.8) 13 (56.5) 10 (55.6)

 Total 21 (33.3) 6 (26.1) 2 (8.7) 4 (22.2)

First-line treatment 0.3115 0.370 0.418

 CCRT​ 60 (93.7) 20 (87.0) 22 (95.7) 17 (94.4)

 RT alone or RT plus temozolomide 4 (6.3) 3 (13.0) 1 (4.3) 1 (5.6) 0.859

Total radiation dose (Gy) 60.2 ± 11.6 61.9 ± 16.1 0.591 56.3 ± 11.4 60.7 ± 8.1 0.251 0.476

IDH1 mutant 2 (3.2) 2 (8.7) 0.282 1 (4.3) 1 (5.6) 0.859 0.342

MGMT promoter methylation 13 (20.6) 9 (39.1) 0.082 8 (34.8) 7 (38.9) 0.786 0.090

Figure 1.   Heatmap depicting the diagnostic performance (AUCs) of combinations of feature selection 
methods, classifiers, and combination of sequences in the training set. AUC area under the curve, KNN 
k-nearest neighbors, MI mutual information, LASSO least absolute shrinkage and selection operator, SMOTE 
synthetic minority over-sampling technique, SVM support vector machine, T1C postcontrast T1WI, T2 T2WI. 
The best performing model in each combination of MRI sequence and mask are marked in asterisks (*).
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Robustness of radiomics models in the test set.  In the independent test set, the model using ADC 
sequence with the combination of LASSO feature selection and SVM showed the best diagnostic performance. 
This model demonstrated an AUC, accuracy, sensitivity, specificity of 0.80 (95% CI 0.65–0.95), 78%, 66.7%, and 
87%, respectively.

The radiomics models using other combination of MRI sequence showed poor performance (AUCs ranging 
from 0.65 to 0.66) in the test set, although it did not reach significant difference from the ADC radiomics model 
(p-values of > 0.05). Table 2 summarizes the results of best performing models in training and test sets.

Discussion
In this study, we evaluated the ability of conventional and diffusion radiomics to differentiate recurrent GBM 
from RN. Several MR sequences and their combination were investigated and validated externally, and among 
these models the diffusion radiomics model showed robustness with AUC of 0.80. RN has been reported to 
occur in approximately 9.8–44.4% of treated gliomas, which shows low incidence than recurrent GBM6,9,21. In 
our study, the data imbalance was mitigated by using a systematic algorithm, which generates synthetic sam-
ples in the minority class22. The performance was increased when synthetic minority over-sampling technique 
(SMOTE) was applied in our dataset (Fig. 1), showing its efficacy. Although recurrent GBM and RN have similar 
radiologic appearances, they harbor distinct radiomic information that can be extracted and used to build a 
clinically relevant predictive model that discriminates recurrent GBM from RN. Our model may aid in deciding 
the subsequent management of these patients.

Although conventional findings such as “Swiss cheese” or “spreading wavefront” enhancement pattern have 
been reported to show differences between recurrent high-grade glioma and RN in earlier studies5,6, these find-
ings have subsequently been reported that they cannot be reliably used alone in differentiating between the two 
conditions4,23. Moreover, these conventional imaging patterns are highly subjective. Various studies implementing 
advanced imaging parameters such as diffusion MRI, DSC MRI, proton MR spectroscopy (MRS), amide proton 
transfer (APT) imaging, and positron emission tomography (PET) have shown promising results in differen-
tiating recurrent GBM from RN9,11,12,24–26. Although APT imaging has shown higher diagnostic performance 
than MRS27 or 11C-MET PET28 in differentiating recurrent GBM from RN, APT imaging is challenging due to 
long scan times and limited coverage with high radiofrequency power. On the other hand, the accuracy of MRS 
and PET in differentiating recurrent GBM from RN has been questioned; a meta-analysis has shown moderate 
sensitivity and specificity for MRS, 18F-FDG, and 11C-MET PET in distinguishing between recurrent GBM from 
RN29, whereas another study found no difference between recurrence and necrosis groups using 18F-FDG and 
11C-MET PET12. MRS and PET also have limited value in practical clinical settings due to their limited availability 
and low cost-effectiveness. DSC MRI can readily distinguish between recurrent GBM and RN, as a biomarker of 
angiogenesis, with higher availability9,30. However, the relative cerebral blood volume from DSC MRI can produce 
false positive or false negative results due to volume averaging, susceptibility artifacts, and overlapping portions in 
RN and recurrent GBM4,31. Also, the optimal thresholds are different depending on the specific protocol9,32, and 
values derived from DSC imaging are relative values compared to absolute values from ADC maps. Moreover, 
the previous studies using advanced imaging focused on single parameters such as mean values.

In contrast to extraction of single parameters, radiomics extracts high-throughput quantitative features within 
the regions of interest and has been reported to be a potentially useful approach for estimating the molecular 
status, grade, and prognosis of brain tumors16,17,19,20,33,34. Previous studies have showed promising results in iden-
tifying recurrent brain tumor from RN using radiomics35–37. However, these studies were focused on recurrent 
brain metastases rather than recurrent GBM, analyzing only conventional MRI sequences, and most datasets 
were small without external validation. Recent studies implemented radiomics model in differentiating recurrent 

Table 2.   Diagnostic performance of the best performing machine learning model in the training set and the 
test set. All training set performance was calculated on SMOTE generated datasets. CI confidence interval, 
LASSO least absolute shrinkage and selection operator, MI mutual information, SMOTE synthetic minority 
over-sampling technique, SVM support vector machine, T1C postcontrast T1WI, T2 T2WI. *P-value refers to 
the significance among the differences of the AUCs between the ADC radiomics model and the other models.

Sequence
Feature 
selection

No. of 
selected 
features Classification

Training set Test set

AUC 
(95% 
CI)

Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI) P-value*

AUC 
(95% 
CI)

Accuracy 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI) P-value*

ADC LASSO 18 SVM
0.90 
(0.84–
0.95)

80.5 
(77.4–
83.6)

78.3 
(64.2–92.4)

82.9 
(74.7–91.1)

Refer-
ence

0.80 
(0.65–
0.95)

78.0 
(62.4–
89.4)

66.7 
(41.0–86.7)

87.0 
(66.5–97.2)

Refer-
ence

T2 LASSO 21 SVM
0.86 
(0.80- 
0.91)

77.1 
(74.1–
80.1)

80.7 
(70.8–90.6)

73.1 
(66.0–80.2) 0.346

0.65 
(0.48–
0.82)

61.0 
(44.5–
75.8)

44.4 
(21.5–69.2)

73.9 
(51.6–89.9) 0.186

T1C MI 30 SVM
0.91 
(0.86–
0.95)

87.4 
(84.5–
90.3)

90.7 
(83.0–98.4)

84.3 
(78.2–90.4) 0.798

0.66 
(0.49–
0.83)

53.7 
(37.4–
69.3)

11.1 
(1.4–34.7)

87.0 
(66.4–97.2) 0.217

ADC + T2 + T1C LASSO 35 SVM
0.93 
(0.89–
0.97)

85.2 
(82.0–
88.4)

79.8 
(71.2–88.4)

90.5 
(83.0–98.0) 0.405

0.66 
(0.49–
0.84)

63.4 
(46.9–
77.9)

38.9 
(17.3–64.3)

82.6 
(61.2–95.0) 0.217
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glioma from RN38,39; however the studies was either performed in a smaller dataset without external validation 
using only conventional MRI38, or performed radiomics analysis using 18F-FDG and 11C-MET PET39, which 
are not routinely acquired imaging modalities. Our radiomics model implemented not only conventional MRI 
but also ADC map, which are recommended sequences in the glioma protocol40,41, and showed that diffusion 
radiomics model could robustly differentiate recurrent GBM from RN better than any other radiomics model. 
However, models using conventional MRI sequences (such as T2 or T1C) showed AUCs ranging from 0.650 to 
0.662 in the test set. Moreover, multiparametric radiomics model did not show increased performance than the 
diffusion radiomics model in the external validation. The signal intensities in conventional images may differ in 
different MRI protocol settings, leading to poor performance in an external validation even after signal intensity 
normalization. On the other hand, ADC maps extract absolute values creating reliable feature extraction, which 
may be less affected by heterogeneous protocol settings and consequently demonstrated high diagnostic per-
formance in the external validation. In addition, our results may emphasize the importance of domain-specific 
knowledge in the relatively small data settings of radiomics study42. Previous studies have shown that the ADC 
characteristics are more important than conventional characteristics in differentiating RN from GBM4,7. The 
diffusion radiomics model is promising for reflecting the tumor microenvironment, since these values can 
contain biological information43,44. Although ADC value can be affected by various factors, ADC in tumor is 
generally considered to be an index of tumor cellularity that reflects tumor burden45,46. On histopathological 
examination, recurrent GBM is characterized by dense glioma cells, which limit water diffusion7. In contrast, RN 
is characterized by extensive fibrinoid necrosis, vascular dilatation, and gliosis47. The different histopathology 
and spatial complexity may be reflected in diffusion radiomics, allowing the differentiation of the two entities31.

In our study, the majority of significant radiomics features from the diffusion radiomics model were various 
second-order features, suggesting that high‐throughput characteristics can provide more accurate assessment. 
The hypothesis for this observation is that second-order features capture the spatial variation in signal intensity, 
which tend to extract information that may be incomprehensible and invisible to the naked eye. Recent studies 
have demonstrated that second-order features also reflect the underlying histology48,49. However, a future study 
with histopathologic correlation is mandatory to prove our hypothesis of the direct relationship between radi-
omic features in recurrent GBM and RN. Various features such as flatness, sphericity, mesh volume, and major 
axis length were included, suggesting that the quantitative shape features may aid in differentiating in recurrent 
GBM from RN. Because there was no previous study that has quantified various shape features from the whole 
3D lesion, further studies are indicated to validate our results.

Our study has several limitations. First, our study was retrospective with a small data size. Due to the rela-
tively small size of the test set, the 95% CIs of the AUCs in the test set tended to have a large range and some 
95% CIs of the radiomics models cross 0.5. Future studies should be performed with a larger dataset. Second, 
DSC imaging was not included due to lack of data in a portion of patients. Because DSC data is important in 
distinguishing recurrent GBM from RN50, further radiomics studies implementing DSC data are warranted to 
evaluate the efficacy. Third, fluid-attenuation inversion recovery (FLAIR) sequence was not utilized in this study 
due to mixture of both precontrast and postcontrast FLAIR sequences in the training set. Further studies are 
warranted to include the FLAIR sequence in radiomics analysis. Fourth, clinical factors were not integrated into 
the radiomics model due to statistical insignificance in our dataset. However, as previous studies have stated 
the relationship between radiation doses or fractionation schemes with RN51,52, future radiomics studies with 
larger datasets should perform multivariable analysis with clinically relevant features to differentiate recurrent 
GBM from RN. Fifth, cross-validation was performed separately in the feature selection stage and the machine 
learning classification stage, which may have led to overfitted results.

In conclusion, the diffusion radiomics model may be helpful in differentiating recurrent GBM from RN.

Methods
Patient population.  The Yonsei University Institutional Review Board waived the need for obtaining 
informed patient consent for this retrospective study. All methods were carried out in accordance with relevant 
guidelines and regulation. For research limited to patients’ medical records, access was cleared by the Yonsei 
University Institutional Review Board and was supervised by a person (S-K.L.) who was fully aware of the con-
fidentiality requirements. All of the study protocols were approved by the Institutional Review Board (Sever-
ance Hospital, Yonsei University Health System Institutional Review Board, 2018-1472-002). Between February 
2016 and February 2019, 90 patients with pathologically diagnosed GBM (WHO grade IV) from our institution 
were reviewed in this study. The inclusion criteria were as follows: (1) GBM confirmed by histopathology; (2) 
postoperative CCRT or RT, with a radiation dose ranging from 45 to 70 Gy; (3) subsequent development of a 
new or enlarging region of contrast enhancement within the radiation field 12 weeks after CCRT or RT; and 
(4) surgical resection of the enhancing lesion or adequate clinicoradiological follow-up, which enabled us to 
diagnose recurrent GBM or RN. For clinicoradiological diagnosis, a final diagnosis of recurrent GBM was made 
if the contrast-enhancing lesions gradually enlarged on more than two subsequent follow-up MRI studies per-
formed at 2–3 month intervals (with a size criterion of an increase of > 25% of the size of a measurable [> 1 cm] 
enhancing lesion according to the sum of the products of perpendicular dimensions) and the clinical symptoms 
of patients showed gradual deterioration during follow-up28. Alternatively, a final diagnosis of RN was made 
if enhancing lesions gradually decreased on more than two subsequent follow-up MRI studies performed at 
2–3 month intervals and clinical symptoms improved during the follow-up period. Exclusion criteria were as fol-
lows: (1) processing error (n = 3), (2) absence of MRI sequences (n = 1). Thus, a total of 86 patients were enrolled.

Identical inclusion and exclusion criteria were applied and 41 patients from another institutional hospital 
(Asan Medical Center, Seoul, Korea) were enrolled in the test set. The clinical characteristics of the patients 
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included age, sex, KPS, IDH mutational status, MGMT promoter methylation status, and the extent of resection 
of the tumor (gross total resection, subtotal resection, partial resection, or biopsy).

Pathological diagnosis.  All patients underwent initial surgery, and histologic confirmation was obtained 
according to the 2016 WHO classification46. Peptide nucleic acid-mediated clamping polymerase chain reaction 
and immunohistochemical analysis were performed to detect the R132H mutation status in IDH153. MGMT 
promoter methylation status was diagnosed on the basis of methylation-specific polymerase chain reaction54.

Twenty-two and 14 patients underwent second-look operations in the training set and test set, respectively. 
In second-look operations, the pathological diagnoses included 17 recurrent GBM and 5 RN cases in the train-
ing set, and 8 recurrent GBM and 6 RN cases in the test set, respectively. The diagnosis was made on the basis 
of histological findings in contrast-enhancing tissue obtained with surgical tumor resection or image-guided. 
More than 5% viable tumor diagnosed during the histological examination by neuropathologists, were classified 
as a recurrent GBM9.

MRI protocol.  In the training set, all patients underwent MRI on a 3.0-T MRI scanner (Achieva or Ingenia, 
Philips Medical Systems) with an 8-channel head coil. The preoperative MRI sequences included T1WI, T2, 
T1C, as well as ADC scans. After 5–6 min of administration of 0.1 mL/kg of gadolinium-based contrast material 
(Gadovist; Bayer), T1C were acquired.

In the external validation set, MRI exams were performed using a 3.0-T MRI scanner (Achieva, Philips Medi-
cal Systems) with an 8-channel head coil. Scaling and un-normalization of ADC pixel values generated at the 
scanner was performed as previously described55. Constant level appearance (CLEAR) processing, a technique to 
achieve homogeneity correction by using coil sensitivity maps acquired in the reference scan, was performed55. 
The acquisition protocols are described in further details in the Supplementary Table 1.

Qualitative image analysis.  Conventional images were analyzed by two neuroradiologists (with 14 years 
and 7 years of experience) for maximum lesion diameter, involvement of corpus callosum, and “Swiss cheese” 
or “spreading wavefront” (ill-defined margins of the enhancement) enhancement pattern, according to previous 
literature5,6. Discrepancies were settled by consensus.

Image preprocessing and radiomics feature extraction.  Preprocessing of T2, T1C images, and ADC 
map was performed to standardize the data analysis among patients. Low-frequency intensity nonuniformity 
was corrected by applying the N4 bias correction algorithm as implemented in the Advanced Normalization 
Tools (ANTs)56. Signal intensity normalization was used to reduce variance in the T2 and T1C images, by apply-
ing the WhiteStripe method from R package57. T2, T1C, and ADC images were resampled to a uniform voxel 
size of 1 × 1 × 1 mm. T2 and ADC images were registered to the T1C image using affine transformation with 
normalized mutual information as a cost function. Tumor segmentation was performed through a consensus 
discussion of two neuroradiologists (with 14 years and 7 years of experience), in order to select the contrast-
enhancing solid portion of the tumor on T1C images. Segmentation was performed semiautomatically with an 
interactive level-set region of interest, using edge-based and threshold-based algorithms using 3D Slicer (version 
4.11.0). There was no distortion in the ADC images that affected the segmented masks. Radiomic features were 
extracted from the segmented mask, with a bin size of 32, with an open-source python-based module (PyRadi-
omics, version 2.0)58, which was adherent to the Image Biomarker Standardization Initiative (IBSI) guideline59. 
A total of 93 radiomic features, including shape, first order features, and second-order features (Supplementary 
Table 2), were extracted from the mask. In addition, edge contrast calculation was performed, that character-
izes the tumor border, as previously described (Supplementary Information S1)60. The final set consisted of 263 
radiomic features (14 shape features + 83 first-order and second-order 14 features × 3 sequences) for each patient. 
The data were processed using a multi-platform, open-source software package (3D slicer, version 4.6.2-1; http://
slice​r.org).

Statistical analysis.  Baseline characteristics were compared between recurrent GBM and RN patients 
using chi-squared or Fisher’s exact test for categorical variables, independent t-tests for normally distributed con-
tinuous variables, and Mann–Whitney U-tests for continuous variables without normal distribution. DeLong’s 
method was used to compare the AUCs among the ADC radiomics model and other radiomics models in the 
training and test sets61. Statistical significance was set at P < 0.05.

Radiomic feature selection and machine learning.  The schematic of the radiomics pipeline is shown 
in Fig. 2. All radiomic features were normalized using z-score normalization. For feature selection, the F-score, 
LASSO, or MI with stratified ten-fold cross-validation were applied62. After feature selection, the machine learn-
ing classifiers were constructed separately using k-nearest neighbors (KNN), SVM, or AdaBoost, with stratified 
ten-fold cross-validation. The optimal hyperparameters producing the highest AUC were selected by random 
search during cross-validation and subsequently used to get the final model. In addition, to overcome data 
imbalance, each machine learning model was trained either without oversampling or with SMOTE (with a 
1:1 ratio)22. Because we wanted to determine which combination of MRI sequence shows the highest perfor-
mance, the identical process was performed in each sequence (ADC, T2, T1C, and combined ADC, T2, and T1C 
model). Thus, various combinations of classification models were trained to differentiate recurrent GBM from 
RN in the training set. AUC, accuracy, sensitivity, and specificity were obtained in the SMOTE generated dataset 
in the training set, with a cutoff value according to Youden’s index. The different feature selection, classification 

http://slicer.org
http://slicer.org
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methods, and oversampling were computed using MatlabR2014b (Mathworks). Statistical significance was set 
at P < 0.05.

Diagnostic performance in the test set.  Based on the radiomics classification model in the training 
set, the best combination of feature selection, classification methods, and oversampling in each sequence was 
used in the test set. The AUC, accuracy, sensitivity, and specificity were obtained with the same cutoff from the 
training set.
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