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Abstract 

Motivation:  Application of chemical named entity recognition (CNER) algorithms allows retrieval of information from 
texts about chemical compound identifiers and creates associations with physical–chemical properties and biological 
activities. Scientific texts represent low-formalized sources of information.  Most methods aimed at CNER are based 
on machine learning approaches, including conditional random fields and deep neural networks. In general, most 
machine learning approaches require either vector or sparse word representation of texts. Chemical named entities 
(CNEs) constitute only a small fraction of the whole text, and the datasets used for training are highly imbalanced.

Methods and results:  We propose a new method for extracting CNEs from texts based on the naïve Bayes classifier com-
bined with specially developed filters. In contrast to the earlier developed CNER methods, our approach uses the represen-
tation of the data as a set of fragments of text (FoTs) with the subsequent preparation of a set of multi-n-grams (sequences 
from one to n symbols) for each FoT. Our approach may provide the recognition of novel CNEs. For CHEMDNER corpus, 
the values of the sensitivity (recall) was 0.95, precision was 0.74, specificity was 0.88, and balanced accuracy was 0.92 based 
on five-fold cross validation. We applied the developed algorithm to the extracted CNEs of potential Severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. A set of CNEs corresponding to the chemical 
substances evaluated in the biochemical assays used for the discovery of Mpro inhibitors was retrieved. Manual analysis 
of the appropriate texts showed that CNEs of potential SARS-CoV-2 Mpro inhibitors were successfully identified by our 
method.

Conclusion:  The obtained results show that the proposed method can be used for filtering out words that are not 
related to CNEs; therefore, it can be successfully applied to the extraction of CNEs for the purposes of cheminformat-
ics and medicinal chemistry.

Keywords:  Chemical named entity recognition, CNE, CNER, Naïve Bayes classifier, SARS-CoV-2, Mpro inhibitors

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
An analysis of texts is essential for extracting new knowl-
edge about chemical compounds, drugs, targets, patho-
logical processes and diseases; it allows determining 
various relationships including identification of molecular 

mechanisms, pharmacological effects and toxicity of drug, 
pathophysiological processes and determining drug-
target-disease relationships [1, 2]. Extraction of chemi-
cal named entities (CNEs) from scientific publications is 
an essential task since it allows using the obtained data 
for building chemical-target associations [3], leading to 
improvement of the data curation [3–6]. Chemical named 
entity recognition (CNER) algorithms can help create 
large sets of named entities of chemical compounds asso-
ciated with physical and chemical properties or biological 
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activities [3, 4]. Therefore, such algorithms allow the iden-
tification of CNEs and the collection of big data on chemi-
cals and their properties [7–15]. Both dictionary-based 
and machine learning approaches used to reveal CNEs 
have limitations due to the peculiarities of text structure. 
Since scientific publications are low-formalized sources 
of information and CNEs make up only a small part of 
the whole text, the datasets used for training are highly 
imbalanced. The extraction of CNEs is restricted by the 
incompleteness of the representation of chemical names 
and properties of chemical compounds in the texts [7]. 
For instance, they might be provided for the scaffolds but 
not for whole chemical compounds. Another restriction 
is associated with the variability of the chemical names, 
where various punctuation marks can be found, includ-
ing dots, commas, hyphens, etc. In this case, the accu-
racy of the named entity recognition approach would be 
very sensitive to the specific method of tokenization, i.e., 
breaking up the input lines into pieces such as keywords, 
phrases, symbols, etc. [7]. The information about parame-
ters of chemical and physical properties of chemical com-
pounds also lack reproducibility [3, 4].

An obvious disadvantage of the rule-based and dic-
tionary-based methods is a limited number of CNEs that 
can be recognized due to the fixed size of dictionaries or 
rule numbers. Machine learning or artificial intelligence 
approaches [16, 17] mainly use support vector machines 
[18] or artificial neural networks [8, 14] including deep 
learning architectures [19]. Typically, these methods can 
reach an accuracy of approximately 85–95% [8, 14, 17, 
18]. Some methods are sensitive to imbalanced data [20]. 
Long-short term memory networks (LSTM) [12–14, 21–
24] or conditional random fields (CRF) [16, 25] are effi-
ciently applied to the task of named entity extraction. The 
architecture of neural networks can be modified accord-
ing to the particular task of CNER [26–28].

Recently, BERT (Bidirectional Encoder Representa-
tions from Transformers) and derived approaches have 
demonstrated high performance in several named entity 
recognition tasks, especially in the domain-specific area 
of materials science [29]. Big Data (a pre-training corpus 
containing about 8.8 billion tokens) and supercomputer 
(the Bridges-2 supercomputer at the Pittsburgh Super-
computing Center) were used to achieve high perfor-
mance of recognition [29].

Computational machine learning approaches require 
text preprocessing followed by the generation of vec-
tor-based or sparse word text representation (one-hot 
encoding). The accuracy of CNER, to some extent, is 
dependent on the completeness of the corpus that was 
used to create the set of vectors and its relevance to a 
particular task (i.e., chemical named recognition, biologi-
cal named recognition, the search of chemical-biological 

associations, etc.). There is a constant need in develop-
ment of approaches providing possibility of their use by 
many researchers in the bridging field of chemoinfor-
matics including medicinal chemistry, computational 
biology, drug discovery, material science, etc. The new 
methods aimed at easy-to-use, accurate and fast CNER 
are still in demand [16].

Our study represents the new approach for CNER in the 
texts of scientific publications based on the naïve Bayes 
classifier (NBC). We previously evaluated the applicability 
of an in-house developed NBC for predicting the biologi-
cal activities of chemical compounds and estimating viral 
drug resistance [30]. Originally developed multilevel neigh-
bourhoods of atoms (MNA) descriptors were used for the 
representation of chemical structures. However, further 
development of the method allows us to use short peptide 
and nucleotide sequences (represented by a sequence of 
symbols) in our algorithm [30]. These results demonstrated 
the applicability of the NBC approach to the classification 
of sequences according to a certain task. We demonstrated 
that our approach can be applied for prediction even in the 
case of highly imbalanced datasets [30, 31].

A newly developed approach based on NBC is aimed 
at the recognition of CNEs and their classification into 
types (trivial, systematic, etc.) in the abstracts of scientific 
publications based on the set of n-grams of length from 
one to n symbols (the so-called multi-n-grams), gener-
ated for each symbol of a text. We have built an applica-
tion that can perform colouring of the text fragments that 
were recognized as belonging to CNEs and various types. 
We evaluated the accuracy of CNER on the large, labelled 
corpus of CNEs freely available via the internet (CNEM-
DNER). Additionally, we tested our method in an appli-
cation for CNER of potential anti-SARS-CoV-2 agents. 
We used a collection of texts relevant to SARS-CoV-2 
main protease (Mpro) inhibitors. CNEs were extracted 
from the texts, and the accuracy of extraction was veri-
fied using automated and manual analysis. Based on the 
CNE extraction procedure, we were able to identify a set 
of entities related to the chemical compounds assayed 
against SARS-CoV-2 Mpro inhibition, and for some of 
them, inhibitory activity against Mpro was confirmed.

Material and methods
Text corpus
To perform CNER, we used the freely available cor-
pus CHEMDNER [17]. CHEMDNER contains 10,000 
abstracts. CNEs are labelled by an expert for each 
abstract. CHEMDNER consists of over 80,000 labelled 
named entities of chemical compounds for over 19,000 
unique named entities [17]. CHEMDNER contains a set 
of texts compiled based on NCBI PubMed [32] abstracts, 
in which CNEs are represented by the position of the 
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first and the last symbol in the text. In our study, we used 
annotation for the labelled texts that assigns the chemical 
named entities to one of the following types: “Abbrevia-
tion” (mainly abbreviations and acronyms), “Systematic” 
(IUPAC names of chemicals), “Formula” (the formula in 
the text that is associated with the CNE), “Family” (fam-
ily of chemicals), and “Trivial” (trivial names of chemicals 
and trademark names) [17]. The “non-CNE” type was not 
arranged to any CNE and represented any other fragment 
of text (FoT). Additionally, we merged all CNEs belong-
ing to different types into one, chemical named entity 
(“CNE”). Examples of the CNEs of each type are provided 
in Table 1.

CHEMDNER was tokenized. We used the Python 
NLTK WordPunkt tokenizer [33]. All the types denoted 
above were arranged into four FoT variants of FoT by 
the context window: the central token (the so-called tar-
get token) and the FoTs obtained by concatenating one, 
two, or three tokens before and after the target token 
(see Fig. 1a). The set of FoTs prepared for CHEMDNER is 
available in the Supplementary Materials in SDF format 
(Additional file 1). We built the set of descriptors by shift-
ing target tokens one by one. If the obtained FoT does 
not belong to any type, it is assigned to the "non-CNE" 
type [17]. Then, for each set of tokens belonging to a par-
ticular type, we generated a set of n-grams (the so-called 
multi-n-grams), which are continuous sequences of one 
to n symbols from a token. We used five types of n-grams 
with n values from one to five (see Fig. 1b).

The algorithm of named entity recognition
The CNER algorithm is based on the NBC approach 
implemented in the Prediction of Activity Spectra for 
Substances (PASS) software [34]. The standard usual 
NBC is a linear classifier:

where a are the coefficients, xi = 1 or xi = 0 for the i-th 
feature (descriptor) of the classified object, and b is the 

if a′x > b thenClass1 elseClass2

Table 1  Examples of chemical named entities belonging to 
particular types

Type An example of A chemical named entity

Abbreviation Mtx

Systematic Anthracene, phenylenediamine

Formula H2O2

FAMILY Flavonoids

Trivial Haloperidol

Chemical Named Entity 
(CNE)

Anthracene, phenylenediamine, haloperi-
dol, H2O2, Mtx, flavonoids

Non-CNE Quarantine

Fig. 1  a The types are arranged for each variant: target token and a set of tokens before and after the target token; b an example of a set of 
multi-n-grams with n = 5 generations
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threshold value. Unlike linear regression or any other 
similar methods, the NBC coefficients are not the result 
of optimization, but they are calculated directly based 
on the training dataset. According to the naïve Bayes 
approach, the a posteriori probability P(C|F) that the 
FoT F  , which is represented by the set {g1, . . . , gm} of m 
descriptors, the n-grams gi , belongs to type C satisfies the 
equation:

where P(C) is the a priori probability of type C and 
P
(

C|gi
)

 is the conditional probability of type C for a par-
ticular descriptor, n-gram gi.

The explanation of this expression is quite clear: the 
logarithm of the a posteriori likelihood ratio is the sum of 
the logarithm of the a priori likelihood ratio and the sum 
of individual descriptor contributions. If the type of FoTs 
is not dependent on the n-gram gi , then P

(

C|gi
)

= P(C) , 
and the contribution of the n-gram gi to the sum is zero. 
The expression in the curly brackets is the value of coeffi-
cient ai in the standard NBC.

However, this simple result of the usual naïve Bayes 
approach has a significant well-known disadvantage: the 
contribution of some descriptors, for which the conditional 
probability of activity is too close to 0 or 1, is too large and 
suppresses all other terms of the sum. The PASS algorithm 
uses the so-called arcsine Fischer transform instead of 
ln[p/(1− p)] . The shape of ArcSin(2p− 1) coincides with 
the shape of ln[p/(1− p)] for almost all values of p, but the 
ArcSin(2p− 1) values are bounded by the values ±  π/2. 
The accuracy of the PASS prediction also improved after 
changing the sum by the average value. The a priori likeli-
hood ratio is constant, does not contain information about 
a specific recognized FoT, and can be omitted.

The naïve-Bayes CNER algorithm is based on the specific 
B-statistics, which are calculated according to the following 
expressions:

where N  is the number of FoTs (tokens) in the training 
set and Nk is the number of FoTs belonging to the type 
Ck.

ln

[

P(C|F)

1− P(C|F)

]

∼= ln

[

P(C)

1− P(C)

]

+
∑m

i=1

{

ln

[

P
(

C|gi
)

1− P
(

C|gi
)

]

− ln

[

P(C)

1− P(C)

]

}

,

P(Ck) =
Nk

N
,P

(

Ck |gi
)

=
Nik

Ni
,

S0k = 2P(Ck)− 1, Sk = Sin
[

∑m

i=1
ArcSin

(

2
(

Ck |gi
)

− 1
)

]

,

Bk =
Sk − S0k

1− Sk · S0k
,

We evaluate the recognition accuracy based on the leave-
one-out cross-validation (LOO CV) and fivefold cross-val-
idation (5-F CV) procedures using the invariant accuracy 
(IA) estimates [34]. IA reflects the probability that the esti-
mate E(FoT) assigns the higher value to a randomly selected 
positive example FoT+ than to the randomly selected nega-
tive example FoT-. The IA coincides with the AUC (popular 
in ML the Area Under the ROC Curve), but has a simpler 

and clearer definition:

where #[x] is the number of cases x. IA is calculated for 
all pairs of positive and negative examples in the valida-
tion dataset.

During the execution of the LOO CV procedure, poly-
nomial estimates of the distributions of B-statistics for 
the CNE and non-CNE classes are calculated, and on this 
basis, estimates of the probability Pc of belonging and Pnc 
of not belonging to CNE are constructed as functions of 
B-statistics.

CNER was performed based on the values of Pc and Pnc 
after determining the threshold (for details, please see 
the “Results and Discussion” section).

Automated validation of CNER was performed using 
a set of scripts (Python 3.7.4) that were built to perform 
automated queries to the PubChem and ChEMBL data-
bases. The scripts are provided in the Supplementary 
Materials (Additional file  2). The values of accuracy are 
provided in the “Results and Discussion” section.

The developed approach was tested on a CNER task 
using the CHEMDNER corpus and in retrieving CNEs of 
potential SARS-CoV-2 inhibitors. The values of balanced 
accuracy and F1-score for CHEMDNER were evaluated 
using 5-F CV. To test our approach on the task of CNER 
for potential anti-SARS-CoV-2 agents, we created a test 
set as described below.

The text collection  SARS-CoV-2 Mpro set  was com-
piled based on the text query that included all synonyms 
of SARS-CoV-2 main protease (Mpro) and the term 
“inhibitors”. The synonyms of Mpro were retrieved from 
UniProt [35]. The full text of the query and a set of texts 
are provided in the Supplementary Materials (Additional 
file  2). In total, we collected 1,528 texts. The texts were 
processed using Python NLTK WordPunkt tokenizer 
yielding 484,676 tokens. We used the model built on 

IA =
#[E(FoT+) > E(FoT−)]

#[FoT+] · #[FoT−]
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multi-n-grams with a maximum of five symbols and a 
context window of one, as it was characterized by the 
highest accuracy values. The performance of the model 
was estimated semiautomatically using an iterative mul-
tistage procedure.

Results and discussion
We evaluated the most suitable parameters for high accu-
racy of CNER using NBC based on IA values. The highest 
IA values were achieved with context windows one and 
two, i.e., one (two) token before and one (two) token after 
the target token (see Fig. 2) depending on the class. For 
the systematic class, the highest IA values are obtained 
for context window one, multi-n-grams with  n = 5 
(IA = 0.988), and context window two, multi-n-grams 
with  n = 7 (IA = 0.992), and the difference in accuracy 
values for these parameters is insignificant. For the class 
Trivial, the highest IA value was achieved for the fol-
lowing parameters: context window one, multi-n-grams 
with n = 7 (IA = 0.984). Figure  2 shows that the values 
of IA increase along with an increment of the maximal 
context window up to two tokens before and two after a 
target token for the class Systematic; however, this is not 
the case for the class Trivial, for which the highest IA 
values were obtained for context one. The highest aver-
age IA values can be achieved for the following param-
eters: context window one and multi-n-grams with n = 5 
(IA = 0.986); almost similar values of IA can be obtained 
with context window two and n = 7 (IA = 0.988). There-
fore, the IA values do not grow dramatically with an 
increase in the context window of more than one token 
and multi-n-grams of more than five symbols. These 
observations allow us to conclude that a combination 
of a context window, one token before and after a target 
token, and maximum multi-n-grams of five can be used 
to achieve the highest accuracy of CNER based on the 
naïve-Bayes approach, and it provides reasonable compu-
tational complexity.

The IA values and balanced accuracy (BA) of CNER for 
various classes obtained in leave-one-out-cross-valida-
tion are given in Table 2. The IA, sensitivity (recall), pre-
cision, specificity, and BA values for various thresholds 
of B-statistics are provided in the Supplementary Materi-
als (Additional file 3).

We surmise that the decrease in accuracy for n-grams 
of seven or more symbols may be associated with the 
high uniqueness of such long n-grams in the training set.

These results may also be associated with the peculi-
arities of the text fragment formation: the higher number 
of tokens arranged to the type may lead to difficulties in 
recognizing the features of the target token. At the same 
time, a minimal context of one token before and after the 
target token can help consider whole words or the parts 

of terms that can point to a chemical named entity, such 
as “inhibitor”, “drug”, “chemical”, and “substance”.

We should emphasize that the number of tokens of the 
“NON-CNE” type is approximately 50 times higher than 
the number of tokens of types “Systematic” and “Trivial”. 
The results of Table 2 show that the data imbalance does 
not influence the values of accuracy IA. Similar results 
we obtained earlier for the Bayes-based approach applied 
to the prediction of HIV resistance [20]. Based on the 
interpretation of accuracy for “CNE” and single, com-
plex substance NEs, we can propose that CNEs can be 
extracted from the texts of abstracts for further analysis 
using the prediction results.

Utilizing naïve-Bayes approach for CNER, we investi-
gated the relationship between recall (sensitivity), preci-
sion, specificity, and balanced accuracy for the context 
window of one and multi-n-grams with an n value of one 
to five for the CHEMDNER corpus.

Figure  3 shows the relationships between the values 
of accuracy metrics (precision, recall, specificity, BA) 
and  B-statistics for the “Systematic” and “Trivial” types 
(the most represented classes in the training set), CNE, 
and non-CNE type. The relationship between the accu-
racy metrics and  B-statistics for all other types is pro-
vided in the Supplementary Materials (Additional file 3).

As shown in Fig. 3, the recall and BA values have simi-
lar patterns of curve growth and decline, while the pat-
terns of recall and precision curves are different. In 
particular, the precision curve increases while the recall 
curve decreases, and vice versa. It is obvious and occurs 
because the number of false-positives decreases while the 
number of false-negatives increases. A small number of 
positive samples (Systematic and Trivial types in Fig. 3a, 
b) in the training set may explain the more flattened pat-
tern of the precision curve. Comparison of the curve 
growth and decline patterns reveals that they are not 
related to any chemical named entity and provides the 
opportunity to compare accuracy metrics. For instance, 
for Trivial and Systematic types, the precision curve 
character changes significantly depending on the thresh-
old, while for the non-CNE type, the situation is different. 
It allows making a conclusion that the precision is rather 
sensitive to the imbalance of the data, while sensitivity 
(recall), specificity, and balanced accuracy are not sensi-
tive to the data imbalance. Another feature of precision 
is its sensitivity to the threshold choice (see Fig. 3). When 
a method is designed to extract information on chemi-
cal named entities from texts, the values of specificity 
and sensitivity (recall) are essential for validation because 
they help estimate the proportion of false-positives. A 
method with high specificity and sensitivity (recall) val-
ues provides the possibility to extract the correct chemi-
cal named entity based on the estimates of probabilities 
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Fig. 2  The relationship between length of an n-gram, context window, and accuracy of CNER: a for class “Systematic”, b for class “Trivial”, and c 
average IA for all classes
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that indicate belonging to CNE and non-CNE as a con-
sensus result.

Our CNER algorithm also allows evaluating each sym-
bol in an FoT. A set of n-grams including a particular 
position in the FoT is used. In Fig.  4, for the letter "o" 
in the token "cyclohexane", the set of n-grams {O, LO, 
OH, CLO, LOH, OHE, YCLO, CLOH, LOHE, OHEX, 
CYCLO, YCLOH, CLOHE, LOHEX, OHEXA} with 
n = 5 is used for estimation. The values Pc = 0.915 and 
Pnc = 0.002 are calculated for the letter "o" in the token 
"cyclohexane" for class "SYSTEMATIC". On such bases 
in our naïve-Bayes CNER approach, the colouring of 
FoTs is used. The colour of the letter corresponds to light 
green for Pc = 1 (Pnc = 0), light red for Pnc = 1 (Pc = 0), and 
blue when Pc and Pnc are both close to zero.

Chemical named entities can be extracted after tokeni-
zation of texts and making a prediction for each token 
based on the values of Pc and Pnc. Extraction of a chemi-
cal named entity can be performed by concatenating the 
tokens predicted to belong to a CNE class.

Table 2  Accuracy of chemical named entity recognition using 
the naïve-Bayes approach based on the representation of texts 
using n-grams equal to five symbols and a context window of 
one token before and after analysis

* —N is the number of fragments of texts used for training
** —R is the ratio of the number of all tokens to the number of tokens

belonging to a certain type, indicating a measure of dataset imbalance
*** —IA invariant accuracy

Type N* R** IA***
(loo cv)

Abbreviation 12,506 118 0.99

Formula 13,466 110 0.99

Family 19,017 78 0.97

Systematic 32,510 46 0.99

Trivial 25,140 59 0.98

CNE 102,639 14 0.98

Non-CNE 1,480,509 1.01 0.98

Fig. 3  The relationships between the values of accuracy and B-statistics for the types: a “Systematic”; b “Trivial”; c “CNE”; d “non-CNE”
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Validation of the naive‑based approach in the task 
of extracting chemical named entities
Extracting chemical named entities based on the CHEMDNER 
corpus
We checked the applicability of our approach for extract-
ing chemical named entities and tested it in a case study 
of CNER extraction using CHEMDNER.

To extract chemical named entities, we ought to deter-
mine the best strategy for extracting chemical named 
entities by a naïve Bayes-based approach.

First, we evaluated the threshold for extracting chemi-
cal named entities based on the recognition results. We 
calculated a set of values (Pc-Pnc)  that corresponds to 
the highest accuracy of distinguishing tokens that belong 
and do not belong to CNE. The value of the threshold 
was obtained empirically. In particular, we evaluated the 
sensitivity (recall), precision, specificity and balanced 
accuracy for each threshold value using five-fold cross 
validation. Then, we selected the threshold of 0.3 because 
it was associated with an optimum combination of values 
of sensitivity (recall), precision, specificity and balanced 
accuracy.

Then, we extracted named entities as the concatenated 
sequence of tokens with  (Pc-Pnc)  above  the T value. To 
improve the extraction procedure, we applied some filters 
aimed at exclusion of tokens that obtain high values of (Pc-
Pnc)  because they are overrepresented in the training set 
(for instance, numerical values, single brackets, etc.). In 
addition, the named entities with incorrect encoding were 
removed from the set of extracted CNEs, disregarding the 
prediction results. The set of filters is provided in the Sup-
plementary Materials (Additional file 4).

The values of precision, sensitivity (recall), specificity, and 
balanced accuracy for CHEMDNER were evaluated using 
five-fold cross-validation. The files created for CHEMDNER 

is provided in in the Supplementary Materials (Additional 
file 5). For the CHEMDNER dataset, the sensitivity (recall) 
was 0.95, precision was 0.74, specificity was 0.88, and bal-
anced accuracy was 0.92. These values of accuracy represent 
the approximate performance of recognition for the whole 
chemical named entities, not their parts.

Extracting named entities of potential anti‑SARS‑CoV‑2 
agents
Text and data mining approaches are very helpful in 
extracting information relevant to pathological pro-
cesses in the human body, disorders, side effects of 
drugs, etc. Therefore, we suppose that it is important to 
test the applicability of our approach for solving prac-
tical tasks that may have a high clinical and biological 
impact of current interest. We investigated the possibil-
ity of extracting named entities of chemicals that can 
inhibit SARS-CoV-2 main protease (Mpro) and slow 
down COVID-19 progression. We chose to extract 
inhibitors of SARS-CoV-2/COVID-19 as a case study 
because of the availability of large collections of texts 
relevant to SARS-CoV-2 studies. We suppose that an 
analysis of the chemical names extracted from texts 
relevant to the SARS-CoV-2 Mpro inhibition can help 
to identify some trends in the particular chemical com-
pounds, their classes and families that are most com-
monly tested against SARS-CoV-2 Mpro.

We extracted a total number of 8,071 named enti-
ties corresponding to 2,649 unique CNEs. Then, we 
calculated the precision value for the extracted exam-
ples using automated annotation followed by a manual 
inspection. First, we performed automated queries of 
the PubChem [36] and ChEMBL [37] databases. Such que-
ries allowed us to estimate the number of true-positive sam-
ples automatically. Then the results of automated queries 

Fig. 4  An example of chemical named entity extraction based on naïve-Bayes estimations
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were checked. In total, 4,374 named entities were found in 
the databases correctly (1,201 CNEs without duplicates). 
For those CNEs that were not found in the databases we 
performed a manual annotation of extracted named entities 
classifying them onto CNE and non-CNE. Manual exami-
nation of retrieved CNEs allowed us to identify additionally 
1,407 NEs extracted correctly (507 CNEs without dupli-
cates). Based on the results of manual and automated vali-
dation, we calculated precision for the SARSCoV-2 Mpro set 
which was 0.72.

During a manual inspection of the entities recognized 
as belonging to CNEs according to naïve-Bayes CNER, we 
noticed that some entities were identified correctly but were 
not found in the PubChem and ChEMBL databases. Some 
of them (1%) were identified as CNE by the naïve-Bayes 
algorithm, but they were not found in the databases because 
of misprints (for instance, such named entities include 
"hydroxybenzoagte" (the correct name: hydroxybenzoate) 
and "dithiazone" (the correct name: dithizone). Another 
part consisting of 1% found entities were codes of chemi-
cal compounds provided in the publication and therefore 
had the context indicating that the entity is CNE. Approxi-
mately 6% were recognized but were not found in PubChem 
because they belong to chemical families. The naïve-Bayes 
model was based on the merged class CNE, which includes 
chemical families; therefore, they were recognized by naïve-
Bayes approach but, naturally, were not found in PubChem. 
Examples of such named entities include “ginsenosides”, 
“flavonoids”, “triterpenoids”. Chemical named entities that 
are natural compounds have not been found via automated 
queries of the PubChem database. The names of bioactive 
peptides and incomplete chemical named entities as well 
as all other terms were regarded as false-positives. The 
extracted CNEs are provided in the Supplementary Materi-
als (Additional file 4).

Manual analysis of the true-positive chemical named 
entity mentions allowed us to identify several names of 
chemical compounds that were evaluated for inhibition 
of SARS-CoV-2 (for instance, hydroxychloroquine, chlo-
roquine, quercetin, rutin, curcumin, darunavir, saquina-
vir, and flavonoids).

Although chloroquine and hydroxychloroquine are 
the most thoroughly investigated drugs and therefore 
appeared in the set of chemical named entities extracted 
from the texts collected by a query associated with SARS-
CoV-2 Mpro, they were considered ineffective after a set 
of studies [38]. Quercetin was experimentally tested for 
its activity against SARS-CoV-2 Mpro and demonstrated 
inhibitory activity [39]. Flavonoids represent a group of 
natural compounds (secondary plant metabolites) that 
are widely discussed in the scientific literature and are 
considered to have anti-inflammatory effects and the 
ability to modulate cytokines [40]. The inhibitory effect 

of some flavonoids (tangeretin, gardenin B) on SARS-
CoV-2 was demonstrated [40]. The anti-inflammatory 
activity and inhibitory activity of dihydromyricetin on 
SARS-CoV-2 Mpro were evaluated in a FRET assay (fluo-
rescence resonance energy transfer) [41]. It was shown 
that the half-maximal inhibitory concentration of SARS-
CoV-2 Mpro by dihydromyricetin reached 1.76  µM. 
Additionally, the authors [42] confirmed the activity of 
dihydromyricetin on the proteins included in the TGF-β 
1/Smad pathway, which are responsible for the develop-
ment of pulmonary fibrosis.

These results demonstrate the applicability of the 
Bayes-based CNER approach to the extraction of CNEs 
in the text of abstracts relevant to a particular task and 
therefore allow the scientific community to enrich the 
knowledge about potential chemical compounds effec-
tive against particular targets and can be used for the 
treatment of specific diseases, including novel humanity 
threats such as COVID-19.

A place of the naïve‑Bayes CNER among other methods
Texts of publications represent low-formalized data, and 
their classification may be difficult even for experts in the 
field. In contrast to approaches that take any semantical or 
grammatical features of a token, our method takes the text 
data as input without any additional processing into parts of 
speech and other grammatical or semantic features.

Many various artificial intelligence (AI) approaches 
aimed at chemical and biological named entity recogni-
tion have been developed [15, 18, 21]. Most approaches 
that have been under recent development for several 
years are based on the usage of neural networks with 
different variants of long-short term memory (LSTM) 
architecture or conditional random fields (CRF) [16, 42].

Many NER algorithms based on machine learning use 
discriminative probabilistic graphical model, a particu-
lar example of which are conditional random fields (CRF) 
[43]. As an input, CRF based models require a set of 
parameters for sequences of tokens. Our previously devel-
oped approach for CNER based on CRF allows extrac-
tion of chemical named entities with precision 0,91 and 
recall 0,87 [16, 42]. Tang and colleagues [44] performed 
a comparison of CRF-based and structured support vec-
tor machines (SSVM)-based CNER model performance. 
Using the same set of features, SSVM-based method dem-
onstrated close performance comparing to CRF-based 
one: the values of precision were 0.88 and 0.89 and recall 
0.83 and 0.81, respectively.

Some algorithms are based on deep learning meth-
ods and use neural networks (NN) with multiple layers. 
Common architecture in such tasks is a variety of recur-
rent neural networks—long-short term memory (LSTM). 
A modification of the LSTM with forward and back 
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propagation of the signal is used—bidirectional LSTM 
(BiLSTM) is typically used for NER. LSTM architecture 
can be used in combination with some other techniques. 
In the study by I. Korvigo and co-authors [19] word- and 
character-level embedding was used to describe texts. 
While trained on CHEMDNER corpus, the model reached 
precision and recall 0.89 and 0.89 for CNER, respectively. 
In the other study, the combination of BiLSTM and CRF 
was used [45]. The authors provide values of precision and 
recall for two models: CRF-BiLSTM (CHEMDNER: pre-
cision 0.92, recall 0.89) and CRF-BiLSTM with attention 
layer (CHEMDNER: precision 0.92, recall 0.90).

Using pre-trained models, such as the mentioned above 
NN-based BERT, may improve the performance of NER 
algorithm. To increase the accuracy of recognition in bio-
medical text mining tasks, BioBERT was developed [46]. 
The authors compared the performance of their model 
with BERT. The precision corpus for BioBERT was 0.92 
compared to 0.91 (BERT), recall 0.91 compared to 0.89 
based on CHEMDNER.

Most AI-based approaches initially convert text into 
vectors or use sparse word text representation created 
with preprocessing of a text corpus, and vector prepara-
tion (for instance, such approaches include word embed-
ding preparation or the one-hot-encoding technique). 
It should be noted that the performance of CNER using 
the naïve-Bayes approach, in general, is comparable with 
most of earlier published methods [16, 18, 22–25], while 
it is slightly lower comparing to some other approaches 
based on the results of fivefold CV [19, 45, 46].

The presented method is simple for application and it does 
not require re-training after enlargement of the corpus trans-
formation into vectors. The latter feature provides the ver-
satility of our method in its application to very different text 
styles and language peculiarities, which can also include some 
specific changes in the language grammar and lexical features 
that can occur during natural evolution of language.

It should be noted that we evaluated the accuracy of 
CNE extraction in addition to the accuracy of a particu-
lar token belonging to the specific class. Therefore, texts 
relevant to various queries can be processed efficiently 
using the developed naive-based approach. Extraction of 
novel chemical entities may be rather helpful for the pur-
poses on novel drug design including both experimental 
studies and cheminformatics approaches, virtual screen-
ing that represent a group of powerful approaches for 
exploring large chemical space [4, 47].

Conclusions
We developed a new naïve Bayes classifier approach for 
extracting chemical named entities from texts of scien-
tific publications. The features that we used included the 
sequential tokens merged by three: a “target token”, one 

token displaced in the text before and one token after the 
target token. Text strings collected from merged tokens 
are represented as a set of multi-n-grams, consisting of 
one to five symbols. The algorithm provides an estimation 
of the probability for each token belonging to the follow-
ing classes: “Abbreviation”, “Family”, “Formula”, “System-
atic”, “Trivial”, “CNE” (an integrated class that includes the 
aforementioned classes), and “non-CNE”. Our approach 
allows the prediction of a token belonging to the classes 
with an invariant accuracy of 0.96–0.99.

The presented approach uses neither linguistic basis, nor 
typical handling for standard natural language processing 
approaches. The approach is based on the representation 
of text as a set on multi-n-grams, which are similar to sub-
structural descriptors of molecules in (Q)SAR studies. The 
developed method is based on the naïve-Bayes approach 
that uses the sect of n-grams and the statistics calculated 
from the set of n-grams. The set of multi-n-grams can be 
enriched easily that provides fast CNER.

The extraction of CNEs is based on the prediction 
of each token to belong to the class CNE, the selection 
of tokens belonging to CNE based on the predefined 
threshold of probability values, and the further concate-
nation of selected tokens. We have applied our approach 
for a task of retrieving chemical named entities of poten-
tial inhibitors of SARS-CoV-2 Mpro as compounds that 
can slow down COVID-19 progression. As a result, we 
extracted 2749 unique chemical named entities and 
thoroughly evaluated the correctness of chemical named 
entity recognition. We thoroughly analysed extracted 
named entities, and for some of them, the experimental 
confirmation of their SARS-CoV-2 Mpro inhibition was 
found, and their role as anti-SARS-CoV-2/COVID-19 
agents was discussed.
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