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Abstract
The current tutorial describes why forest plots are needed for an effective com-
munication of covariates effects, how they are constructed, and how they should 
be presented. Simulation- based methodologies allowing the user to evaluate the 
marginal impact of changing one covariate at a time or by considering the joint 
effects of correlated covariates are introduced along with graphical tools for an 
optimal assessment of the covariate effects. The R package coveffectsplot and an 
associated R Shiny application are provided to facilitate the design and construc-
tion of forest plots for the visualization of covariate effects. All codes and materi-
als are available on a public Github repository.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Various methodologies have been used to assess covariate effects in pharmacomet-
rics projects. There is currently a need to develop software framework and work-
flows for producing and interpreting covariate effects/range of possible exposures.
WHAT QUESTION DID THIS STUDY ADDRESS?
A set of workflows for assessing covariate effects are proposed with the goal of 
clearly communicating the underlying methodology used for simulations along 
with an R Shiny application that can facilitate the presentation of results and 
inform potential decisions regarding dose adjustments in subpopulations of 
interest.
WHAT DOES THIS STUDY ADDS TO OUR KNOWLEDGE?
A simulation- based methodology allowing the user to evaluate the impact of mar-
ginal effects changing one covariate at a time or by taking into consideration the 
joint effects of distributions of correlated covariates is introduced along with an 
associated R package that include an R Shiny application to streamline the design 
of plots that help with the communication of results.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The proposed software framework is expected to standardize and streamline the 
assessment and interpretation of covariate effect which may in turn accelerate 
the execution of projects due to better communication within drug development 
teams and with regulatory agencies.
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INTRODUCTION

An important focus of pharmacometrics is to understand 
variability in pharmacokinetic (PK), pharmacodynamic 
(PD), and clinical response. Covariate analyses are per-
formed to identify sources of variability in model param-
eters to support drug development decisions, such as dose 
adjustments in subpopulations of interest to optimize 
efficacy and safety of treatments, or to allow prediction 
(interpolation or extrapolation) of outcomes under new 
experimental conditions, such as untested doses, regi-
mens, populations, or disease factors.

Effective communication of quantitative findings was 
covered in a previous tutorial with an emphasis on under-
standing the targeted audience, speaking an understand-
able language, and provided clear data that may support 
drug development decisions.1 For an in- depth review of ef-
fective visual communication, refer to Vandemeulebroecke 
et al.,2 in which the following three principles of success-
ful communication were presented: a purpose, a clear data 
presentation, and an obvious message.

The current tutorial describes the use of forest plots 
to communicate the impact of covariates in pharmacom-
etrics model and the preparation of those plots using the 
R package coveffectsplot.3 An R Shiny application with a 
user- friendly interface is introduced to facilitate the con-
struction of forest plots and to ease the potentially steep 
learning curve of producing quality graphics. Examples 
involving the impact of changing one covariate at a time 
or by considering full distributions of correlated covari-
ates are presented.

WHAT ARE FOREST PLOTS

Forest plots were initially used to display results of mul-
tiple clinical studies on a single plot, and subsequently 
used to display results of cross- study meta- analyses.4,5 In 
general, a forest plot contains a set of variables of interest 
stacked vertically, and, for each variable, a point estimate 
and associated intervals are displayed. The point estimate 
is relative to a reference value such that the relative im-
portance of each variable of interest can be compared. An 
example of a simple forest plot is presented in Figure  1 
whereby the variables of interest (weight and sex) are on 
the left side of the plot, each occupying a separate panel 
delimited by a gray rectangle with the covariate name in 
the middle. Each row within the panel represents a differ-
ent covariate value defined on the left axis tick marks (e.g., 
128 kg, 98 kg, male, etc.). The blue circles represent the 
point estimates for the effects of the covariate of interest 
and here the associated horizontal lines are the 95% con-
fidence intervals (CIs), relative to the reference subject. 

In the current example, the reference is a female subject 
with a body weight of 85 kg and the point estimate (1 by 
definition). The dashed vertical line represents the ratio of 
1.0 (the reference) and the gray area represents an area of 
clinical significance (e.g., 0.8– 1.25). The dashed line and 
gray area extend to all panels to help in setting a common 
visual reference. The beauty of a forest plot is the ease with 
which a reader can understand the data. The reader can 
quickly realize that extreme body weight values (i.e., 128 
and 56 kg) have an important effect on the area under the 
curve (AUC), whereas sex has a minor effect. Throughout 
the paper we will present several examples of forest plots 
where the presentation becomes more elaborate. For ex-
ample, adding a table with numerical values, showing 
multiple parameters at the same time (separated by facet 
or overlaid), and adding more text and explanations in the 
legends, titles, and captions.

WHY FOREST PLOTS ARE NEEDED

Although forest plots were historically used to present 
results from a cross- study meta- analysis, its application 
to illustrate the effect was mentioned in the Population 
PK Guidance.6 Menon- Andersen et al.7 suggested that 
the presentation of PK parameters using forest plots is es-
sential for supporting drug dosage decisions. The authors 
included examples of clinical pharmacology studies by 
providing PK parameters computed using noncompart-
mental analysis methods with a specific focus on drug– 
drug interactions and special populations (i.e., elderly 
population and renal or liver impairment). More recently, 
Xu et al.8 proposed a methodology that can be applied in 
the context of a population PK analysis using a full co-
variate modeling approach, where simultaneous CIs are 
studied and forest plots of covariates effects on model pa-
rameters are presented.

In particular, forest plots can provide the impact of 
many variables in a single display so that readers can 
quickly determine the relative impact of each variable of 
interest relative to the reference subject. Forest plots are 
essential for translating quantitative findings to interdis-
ciplinary team members and ultimately support drug de-
velopment and/or regulatory decisions. Forest plots can 
be created from post hoc parameters, observed data, or 
simulated results. Parameter uncertainty can be included 
alone or in combination with between- subject variability 
(BSV) using a full variance– covariance matrix, univariate 
standard errors, or nonparametric distributions. The se-
lection of variable values of interest can influence forest 
plots (e.g., minimum, maximum, 5th, 10th, 90th, and 95th 
percentiles). Thus, there is a need to develop a software 
framework to ease the production of the visual displays, 
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which in turn can facilitate the assessment and interpreta-
tion of covariate effects plots.

WHEN FOREST PLOTS SHOULD BE 
PRESENTED

Forest plots are most effective when the measure of interest 
in the plot is a clinically relevant parameter (e.g., maximum 
plasma concentration [Cmax], AUC, and clinical response) 
rather than a structural component of the mathematical 
model (e.g., clearance [CL], volume of distribution, and 
absorption rate constant). Forest plots should be presented 
as part of the simulation- based assessments of a pharma-
cometrics model. A common use- case is to create a forest 
plot to visualize and interpret the effect of covariates on 
exposure parameters once a final pharmacometric model 
with covariates is available. The simulations involved for 
the dataset construction as well as the creation of the forest 
plots itself can be time- consuming. As a result, the covef-
fectsplot package also includes complete R code workflows 
that help to standardize and to streamline the assessment 
and interpretation of (1) covariate effects and (2) range of 
possible exposures. This, in turn, can accelerate the execu-
tion and reporting of pharmacometrics projects.

HOW FOREST PLOTS ARE 
CONSTRUCTED

Simulation- based workflows are proposed in the current 
tutorial based on uncertainty of fixed- effect parameters, 
covariate distribution, and BSV. A graphical presentation 
of the impact of uncertainty (blue), covariate distribu-
tion, such as body weight (green) and BSV (red) on a PK 
parameter is presented in Figure  2. The contribution of 
uncertainty, covariate distribution, and BSV on individual 
clearance estimates are presented in the lower left panel, 
whereas the standardized clearance relative to a reference 

subject is presented on the lower right panel. The current 
tutorial covers in more detail how forest plots can be de-
rived by implementing the above information as part of 
simulation workflows. Consistent with the population PK 
guidance for industry,6 two simulation workflows are de-
scribed in the current tutorial to create forest plots:

1. Simulations based on uncertainty of fixed- effect pa-
rameters (example 1).

2. Simulations based on uncertainty of fixed- effect pa-
rameters and BSV to predict drug exposure in a future 
population (example 2) and in the context of a pediatric 
extrapolation (example 3).

The paper is organized first by presenting three exam-
ple applications, a brief discussion on tornado plots, and 
finally a more detailed section on the coveffectsplot R pack-
age usage as a communication tool. The Supplementary 
Materials include all the R code with the full details on 
the parameters used in the simulation, the computation of 
the exposure parameters and all data processing and plot 
codes to fully reproduce the presented results.

EXAMPLE 1:  FOREST PLOTS -   
SIMULATION APPROACH 
INCLUDING UNCERTAINTY OF 
FIXED - EFFECT PARAMETERS

As stated in the population PK Guidance for Industry,6 
the uncertainty in fixed- effect parameter estimates is 
accounted for in the simulations when the goal is to il-
lustrate the probability of the typical subject’s drug ex-
posure to reach or stay above a specific cutoff point or 
if one wishes to illustrate the effect of covariates. These 
types of simulations can also be used to evaluate the per-
formance of new dosing regimens for testing in future 
trials or to graphically illustrate the effect of parameter 
precision on the simulated PK profiles. Presenting the 

F I G U R E  1  Example of a covariate effect plot using the forest plot format. AUC, area under the curve.
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computed effects as forest plots facilitates the inter-
pretation of the relative importance of covariates on 
exposure.

Briefly, this approach consists in changing one co-
variate at a time while fixing others at their reference 
values and simulate concentration– time profiles with 
uncertainty on PK parameters. This approach allows the 
assessment of a single covariate at a time, which has tradi-
tionally been referred as “marginal effects” in statistics.9,10 
For continuous covariates, the effects at specific values of 
interest must be computed. A common practice is to use 
the 5th, 25th, 50th (median used as reference), 75th, and 
95th percentiles from the observed covariate distribution. 
In some cases, the minimum or maximum values of co-
variates may be considered, although caution should be 
made regarding potential outliers or aberrant values. For 
categorical covariates, all categories available in the data-
set are accounted for.

Care should be taken, as this approach may generate 
unrealistic combination of covariates (e.g., when body 
weight and age in pediatric population are varied inde-
pendently). The user should keep in mind that the primary 
purpose of it is to understand the relative importance of 

the marginal effects of covariates on the simulated expo-
sure parameter.

A simulations- based workflow for assessing the impact 
of covariates on drug exposure by performing simula-
tions with uncertainty of fixed- effect parameters only and 
changing one covariate at a time is presented in Figure 3 
(example 1). A two- compartment PK model with a first- 
order absorption defined with ordinary differential equa-
tions was used. The model included the effect of albumin, 
sex, and body weight on the apparent clearance, whereas 
body weight influenced the apparent volume of distri-
bution. Covariates were centered by median values of 
body weight (85 kg) and baseline albumin levels (45 g/L) 
and using the female category as the reference value. 
Parameter uncertainty for this model was represented by 
a variance– covariance matrix that included 15% relative 
standard errors on all parameters and correlations of 0.2 
between each pair of parameters. The proposed workflow 
is split into the following steps:

Step 1: A template dataset is constructed by varying 
one covariate at a time, while keeping other covariates 
consistent with the reference. The reference values 
are usually chosen as part of the modeling exercise, 

F I G U R E  2  Illustrating the impact of uncertainty, covariate distribution, and between- subject variability. CL, clearance; RSE, relative 
standard error.
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however, the user can change the reference values or 
categories before or after the simulation to better reflect 
the target population of interest. The template dataset is 
expected to include all the needed combinations of co-
variate values. For this example, the following covariate 
values were used:

1. Weight values at the 5th, 25th, 50th, 75th, and 95th 
percentiles (56, 72, 85 [reference], 98, and 128 kg, 
respectively).

2. Albumin values at 40, 45 (reference), and 50 g/L.
3. Sex categories: female (reference) and male.

This would result in having eight unique combinations 
of covariate values in the dataset template.

Step 2: A preliminary simulation is performed without 
uncertainty to verify that the model was coded properly and 
that results are as expected. Concentration– time profiles 
are simulated for all combinations of covariates generated 
in step 1 and exposure parameters of interest are derived 
(e.g., AUC, last measurable concentration, and Cmax).

Step 3: Concentration– time profiles are re- simulated 
this time including uncertainty on fixed- effect parame-
ters. The fixed- effect parameters are sampled from the un-
certainty distribution (i.e., variance– covariance matrix in 
this example) and the process is repeated multiple times 
(e.g., 1000 replicates). A total of 1000 times eight combina-
tions would require simulating 8000 PK profiles. Exposure 
parameters are then computed on each profile for each 

subject. A graphical display (e.g., boxplots) or descriptive 
statistics summaries of the computed exposures at this 
stage can be useful as an initial view of the simulation re-
sults. Standardized exposure parameters relative to refer-
ence patient values in each replicate are then computed. 
This will result in having a common value of one for all 
exposure parameters and enable the opportunity to appre-
ciate the distributions in term of ratio ranges.

Step 4: The standardized parameters are illustrated 
using density. In this example, the 90% ranges of the dis-
tributions are shaded in blue. These density plots can be 
simplified to improve the communication of results using 
forest plots as explained in the next step.

Step 5: The presentation of the distributions of un-
certainty on fixed- effect parameters is simplified using 
point estimates with intervals. Briefly, the 90% intervals 
are computed using the 5% and 95% quantiles and a data-
set that is compatible with the coveffectsplot package is 
produced. At this stage the main focus is to optimize the 
communication of results based on the various visual el-
ements of the plot:

1. Which exposure parameters to present: Presenting one 
or more exposure parameter together or separately? 
Here, only AUC is kept as a first simple example.

2. Order of presentation of covariates: Weight on top 
(widest range), albumin next, and sex last. We can 
notice that when weight increases AUC decreases, 
whereas when albumin increases AUC increases. 

F I G U R E  3  Example 1: Simulations based on uncertainty of fixed- effect parameters only. AUC, area under the curve; Clast, last 
measurable concentration; Cmax, maximum plasma concentration; PK, pharmacokinetic.
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There should be a common logic and rationale applied 
to all covariates.

3. Order of presentation of covariates values: Make sure 
the numerical order is respected (e.g., 56, 72, 98, and 
128 kg). Do we want to reverse the order for albumin 
given that the relationship is inverse?

4. A side table is included to enable the reader to know the 
exact values of the presented data. The user can choose 
to present the table on the right or below the forest plot.

5. The text for the legends to describe and inform the 
reader about what are the presented ranges (90% CI) 
and what are the reference areas and reference lines.

The coveffectsplot package enables the user to control 
every aspect of the presented intervals using R code or using 
a point and click interface via the included R Shiny app 
launched with the “run_interactiveforestplot()” command. 
The goal is to help the user to interactively design the plot 
by quickly trying multiple possible ways to present the data. 
Many iterations are needed before settling into a good plot 
and then the user can get the plot code from the app for full 
reproducibility.

EXAMPLE 2:  FOREST PLOTS -   
SIMULATION APPROACH 
INCLUDING BETWEEN- SUBJECT 
VARIABILITY

If the purpose is to predict the range of individual predic-
tions of concentrations or individual exposure in a future 
population or according to different experimental condi-
tions, then BSV should be added to the simulation frame-
work (in addition to the uncertainty on fixed- effect and 
random- effects parameters). Simulations that account for 
BSV and include covariate effects should be conducted 
in a population with realistic demographic variables and 
taking into account the correlation between random ef-
fects to avoid unrealistic parameter combinations in sub-
jects. Additional details are provided in the population PK 
Guidance for Industry.6 Demographic variables can be 
obtained from databases or generated by resampling with 
replacement of the individuals in the original study or by 
sampling the covariate distributions and their correlations 
in the target population.

A simulations- based workflow for assessing the range 
of possible drug exposures and the joint impact of covari-
ates on drug exposures in a future population is presented 
in Figure 4 (example 2). This example uses the same popu-
lation PK model as in example 1. The steps are modified to 
include reading in a database of available covariates rather 
than varying one covariate at a time and by including BSV 
and its uncertainty.

Step 1: A database of virtual population of subjects’ co-
variates distributions (N = 2000) is read and fed into the 
simulation. A pairs plot of the covariate distributions is 
presented to better visualize correlations and frequencies. 
In this case, PK profiles at specific covariate values can 
no longer be presented as now we have joint effects of 
the full distributions of the covariates. For example, the 
median and 90% prediction interval using quantile splits 
of the continuous covariates (e.g., below/above median, 
quartiles, or tertiles) can be presented. Even though we 
split by quartiles of weight, this is rather showing the joint 
effects of all covariates and BSV when we look from the 
weight angle and so on. Steps 2, 3, and 4 remain the same 
as in example 1 in Appendix S1 with the only difference 
being on representing results using splits/ranges of covari-
ate distribution rather than at specific value. In this case, 
the number of simulated profiles in each replicate is 2000 
(joint covariate distributions) times 1000 replicates for a 
total of 2,000,000 PK profiles. This requires significantly 
more computing time than example 1. Instead of a refer-
ence value, we represent the whole population as all sub-
jects which represent the full range of possible exposures 
when we simulate with BSV and uncertainty.

In step 5, standardized PK parameters are summarized, 
and the 90% intervals are presented using a forest plot. In 
this example, we show how multiple exposure parameters 
can be shown side by side with a table below it instead of 
on the right.

Based on the results presented in Figure  3 (simula-
tions with uncertainty on fixed- effect parameters only) 
and Figure 4 we can see that the body weight was the 
main covariate affecting the AUC and that the range of 
possible exposures is mostly affected by what quartile 
of weight you are in. To comment on the need for dose 
adjustments based on body weight we will need addi-
tional consideration regarding the safety and efficacy of 
the drug.

EXAMPLE 3:  FOREST PLOTS -   
SIMULATION APPROACH 
INCLUDING BETWEEN- SUBJECT 
VARIABILITY IN THE CONTEXT OF 
A PEDIATRIC EXTRAPOLATION

In this example, a population PK model derived from an 
adult population is used for extrapolation in a pediatric 
population. The population PK model included an allo-
metric function accounting for the effect of body weight 
on clearance and volume parameters with exponents of 
0.75 and 1, respectively. A virtual population of pediatric 
patients with weight/age/sex matched information was 
derived in step 1. The Centers for Disease Control and 
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Prevention (CDC) provides growth chart parameters at 
specific ages for boys and girls.11 The “rBCCG” function 
from the “gamlss.dist” R package is a random number 
generator for the Box– Cox– Cole– Green distribution. It 
is useful in our case here, because the CDC provides the 
values of the fitted parameters (L, M, and S) of this distri-
bution over age and this dataset is included in the covef-
fectsplot package as the wtage data object. We can simply 
plug the provided LMS values into “rBCCG” and simulate 
a virtual population of pediatric patients which takes into 
account correlation among age, body weight, and sex.12 
The covariate distribution (bottom left panel), along with 
the resulting weight/age/sex distribution effects plus BSV 
on exposure parameters are presented as a function of 
weight (top right) and age (bottom right) in Figure 5.

The complete step- by- step workflow is presented in 
Figure 6. Briefly, steps 1 to 5 are similar to those presented 
in example 2, with the exception that a simulation based 
on a realistic distribution of covariate values for extrapo-
lation purposes was used. Another possible consideration 
is illustrated in steps 3 and 4 whereby the PK profiles can 
be presented by a joint two- covariate quantile split (body 
weight quartiles and age median). This can generate splits 
with an unequal number of subjects reflecting that some 
combination will be more frequent than others. Here, 
we represent AUC and Cmax versus age and weight and 
a smoothed quantile regression band to help in under-
standing how much percent of the population is within 

reference limits versus age and versus weight. This can in-
form whether weight- based or age- based dosing should be 
used. At step 4, instead of density plots, we show horizon-
tal boxplots as an example, and at step 5, we illustrate how 
multiple exposure parameters can be represented in the 
same panel with different symbols. For specific applica-
tions, simulations and splits for specific rare populations 
may be generated (e.g., the malnourished children below 
5% percentiles at any age). Overall, the proposed approach 
is flexible and can be adapted to accommodate complex 
population splits based on one or multiple combination of 
factors that may be of clinical importance.

OTHER VISUAL REPRESENTATION 
METHODS (TORNADO PLOTS)

Tornado plots are used for assessing a change in param-
eter according to the range of the observed covariate. The 
low and high values of the covariate affecting the model 
parameters are used to determine the extent of change 
in the model parameter relative to the typical value. For 
example, a population with body weight values ranging 
from 50 to 90 kg with an allometric model on clearance 
(e.g., body weight/70 kg0.75) is expected to result in clear-
ance values 12% lower (ratio of 0.78) and 21% higher (ratio 
of 1.21) relative to a typical 70- kg subject, respectively. In 
tornado plots, covariates are listed vertically, and on each 

F I G U R E  4  Example 2: Simulations based on uncertainty, covariates distributions and between- subjects variability. AUC, area under the 
curve; BSV, between- subject variability; Clast, last measurable concentration; Cmax, maximum plasma concentration; PK, pharmacokinetic.
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row, a bar joining the effects of the low and high covari-
ate value (e.g., 0.78– 1.21 as per the above example) is pre-
sented. Traditionally, uncertainty is not shown, and rows 
(covariates) are ordered so that the largest bar appears at 
the top of the chart, the second largest appears second 
from the top, and so on.

Depending on how the tornado plots underlying 
data was generated it can present the marginal or joint 
effects of multiple covariates with individual post hoc 
or simulated random effects, with or without uncer-
tainty. Figure S1 presents an example of a tornado plot 
side by side with a forest plot showing the exact same 
data. Tornado plots and forest plots are general graphical 

techniques that can be used for various applications. 
In order to correctly interpret their meaning, a detailed 
documentation on how the shown bars or intervals were 
computed is needed.

THE COVEFFECTSPLOT 
R PACKAGE

The coveffectsplot R package aims to facilitate the commu-
nication of covariate effects by enabling the generation of 
clear graphical displays using interactivity and flexibility. 
It helps to layout one or multiple covariate effects on one 

F I G U R E  5  Example 3: Simulation of 
a realistic virtual population of pediatric 
subjects. AUC, area under the curve; 
CL, clearance; Cmax, maximum plasma 
concentration; PK, pharmacokinetic; 
PopCL, population clearance; PopV, 
population volume of distribution.

F I G U R E  6  Example 3: Assessing ranges of possible exposures by including distributions of covariates, BSV, and uncertainty for a 
pediatric extrapolation application for 2– 6 year old children. AUC, area under the curve; BSV, between- subject variability; CDC, Centers for 
Disease Control and Prevention; Cmax, maximum plasma concentration; PK, pharmacokinetic.
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or more model parameters with point estimates and in-
tervals presented in a tabular format on the side for com-
pleteness. Informative legends and annotation showing 
areas of interest and or reference lines can be easily edited 
and included.

The main package function forest_plot expects a data-
set with a minimum of seven columns with the following 
exact case- sensitive names:

paramname: A parameter name (e.g., AUC and Cmax).
covname: Covariate, reference or splits name (e.g., 
body weight, age splits, etc.).
label: A descriptive label of the covariate values that 
were used to compute the effects (e.g., 5 years, 12 kg, 
below median weight [40– 75](kg), …).
mid: The point estimate.
lower: The lower end of the computed interval.
upper: The upper end of the computed interval.
LABEL: The formatted text string that is presented in 
the table (not needed when using the R Shiny appli-
cation as it is generated automatically form the mid, 
lower, and upper).

Full documentation about the function use and exam-
ples can be found by running the command: “help(for-
est_plot).” The included supplementary materials walk the 
user through the step- by- step process of the simulations 
and construction of the datasets used as input for the cov-
effectsplot forest_plot function.

To ease the generation of the plot, all design aspects 
of the forest plot that can be configured interactively by 
invoking the R Shiny application included in the package 
by running one of these commands:

1. “run_interactiveforestplot(yourdataname)”: Launch the 
app with the dataset already available in the R session.

2. “run_interactiveforestplot()”: Launch an R Shiny appli-
cation without a dataset, the user can then navigate to a 
saved csv file to get to the data that will be used for the 
forest plot.

An example of the user interface after loading a built- in 
example dataset is presented in Figure 7.

The R Shiny application allows the user to easily con-
trol the inclusion or exclusion of parameters or covari-
ates, to control the order of presentation of parameters, 
covariates, and covariate value labels using “drag and 
drop” interactions. The application provides flexibility 
on formatting, with the possibility of changing font sizes, 
colors, ordering of legends, positioning of the facet strips, 
x and y axes titles, and more. The main graphical inter-
face options and features are presented in Supplementary 
Material S2 to S6. After selecting the style of presentation 
using point- and- click interactions, the user can get the 
underlying R code by clicking the “show code” button 
below the forest plot. This helps the user in the learning 
process of a complex function with many arguments and 
ensures that the results can be reproduced by rerunning 

F I G U R E  7  The R Shiny app user interface: inputs and table options tabs. CI, confidence interval; Cmax, maximum plasma concentration; 
CRCL, creatinine clearance; ESRD, end- stage renal disease.
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the code. Supplementary Material S7 show a screenshot of 
how this functionality works. Advanced R users, also have 
the capability to further fine tune the underlying “ggplot2” 
objects by asking the function to return a list of objects: 
forest_plot(…,return_list = TRUE).

The application includes a “how to” menu, which pro-
vides detailed information regarding data structure and 
links to the package vignettes that guide the user into step- 
by- step tutorials and examples. The coveffectsplot package 
version 1.0.2 was used for the generation of the forest plots 
examples presented in the current tutorial. The package 
source code is hosted on Github https://github.com/
smouk sassi/ covef fects plot. The package also includes ad-
ditional example use cases: PK/PD and exposure response 
not presented in this tutorial.

Throughout the examples, we did not discuss the R 
code related to the simulations, per se, data manipulation 
and summarization parts as these steps are not specific 
to the coveffectsplot package. Several excellent and well- 
documented R- based simulation tools with a lot of ma-
terials and tutorials that can be easily found online. The 
simulation engine used for all examples is all examples 
is the R package mrgsolve.13 The user has the freedom to 
bring in computed intervals data from any software or R 
code workflow available to him.

DISCUSSION

There is currently a need to develop software framework 
and code workflows for assessing and interpreting covari-
ate effects in pharmacometrics projects, as this is required 
in all pharmacometric projects submitted to regulatory 
agencies. Although the discussed techniques are common, 
and are already part of the pharmacometricians’ toolkits, 
there is currently a lack of software tools that can help to 
implement and automate all the required steps. The focus 
of the coveffectsplot package and associate R Shiny appli-
cation is to remove technical hurdles that can prevent the 
generation of covariate effects intervals and their presen-
tation as forest plots for an effective communication of 
covariate effects.

Consistent with the US Food and Drug Administration 
(FDA) guidance for industry on population PK analy-
ses,6 examples of simulations incorporating uncertainty 
on fixed- effect parameters only, or with BSV and uncer-
tainty are presented in the current tutorial. The workflow 
based on uncertainty of fixed- effect parameters only is 
less computer intensive and provides a quick overview on 
the relative importance of covariates effects on exposure 
parameters. The drawback of this approach is that non- 
plausible scenarios can be obtained by varying covariates 
one at a time. Although this approach can help in isolating 

the effects and relative importance of each covariate, a 
possible enhancement is to have values of interest con-
ditional on a subpopulation of interest (e.g., body weight 
cutoff within male and female patients and within age 
groups).

Simulations based on uncertainty of fixed- effect pa-
rameters, BSV, and uncertainty on BSV is considered 
more robust and realistic, as it provides the joint effects of 
BSV and multiple covariates based on a database of real 
patients or in a virtual population with correlated covari-
ates. The drawback of this approach is that it is computer 
and memory intensive and depends on the availability of a 
large distribution of covariates in the population. As a re-
sult, adequate planning of resources, optimization of code, 
and using modern, fast, and memory efficient tools, like 
the mrgsolve13 and data.table14 are essential when imple-
menting a simulations framework based on uncertainty of 
fixed- effect parameters, BSV, and uncertainty on BSV.

In this tutorial, we did not simulate with the residual 
error (and uncertainty on residual error) because the goal 
was not to understand the range of observed concentra-
tions in future populations. The proposed software frame-
work can be easily extended by enabling the residual error 
with or without uncertainty.

To be able to understand and interpret intervals pre-
sented in forest plots, all the details describing the meth-
odology and underlying simulations framework should be 
provided and the shown intervals need to be viewed in the 
context of the drug efficacy and safety.

In conclusion, the proposed simulation workflows 
have value and the coveffectsplot R package is expected to 
standardize and streamline the assessment and the com-
munication of the covariate effect in pharmacometric 
projects. The package’s purpose is to facilitate clear data 
presentation that can support an obvious message. This 
in turn can accelerate the execution of projects due to bet-
ter communication within drug development teams and 
efficient communication with regulatory agencies as evi-
denced by multiple submissions and approvals that have 
used this approach.15
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