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ABSTRACT: We provide the exact analytical form of diatomic
molecular orbitals, as given by the solutions of a single-electron
diatomic molecule with arbitrary nuclear charges, using our
recently developed method for solving Schrödinger equations.
We claim that the best representation of the wave function is a
factorized form including a power prefactor, an exponentially
decaying term, a modulator function on the exponential, and
additional factors accounting for nodal surfaces and the magnetic
quantum number. Applying our method, we have identified
unexpected extreme points along the potential energy curves,
hence revealing the limitations of the well-known concepts of
bonding and antibonding.

I. INTRODUCTION

Since the concept of orbital was proposed in the early days of
quantum chemistry, this concept has been widely accepted by
chemists as the most powerful theoretical tool to gain deep
insight into chemical problems. Although orbitals are based on
the independent single-electron picture, which is only an
approximation to the correlated many-electron picture
described by many-electron wave functions in atoms and
molecules, their concise, intuitive, and visualizable features
make them the most commonly used terminology in chemists’
routine discussions.
Among various orbitals introduced for different purposes,

the most successful ones are undoubtedly the atomic orbitals
(AOs) of hydrogenic systems. Rigorously defined as the
solutions of a single-electron Schrödinger equation (SE) with
spherical symmetry, each of these AOs can be analytically
written as a product of a radial function and a spherical
harmonic. For many-electron atoms with electron−electron
interactions, although one cannot separate variables to deduce
single-electron SEs, the clever idea of introducing electronic
screening and effective nuclear charge has allowed a reduction
to the hydrogenic picture where electrons fill into different
energy levels.1,2 The resulting AOs for many-electron atoms
capture the essential physics and have achieved enormous
success in explaining the electronic structure of elements in the
periodic table.
Yet, chemistry deals with molecules. Apart from under-

standing AOs, perhaps even more important for chemists is to
decipher the molecular orbitals (MOs). In contrast to atoms,
molecules display much greater complexity in the presence of
multiple electrons and nuclei. The idea of treating electron−
electron interactions as an effective screening as used in atoms
is not feasible for molecules due to the ambiguity of assigning

effective nuclear charges. It turns out that a plausible way is to
invoke a fictitious noninteracting system with an effective
potential. The resulting MOs can be generated by solving the
SE of that particular potential, either local or nonlocal, for
example, as has been practiced by the Kohn−Sham density
functional theory (KS-DFT)3 or the Hartree−Fock (HF)
theory, giving rise to different MOs associated with different
methods or different functional approximations in DFT. This
ambiguity of MOs can be once again attributed to the attempt
at using approximate orbitals to describe a correlated many-
electron wave function.
Nevertheless, for single-electron molecules, MOs can be

unambiguously defined. For diatomic molecules, in particular,
these MOs are named σ, π, δ, etc., in analogy with the s, p, and
d types for AOs, and have given tremendous inspiration to
chemists. In fact, they have become the most essential part of
modern chemistry textbooks.1,2,4 In contrast to the s, p, and d
orbitals whose analytical forms have been clarified, however,
the exact analytical forms of MOs remain a challenge. For
example, the MOs for the simplest molecular ion, H2

+, have
been studied intensively, but their compact analytical forms are
still elusive.5−19 Instead, these MOs are usually numerically
represented as linear combinations of atomic orbitals
(LCAOs).20,21

In this paper, we show that we can do better than basis
expansion by finding the exact analytical forms of all the MOs.
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In particular, we apply our recently developed method for
solving SEs to single-electron diatomic molecules and derive
the exact expressions for σ, π, δ orbitals and so on. For each
MO, our formula is in an exactly factorized form, i.e., casting
the wave function into a product of multiple factors resembling
the exact formula of an AO. This is in contrast to the
conventional LCAOs and other basis expansion methods that
decompose the wave function into a sum of infinite terms. Our
representation of MOs reveals their intrinsic analytical
structure and furthermore has proven to have computational
advantages, as shown in our recent work.22 Importantly, the
newly obtained analytical form of MOs could give us new
insight into the nature of chemical bonds.

II. METHODS
We start by reviewing our newly proposed method for solving
one-dimensional (1D) SEs, as has been implemented for
finding the exact analytical solutions of 1D hydrogen atom and
H2

+ with soft Coulomb potentials.23,24 In particular, for a nicely
behaved potential in 1D, by formulating the corresponding
ground state wave function as ψ = Ceβ, we can transform the

SE for ψ(x) into a Riccati equation25 for ≡ βu
x

d
d
, where energy

enters as a parameter. In doing this, we reduce the second-
order ordinary differential equation (ODE) into first-order at
the sacrifice of linearity. The equation is then solved by
expanding u into a Taylor series, which combined with the
boundary conditions ultimately leads to an algebraic equation
that determines the energy.23,24 In this work, we extend our
approach to real-world molecules in 3D. As will be shown, the
increased dimensionality leads to an increase in the number of
algebraic equations and unknown variables, yet the basic
structure remains similar.
Without loss of generality, let us consider the generic single-

electron diatomic molecular problem in atomic units:
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Here Ri’s are the electron−nuclear distances, R is the nuclear
separation, and Zi’s are the nuclear charges (we assume Z1 ≥
Z2). Although eq 1 appears to be a coupled equation in terms
of the three Cartesian coordinates, it has been shown to be
separable in spheroidal coordinates (also called confocal

elliptic coordinates).4−7 In particular, ξ = +R R
R

1 2 , η = −R R
R

1 2 ,

and ϕ is the angle of rotation of the electron about the z axis;
see Figure 1 for an illustration. ξ and η are analogous to the
radial distance r and the cosine of the polar angle θ in the
spherical coordinate system; in the limit R → 0, ξ → 2r/R and
η → cos θ. The wave function can be then factorized into ψ =
M̃(η)Ñ(ξ)eimϕ. Here, analogous to the hydrogen atom, the
equation for ϕ is an eigenvalue equation, for which one can

define a magnetic quantum number m = 0, ±1, ±2, ...
characterizing the z component of the electronic orbital
angular momentum. Differing from the hydrogen atom, here ξ
and η do not obey eigenvalue equations; instead, they satisfy
two decoupled ODEs with two undetermined separation
constants:

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑ

η
η

η
η η

η

η η

− − −
−

− ̃

− − − ̃ ̃ =

m
ER

R Z Z A M

(1 )
d

d
2

d
d 1

1
2

( ) ( ) 0

2
2

2

2

2
2 2

1 2
(2)

Ä

Ç

ÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑ

ξ
ξ

ξ
ξ ξ

ξ

ξ ξ

− + −
−

+ ̃

+ + + ̃ ̃ =

m
ER

R Z Z A N

( 1)
d

d
2

d
d 1

1
2

( ) ( ) 0

2
2

2

2

2
2 2

1 2
(3)

Here Ẽ ≡ E − Z1 Z2/R is the electronic energy, and Ã is related
to the total angular momentum and the Runge−Lenz
vector.26−29 Similar to eigenvalue equations, though, only
when Ẽ and Ã take special values can eqs 2−3 have solutions.
It is worth noticing that these ODEs have singularities at η =
±1 and ξ = 1, respectively, indicating that M̃(η) and Ñ(ξ)
cannot be finitely differentiable at these boundary points. In
light of this and inspired by previous works,5,8,9 we make the
following change of variables, M̃(η) = (1 − η2)|m|/2M(η) and
Ñ(ξ) = (ξ2 − 1)|m|/2N(ξ), which after straightforward
derivation gives explicit equations for M(η) and N(ξ):
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Here A = Ã + m(m + 1).
To solve for the ground state, we apply our previous

technique to eqs 4−5. As with the ground state of the
hydrogen atom, here we assume that the wave function has an
absence of nodal points and m = 0.30 Then writing the wave
function in exponential forms, M(η) = C1e

β1(η) and N(ξ) =

C2e
β2(ξ), and denoting = β

η
u

d

d
1 and = β

ξ
v

d

d
2 , we deduce the

following Riccati equations:
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Equations 6−7 will be solved by performing Taylor expansions.
To have a finite radius of convergence, it is preferable to

Figure 1. Illustration of the spheroidal coordinates for a diatomic
molecule with arbitrary nuclear charges. Here, by definition, ξ ≥ 1, −1
≤ η ≤ 1, and 0 ≤ ϕ ≤ 2π.
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transform ξ onto a finite interval [0,1) by introducing
= −

ξ
q 1 1 . The resulting ODE for q reads
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We then expand u(η) and v(q) into Taylor series:
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Here we assume that the validity of these expansions extends
to the entire domain of η and q, i.e., the radius of convergence
is greater than 1. This assumption is valid for most cases of
interest but has exceptions, which will be discussed later.
Comparing terms η and q order by order in eqs 6 and 8, we
arrive at recursive relations for uk’s and vk’s, so that each uk and
vk can be represented as a function of u0, v0, Ẽ, and A.
To determine these unknown variables, one has to invoke

the boundary conditions. Assuming that the derivative terms in
the ODEs are finite, one can readily find that they are
eliminated at the boundary points η = ±1 and q = 0, 1; hence,
eqs 6 and 8 reduce to four algebraic equations regarding
u(±1), v(0), and v(1), which by eqs 9−10 can be further
rewritten in terms of uk’s and vk’s. Therefore, we end up with
four coupled algebraic equations for four unknowns, which can
be solved by a multidimensional Newton’s iteration
approach.31,32 Here we note that physics guarantees the
existence and uniqueness of the solution.
Once u0, v0, Ẽ, and A are obtained, all the uk’s and vk’s are

readily accessible by the recursive relations. It follows that β1
and β2 can be obtained by explicit integration:
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heteronuclear cases, β1 is dominated by −α1η for large R; for
homonuclear cases, α1 is strictly zero, and β1 reduces to F1 for
all R. In eq 12, α2 = −∑k = 0

∞ vk, γ = −∑k = 0
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∑k = 2
∞ vkhk(ξ

−1) with = ∑ =
− − !

+ ! − − !h s s( )k j
k k

j j k j
j

1
1 ( 1)

( 1) ( 1)

j

. Using the

boundary condition at ξ = 1, we can prove α = − ̃ER
2 2

2

and

γ = −
α
+ 1R Z Z( )

2
1 2

2
, whose limiting behaviors for R → 0 (united

atom) and R → ∞ have been analyzed accordingly.32

The ground state wave function is then given by
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where C = C1C2 is the normalization constant and F(η, ξ) =
F1(η) + F2(ξ). Cast in an exactly factorized form, the wave
function manifests its analytical structure in the most concise
and informative manner, which is much more physically
meaningful than an LCAO type of basis representation.
Compared with the hydrogen atom, we recognize both familiar
features and new structures. The primary similarity is in the
exponential decay, where the analogous decay pattern in eq 13
is through e−α2ξ and the rate of decay is closely related to the
energy. The major difference appears in the additional factors,
among which we call special attention to F(η, ξ), which we
define as the modulator function in the sense that it modulates
the exponential decay. In contrast to the other terms in eq 13,
F(η, ξ) can only be written as a series expression. Yet, it can
have qualitatively different behavior for small and large nuclear
separation and deserves some further discussion.
In particular, in deriving eq 13, our assumption about the

Taylor expandability of u(η) and v(q) implies that they are free
from singularities within the unit circle on the complex plane.
It turns out, however, that the assumption for u(η) is violated
for large R when Z1 ≈ Z2. Nevertheless, eq 13 can still hold in
such cases if one modifies the definition of F1. This can be
achieved by moving the singularities outside the unit circle
through a Mobius transformation; the resulting formula of F1
can be found in the Supporting Information.32

Importantly, the new analytical structures identified in eq 13
appear to be generally applicable to the ground solution of SEs
for Coulomb systems, as they have been observed in our
previous works on 1D model problems.23,24 Moreover, the
exact formula also sheds light on simple approximate formulas.
In fact, one can achieve a high accuracy by approximating F(η,
ξ) as simple elementary functions and parametrizing the
variational wave function with as few as three parameters.32

Our method for finding the exact ground state wave function
can be extended to target all the excited states, for which one
shall additionally factorize the nodal points, i.e., M(η) =
C1∏l=1

L (η − al)e
β1(η), N(ξ) = C2∏k=1

K (ξ − bk)e
β2(ξ). Here L and

K are the number of nodes in M(η) and N(ξ), respectively; al
and bk denote the nodal positions. This is in the same spirit as
our previous work on 1D model problems.22 Substituting the
factorized formulas into eqs 4−5, we can derive analogous
equations to 6 and 8, which again can be solved by Taylor
expansion. It is worth mentioning that the K + L nodal points
now become unknowns. Substituting each of these variables
into the ODEs leads to a new algebraic equation, which along
with the boundary conditions is sufficient to determine all the
unknowns.32

After repeating essentially the same steps for finding the
ground state, we can deduce the exact formula for a generic
eigenstate characterized by quantum numbers KLm as the
following:
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Here α = − ̃ER
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2
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formulas of F and α1 are formally the same as those of the
ground state, although uk’s and vk’s take different values. One
can readily see that eq 14 reduces to eq 13 for the ground state
(m = 0 without nodal points).
Equations 13−14 are the key results of this paper. In

contrast to the wave function formulas proposed in the
literature that involve an infinite summation as part of the
factorization,8,9 eq 14 is an exact and complete factorization,
elucidating the analytical structure as much as possible. For
example, it clearly shows that the nodal surfaces of MOs are
hyperboloids and ellipsoids with the nuclei as foci, validating
the argument in the literature6,7 by specifying the exact
positions. As an additional remark, there have also been
attempts at solving the H2

+ problem by transforming the SE
into Riccati equations, such as the Riccati−Pade ́ method
(RPM).33−36 Yet, RPM uses the Pade ́ approximation to
represent u and v rather than targeting their exact formulas or
the exact wave function. In addition, RPM gives no knowledge
of the nodal points.

III. RESULTS AND DISCUSSION
Next, we demonstrate the usefulness of our exact formulas by
showing some intuitive examples. Starting with the H2

+

problem, we compute potential energy curves of representative
low-lying states; see Figure 2. Here, instead of labeling states

with (KLm), we use the united-atom designation,9,10 with
(nlm) based on the types of reduced AOs in the limit R → 0 .
One can easily work out the relations n = K + L + m + 1 and l
= L + m. As with AOs, s, p, d, ... are used to reflect the
information on l; by contrast, σ, π, δ, ... are used to specify the
value of m (corresponding to m = 0, 1, 2, ...), which also shows
the types of MOs.

Chemists are used to characterizing MOs as bonding or
antibonding by judging (i) whether a buildup of charge occurs
at the bond midpoint1,2,4 and (ii) whether the attractive forces
between atoms are strengthened or weakened by occupying
the MO.37−39 For H2

+, by (i) an MO with a mirror/nodal plane
between the nuclei is a bonding/antibonding orbital; by (ii), a
bonding state is supposed to produce an energy well, while an
antibonding state shall monotonically decrease its energy upon
dissociation.4 (i) and (ii) are consistently true for some lowest-
lying states, such as the 1sσ and 3dσ states. However, by
computing the exact energy curves to an extended range and to
a high precision, we find that this is not generally true for other
states. For example, Figure 3 shows that the 4fσ state, which is

an antibonding state by (i), develops a local minimum at R ≈
21 Bohr, while the 2sσ state, which is a bonding state by (i), is
monotonically decreasing. Even more surprisingly, bonding
states such as 4dσ can have a local maximum in the large-R
region, corresponding to a transition state. In fact, such
examples are widespread as shown in Table 1, where we have
tabulated the positions and energies of extreme points along
the energy curves of some low-lying states.
From the LCAO perspective, a bonding/antibonding orbital

has also been associated with a decrease/increase of energy
relative to the separated atoms.1,2 Yet, we find that this is not

Figure 2. Energy curves of representative states of H2
+, labeled by

united atom designation. Curves in the energy range from −0.18 to
−0.04 Hartree are shown in the main plot, while the lowest bonding
and antibonding states are shown in the lower inset. Bonding/
antibonding states are drawn in solid/dashed lines. Interestingly, the
4fσ state has a local minimum around 21 Bohr; and the 4dσ state has
a local maximum around 44 Bohr (see the enlarged plot in the upper
inset).

Figure 3. (a) Energy curves of the 1sσ state for different Z1, fixing Z2
= 1. Energy at the dissociation limit of each curve has been set to zero.
(b) Binding energy (energy difference between the dissociation limit
and the minimum, if it exists) as a function of Z1 and Z2, could be
negative. For the blank area, there exists no minimum in the energy
curve.

Table 1. Extreme Points along Energy Curves of
Representative Low-Lying States of H2

+, Including Minima
and Maxima (If They Exist) Denoted as Rmin and Rmax,
Respectivelya

state Rmin Emin − ED Rmax Emax − ED

1sσ 2.0 −1.03 × 10−1

2pσ 12.5 −6.08 × 10−5

3dσ 8.8 −5.00 × 10−2

4fσ 20.9 −5.66 × 10−3

4dσ 17.8 −3.26 × 10−3 43.5 1.65 × 10−4

5gσ 23.9 −2.27 × 10−3

2pπ 7.9 −9.51 × 10−3 25.8 1.44 × 10−4

aTheir energies, Emin and Emax, are shown relative to their respective
dissociation limit ED. Some states, such as 2sσ, 3pσ, and 3sσ, have
neither maximum nor minimum and are not listed in the table. All
values are in atomic units. Here we note that the shallow minimum of
2pσ has also been reported in ref 4.
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consistent with (i) either. For example, the 4fσ state at finite R,
which is antibonding by (i), has an energy lower than its
dissociation limit; see Figure 2.
For heteronuclear molecules, binding curves become more

sophisticated. In Figure 3a, we compare ground state energy
curves with different Z1, fixing Z2 = 1. As Z1 increases, we see a
weakened binding behavior. When Z1 reaches 1.2, an obvious
transition state emerges in the energy curve, separating the
local minimum from the energetically more favorable
dissociation limit. This minimum fades away when further
increasing Z1. If we allow Z2 to change, all possible
combinations of Z1 and Z2 that lead to a minimum (binding)
encircle the colored region in Figure 3b.
These observations thus call into question the validity of

traditional bonding vs antibonding concepts. Furthermore, as
the interplay between the electronic energy Ẽ and the nuclear
Coulomb repulsion yields energy curves with so many
complicated features for systems as simple as single-electron
diatomic molecules, one could likely find unexpected
intermediates or transition states on the energy surfaces
(particularly for excited states) of other molecules.

Besides accurate energies, perhaps more importantly, our
formulas can accurately describe important features of MOs at
a much lower computational cost. For example, eq 14 gives
accurate hyperboloids (3dσ) and ellipsoids (2sσ) as nodal
surfaces as shown in Figure 4a and b. By contrast, conventional
basis expansion methods cannot capture the nodal shapes even
qualitatively with commonly used basis sets; see Figure 4c and
d. More demonstrations of the computational advantage of our
method over conventional basis expansion can be found in the
Supporting Information. Importantly, if we decompose MOs
using LCAOs in the infinite separation limit, the resulting AOs
are sp hybrids rather than pure 2s or 2pz orbitals.

32

The modulator function F is an essential term in our
factorization. In Figure 5, we show that F for the ground state
behaves qualitatively differently for small and large R, for
homonuclear as well as heteronuclear cases. In the limit R→ 0,
in particular, F approaches a constant because the wave
function reduces to the ground state of a hydrogenic atom,
given by Ce−α2ξ. This is manifested in Figure 5a and c, where
the overall scale is small. When R is large, however, F changes
rapidly in the internuclear region; see Figure 5b and d. This

Figure 4. Contour plots of wave functions with a nuclear separation of 14 Bohr: (a) 2sσ state by our method; (b) 3dσ state by our method; (c) 2sσ
state by basis expansion; (d) 3dσ state by basis expansion. For (a) and (b), 80 nonzero uk’s and 64 vk’s are used. For (c) and (d), the basis set of
aug-cc-pV5Z (160 basis functions) is used. Apparently, the basis expansion here gives qualitatively incorrect nodal surfaces.

Figure 5.Modulator F shown as a function of x and z for the ground state of H2
+ (upper panels) and HeH2+ (lower panels). In (a) and (c), R = 0.5

Bohr; in (b) and (d), R = 5 Bohr. Here we present results in the circled rather than the squared region.
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shows that F can be used as an indicator for distinguishing
compact from dissociated molecules, which is consistent with
our observations for H2

+ in 1D,24 and could be useful for
tackling the delocalization error in density functional theories,
particularly for improving the recently developed localized
orbital scaling correction (LOSC) functional.40−45 Of partic-
ular interest is the behavior of F for heteronuclear cases such as
HeH2+. For small R as in Figure 5c, F is smooth and
delocalized over the two nuclei, resembling the united atom
limit. For large R as in Figure 5d, interestingly, we find that F is
localized around the lighter atom (hydrogen), although the
wave function is localized near the heavier atom (helium).

IV. CONCLUSIONS
In this paper, we have obtained the exact analytical forms of
diatomic MOs, as given by the solutions of a single-electron SE
for a diatomic molecule. We show that the best way of
representing the ground MO is in our factorized form in eq 13
involving a power prefactor, an exponentially decaying term,
and a modulator on the exponential, while the best way of
representing excited state MOs involves additional factors
accounting for the nodal surfaces and the magnetic quantum
number as in eq 14. Our factorized formulas are formally
intuitive and physically informative and unify the exact
formulas of AOs and MOs. The usefulness of our exact
formulas has been demonstrated in several aspects. Impor-
tantly, our new findings about bonding/antibonding MOs have
revealed the limitation of these concepts particularly in
stretched molecules.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c01905.

Some details of derivations and supplemental results
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
Chen Li − Beijing National Laboratory for Molecular Sciences,
College of Chemistry and Molecular Engineering, Peking
University, Beijing 100871, China; orcid.org/0000-0003-
2115-8694; Email: chenlichem@pku.edu.cn

Author
Yunzhi Li − Beijing National Laboratory for Molecular
Sciences, College of Chemistry and Molecular Engineering,
Peking University, Beijing 100871, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c01905

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors acknowledge funding support from the National
Science Foundation of China (Project No. 8200906190).

■ REFERENCES
(1) Atkins, P. W.; De Paula, J.; Keeler, J. Atkins’ Physical Chemistry,
international ed.; Oxford University Press: Oxford, U. K., 2018.

(2) Atkins, P. W.; Shriver, D. F. Shriver & Atkins Inorganic Chemistry,
4th ed.; Oxford University Press: Oxford, U. K., 2006.
(3) Kohn, W.; Sham, L. J. Self-Consistent Equations Including
Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133−
A1138.
(4) Levine, I. Quantum Chemistry; Pearson advanced chemistry
series; Pearson: London, 2014.
(5) Wilson, A. H.; Fowler, R. H. The ionised hydrogen molecule.
Proc. R. Soc. London A 1928, 118, 635−647.
(6) Morse, P. M.; Stueckelberg, E. C. G. Diatomic Molecules
According to the Wave Mechanics I: Electronic Levels of the
Hydrogen Molecular Ion. Phys. Rev. 1929, 33, 932−947.
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