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Optimization of amino acid 
replacement costs by mutational 
pressure in bacterial genomes
Paweł Błażej, Dorota Mackiewicz, Małgorzata Grabińska, Małgorzata Wnętrzak & Paweł 
Mackiewicz

Mutations are considered a spontaneous and random process, which is important component of 
evolution because it generates genetic variation. On the other hand, mutations are deleterious leading 
to non-functional genes and energetically costly repairs. Therefore, one can expect that the mutational 
pressure is optimized to simultaneously generate genetic diversity and preserve genetic information. 
To check if empirical mutational pressures are optimized in these ways, we compared matrices of 
nucleotide mutation rates derived from bacterial genomes with their best possible alternatives 
that minimized or maximized costs of amino acid replacements associated with differences in their 
physicochemical properties (e.g. hydropathy and polarity). It should be noted that the studied empirical 
nucleotide substitution matrices and the costs of amino acid replacements are independent because 
these matrices were derived from sites free of selection on amino acid properties and the amino acid 
costs assumed only amino acid physicochemical properties without any information about mutation at 
the nucleotide level. Obtained results indicate that the empirical mutational matrices show a tendency 
to minimize costs of amino acid replacements. It implies that bacterial mutational pressures can evolve 
to decrease consequences of amino acid substitutions. However, the optimization is not full, which 
enables generation of some genetic variability.

Biological evolution is driven by changes in genetic material, which generates variation between organisms. Many 
of these changes result from substitutions of one nucleotide for another and occur mainly during replication 
of DNA, when two strands, called leading and lagging are synthesized by different mechanisms1, 2. The pro-
cess demands temporal separation of double stranded DNA into two single strands. In such single-stranded 
state, spontaneous deamination of C and A are common mutations. In particular, the deamination of C to U or 
5-methylcytosine to T occurs more frequent than in double-stranded DNA3, 4. The probability of such mutations 
is higher on the leading strand because this strand stays longer in the single state, as a template for synthesis of the 
lagging strand5–7. The cytosine deamination on the lagging strand template result in C → T mutations on leading 
strand. Therefore, the DNA strands are characterized by different patterns of nucleotide substitutions1, 2, 5, 8. In 
consequence, the leading strand becomes more rich in guanine than cytosine and, to a lesser extent it receives 
more thymine than adenine in comparison to the lagging strand in many bacterial genomes9–11. The characteristic 
asymmetry in nucleotide composition occurs between these differently replicated strands not only in majority 
bacterial genomes8, 12–20 but also eukaryotic genomes21–25.

The ‘asymmetric’ mutational pressures influence also evolutionary rate of genes located on the DNA 
strands26–29. The lagging strand genes show generally a larger substitution rate than the leading strand genes, and 
homologs lying on differently replicated DNA strands are characterized by higher divergence than those staying 
on the same type of strands. The difference in the rate of nucleotide substitutions between the strands was shown 
in the experimental study of Bacillus subtilis30, in which the rate of point mutations in core genes on the lagging 
strand appeared higher than on the leading strand. The differences were most pronounced in non-synonymous 
substitutions. The ‘asymmetric’ structure of bacterial chromosomes is also associated with symmetric genomic 
inversions containing the origin of replication31–33, a bias in gene translocations between the lagging to leading 
strands and stability of gene positions in chromosome34–38 as well as a preference in location of essential genes in 
the leading strand39, 40.
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Such spontaneous mutations introduced during DNA replication into protein-coding sequences are dele-
terious, when they cause replacements of amino acids with different physicochemical properties leading to 
non-functional products. Repairing of mutations is also energetically costly for organisms41, 42. Thus, it seems that 
minimization of mutational pressure and its cost should be favoured during evolution. Actually, it was postulated 
that the mutational pressure and the genetic code are optimized to minimize harmful effects of mutations on 
protein-coding sequences and translation errors as a result of their coevolution43–52. However, recent analyses 
about the optimization of the genetic code showed that there exist alternative genetic codes that are much better 
optimized in respect to the polarity than the canonical one53. Moreover, current knowledge about the genetic 
code origin and evolution indicates that biosynthetic relationships between amino acids were the main factor that 
structured the genetic code, whereas the physicochemical properties of amino acids played only a subsidiary role 
in its evolution54, 55.

On the other hand, mutations are essential for evolution because they deliver the raw material of genetic 
variation. They can turn out beneficial especially for organisms living in rapidly changing environments. In such 
habitats the increase in mutation rate is favoured because it enriches the genetic variation and enables quick 
adaptation of the organisms to the new conditions56–58. As a result, a trade-off between the necessity to preserve 
accurate genetic information and requirements for adaptational flexibility of organisms would be observed. It 
should lead to some kind of optimality of the mutation process and evolution of mutation rate in organisms59–62. 
However, not only the global mutation rate but also relative rates of nucleotide substitutions can be subjected to 
this optimization63, 64. For example, we can expect that some mechanisms associated with replication of DNA 
and its repairing evolved to minimize probability of spontaneous point mutations that cause replacements of 
amino acids with disparate physicochemical properties, e.g. hydropathy or polarity. To verify hypotheses if muta-
tional pressures operating in various bacterial genomes are random or they are optimized in respect of amino 
acid replacements in products of protein-coding genes, we compared the empirical mutational pressures derived 
from bacterial genomes with their best possible alternatives that minimized or maximized costs of amino acid 
replacements.

Results
Comparison of matrices according to costs of amino acid replacements. The aim of the study 
was to assess to what extent bacterial nucleotide mutational pressures are optimized to minimize or maximize 
non-synonymous substitutions in protein-coding sequences resulting in amino acid replacements and changes in 
their physicochemical properties. We have focused particularly on hydrophobic65 and polar properties66, which 
are important characteristics of proteins. The pressures were described by mutational probability matrices con-
taining probabilities of all possible twelve nucleotide point mutations. To check the optimization level of the 
empirical mutational matrices, we compared their effect with that of theoretical probability matrices that pro-
duced the same nucleotide stationary distribution as the corresponding empirical matrices, and minimized or 
maximized the costs of the amino acid replacements. Thus, these optimized matrices represented possible bound-
ary reference states to which the natural pressures can evolve.

The optimization level was tested on protein-coding sequences (described by codon frequencies) from nine 
bacterial genomes (Table S1). The sequences were extracted separately from differently replicated DNA strands 
(leading and lagging) because they are characterized by different mutational patterns. We considered four sce-
narios of optimization: matrices maximizing hydropathy and minimizing polarity (MaxMin); minimizing 
hydropathy and maximizing polarity (MinMax); maximizing (Max) or minimizing (Min) the both costs. Since 
we optimized matrices according to two physicochemical properties simultaneously, we received sets of matri-
ces called Pareto sets, i.e. non-dominated solutions such that none of the studied physicochemical property can 
be improved in value without degrading the other property. The obtained Pareto fronts of optimized matrices 
with starting and empirical matrices computed for differently replicated DNA strands of individual genomes are 
shown in Figs 1, 2 and 3. The x and y axes represent costs of amino acid substitutions according to hydropathy and 
polarity, respectively, normalized by the maximum found cost.

The centre of the plots is occupied by randomly generated starting matrices. The points are surrounded by two 
clear Pareto fronts for the MaxMin and MinMax scenarios, in which the algorithm found mutational matrices 
minimizing one type of amino acid replacement costs and maximizing the other. In some cases (e.g. Borrelia 
burgdorferi or Staphylococcus aureus lagging DNA strand), the matrices are arranged in single straight lines with 
a positive slope (Figs 1 and 3), whereas in others (e.g. Chlamydia trachomatis or Escherichia coli lagging DNA 
strand), the lines bend at one or two points (Fig. 2).

The MaxMin and MinMax Pareto fronts converge at the large values of costs (the upper right part of the plots) 
to the matrices that maximized the costs of amino acid replacements in both properties (Max scenario). Although 
the algorithm found such matrices in the number from 93 to 4134 (in dependence on the assumed stationary 
distribution), they were very similar in their nucleotide transition probability rates and generated costs. As a 
consequence, they are visible as one point in the scale of the plots (Figs 1, 2 and 3). The only exception is the case 
of Escherichia coli lagging DNA strand, where the maximized matrices create a linear Pareto front with negatively 
correlated costs of the two physicochemical parameters (Fig. 2). On the other hand, the matrices that minimized 
the costs (Min scenario) are located in the lower left part of the plots (Figs 1, 2 and 3). With the exception to the 
case of Escherichia coli lagging DNA strand, where the matrices are visualized by one point in plots (Fig. 2), in 
other cases they create a Pareto fronts, usually with a linear course with a negative slope.

The most interesting is the position of empirical mutational matrices in the space of the two costs. They are 
usually located at the edge or lower left part of the distribution of starting matrices and close to Pareto fronts of 
scenarios, in which at least one cost of amino acid replacements was minimized (Min, MaxMin or MinMax) 
(Figs 1, 2 and 3). Simultaneously, the empirical matrices are located far from the matrices maximizing the costs 
of amino acid replacements.
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To objectively compare the location of various empirical matrices to the Pareto fronts, we calculated relative 
minimal distances to these fronts ri for the individual scenarios (Table 1). The distance measures a relative differ-
ence in the costs associated with replacements of amino acid with different physicochemical properties generated 

Figure 1. Comparison of costs of amino acid replacements in two physicochemical properties, hydropathy 
(x-axis) and polarity (y-axis) generated by: random started matrices (start), empirical matrices (empirical) and 
matrices maximizing hydropathy and minimizing polarity (MaxMin); minimizing hydropathy and maximizing 
polarity (MinMax) as well as maximizing (Max) or minimizing (Min) the both costs.
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by empirical matrices in comparison to the matrices optimized under these costs. The smaller value, the more 
similar costs generated by the empirical matrix in comparison to the matrices from the corresponding Pareto 
front. The results demonstrate that the smallest distances of the empirical matrices were usually to Pareto fronts 
obtained under the scenario MaxMin and in one case to the MinMax front (Borrelia burgdorferi, lagging strand). 
The smallest distance (0.0449) showed the lagging strand matrix from Neisseria to the Pareto front of matrices 
MaxMin optimized.

Figure 2. As in Fig. 1.
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On average, the empirical matrices were located much closer to matrices that minimized at least one parame-
ter (rMaxMin = 0.075, rMinMax = 0.124 and rMin = 0.149) than to matrices that maximized two costs (rMax = 0.652). The 
differences between the distances (rMax vs others) were statistically significant (pBH < 0.0003, Wilcoxon test with 
Benjamini-Hochberg correction for multiple testing). Significantly smaller differences were also for distances 
of the empirical matrices to MaxMin optimized matrices than to MinMax optimized matrices (pBH < 0.0008) 
and matrices minimizing two costs (pBH < 0.0003). However, the distances of the empirical matrices to those 
produced under Min scenario were not significantly different (pBH = 0.29) when compared with the distance 

Figure 3. As in Fig. 1.
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to the Pareto fronts obtained in the MinMax scenario. Considering two extreme cases in which both costs were 
minimized (Min scenario) or maximized (Max scenario), each empirical matrix was closer to the Pareto fronts 
created by the matrices minimizing both parameters than those maximizing the costs. The average distance of 
the empirical matrices to the Pareto front of the minimizing matrices was almost five times smaller than to the 
maximizing matrices.

The empirical matrices from the leading DNA strand were slightly closer to the Pareto fronts of matrices that 
minimized two costs than the lagging strand matrices (mean 0.141 vs 0.156). Simultaneously, the leading rather 
than lagging strand matrices were more distant from the matrices maximizing two parameters (mean 0.661 vs 
0.644). However, these differences (and also others for any scenarios) were not statistically significant in respect 
to the DNA strands (pBH > 0.79).

To check universality of our findings, we carried out similar analyses based on other indices and scoring 
matrices describing various physicochemical properties of amino acids: conformational parameter for alpha 
helix and beta-sheet67, Grantham’s chemical distance68, Miyata’s amino acid pair distance69 and Mohana’s EMPAR 
matrix70. In total, 18 mutational matrices (from 9 genomes and 2 DNA strands) were tested under 21 pairwise 
combinations of 7 physicochemical properties, which gave 378 cases.

Examples of Pareto fronts of optimized matrices with starting and empirical matrices are presented in Figs 4 
and 5. The shape of the fronts depends on pairs of compared properties. Optimized matrices create lines or 
curves, which converge to matrices from other scenarios represented by one point in the scale of the plots (Figs 4 
and 5). Alternatively, lines representing all four possible types of optimized matrices create a polygon (Fig. 6). 
Nevertheless, in all cases starting and empirical matrices are surrounded by the Pareto fronts of the optimized 
matrices. The empirical matrices are placed usually at the edge of distribution of the starting matrices and close to 
the fronts of matrices that minimized at least one property.

There was no instance among 378 studied, in which an empirical matrix was located closest to the matrices 
maximizing two costs of amino acid replacements. In 96 cases, the relative minimal distances of empirical matri-
ces was shortest to Pareto fronts of matrices minimizing two costs. For Chlamydia muridarum, there were 18 such 
cases, and 15 for Chlamydia muridarum and Neisseria (Table S2). Empirical matrices were usually closest to the 
Min Pareto fronts, when conformational parameter for alpha helix with beta-sheet and hydropathy indices as well 
as Grantham’s and Miyata’s matrices were considered (Table S3).

The relative average minimal distances of the empirical matrices to the Pareto fronts of matrices that mini-
mized at least one parameter was significantly (pBH < 0.0000001, Wilcoxon test) smaller (rMaxMin&MinMax = 0.135, 
and rMin = 0.204) than to matrices that maximized two costs (rMax = 0.526). The average ratio of the minimal 
distances to Max and Min Pareto fronts rMax/rMin was 3.4. The highest ratio showed empirical matrices from 
Streptococcus and Bacillus (>4) and the smallest from Escherichia coli (about 2) - Table S4. Empirical matrices 
were also about five times closer to minimizing than maximizing matrices, when were tested under the following 
physicochemical parameters: beta-sheet conformation with polarity and Mohana’s matrix as well as hydropathy 
with polarity and Mohana’s matrix (Table S5). The smallest ratio (about 2) was for pairs: alfa conformation with 
polarity and beta-sheet conformation as well as beta-sheet conformation with Grantham’s and Miyata’s matrices. 
We did not observe significant differences between performance of the matrices from the leading and lagging 
strands under the studied parameters.

Comparison of matrices according to their structure and stationary distribution. To study the 
optimization level of empirical nucleotide matrices for hydropathy and polarity in relation to the structure of 
these matrices, we correlated the stationary frequencies of four nucleotides generated by these matrices with the 
ratio rMax/rMin, which measures the relative distance of the empirical matrices to the matrices that maximized 
and minimized the two costs. The analyses demonstrated a significant negative correlation between the adenine 
stationary frequency and the relative distance (Spearman correlation coefficient, ρ = −0.546, p-value = 0.019). 
It implies that the matrices that produce less adenine, minimize the costs of amino acid replacements more effi-
ciently. Similar effectiveness was shown by the matrices that generate more cytosine. In this case, we observed 

Genome

Leading strand Lagging strand

Max MaxMin MinMax Min Max MaxMin MinMax Min

Bacillus species 0.662 0.090 0.093 0.155 0.700 0.078 0.118 0.104

Borrelia burgdorferi 0.632 0.052 0.088 0.229 0.674 0.087 0.058 0.181

Chlamydia muridarum 0.650 0.086 0.136 0.128 0.648 0.076 0.167 0.109

Chlamydia trachomatis 0.667 0.077 0.122 0.135 0.656 0.073 0.166 0.105

Escherichia coli 0.642 0.062 0.187 0.110 0.396 0.045 0.187 0.371

Neisseria species 0.639 0.091 0.179 0.091 0.649 0.045 0.178 0.128

Rickettsia species 0.674 0.075 0.093 0.157 0.673 0.080 0.086 0.161

Staphylococcus aureus 0.687 0.081 0.086 0.146 0.699 0.080 0.082 0.140

Streptococcus pyogenes 0.693 0.075 0.112 0.120 0.699 0.093 0.101 0.106

Table 1. Relative minimal distances of empirical matrices from two DNA strands in bacterial genomes to 
respective Pareto fronts of matrices maximizing hydropathy and minimizing polarity (MaxMin); minimizing 
hydropathy and maximizing polarity (MinMax); maximizing (Max) and minimizing (Min) the both costs. The 
distances were calculated in the final 2000th step of simulations.
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significant positive correlation between the cytosine stationary frequency and the ratio rMax/rMin (ρ = 0.494, 
p-value = 0.037). The stationary distribution of other nucleotides was not significantly correlated with rMax/rMin.

Figure 4. Comparison of costs of amino acid replacements in two selected physicochemical properties, 
generated by: random started matrices (start), empirical matrices (empirical), matrices maximizing one and 
minimizing other property (MaxMin) and vice versa (MinMax) as well as matrices maximizing (Max) or 
minimizing (Min) the both costs.
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To further compare the empirical and optimized matrices according to their elements, i.e. transition probabil-
ity rates, we calculated, for each case of genome and DNA strand, median values from the nucleotide substitution 
probability rates of matrices from Pareto fronts, which minimized or maximized both physicochemical costs of 
amino acid replacements (i.e. Min and Max scenarios, respectively). In Fig. S1, we compared distributions of 
the rates from these matrices. Moreover, to visualize and easy compare the matrices, we performed Principal 
Component Analysis on the 12 off-diagonal elements (Fig. 7). The first two principal components explained quite 
a lot of the total variance in the set, almost 90%. The empirical matrices create a cluster, which indicates that they 

Figure 5. As in Fig. 4.
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are characterized by quite similar probability rates (Fig. 7). This group is very closely located to the matrices mini-
mizing both costs and is very far from the maximizing matrices. The minimizing matrices are scattered according 
to the second component but are packed quite tightly in respect to the first component. The maximizing matrices 
are concentrated almost to one point in this scale, which implies very similar values of their probability rates.

The superposition of vectors representing variables (i.e. nucleotide substitutions) enabled to identify variables 
that contribute to the discrimination of the matrices. The maximizing matrices are characterized by larger val-
ues of substitution rates A → T and T → A than the empirical and minimizing matrices (see also Fig. S1). These 

Figure 6. As in Fig. 4.
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substitutions are highly positively correlated with the first component (0.989 and 0.987, respectively). On the 
other hand, the empirical and minimizing matrices show greater probability of C → T and T → C substitutions, 
negatively correlated with the first component by coefficients −0.760 and −0.677, respectively. These four types 
of substitutions contribute most to the separation of the empirical and minimizing matrices from the maximizing 
ones.

The minimizing matrices are further differentiated in respect of two types of substitutions: C → G/G → C 
and A → G/G → A, which are correlated with the second component with coefficients: 0.808/0.791 and 
−0.651/−0.749, respectively. This differentiation is related with genome rather than DNA strand. The matrices 
that were minimized based on the stationary distribution of empirical matrices and codon frequencies from 
genomes of Bacillus, Borrelia, Rickettsia, Staphylococcus and Streptococcus are characterized by higher proba-
bilities of C → G/G → C substitutions. In turn, greater values of A → G/G → A substitutions are typical of the 
minimizing matrices optimized on Escherichia and Neisseria genomes. Besides these transitions, the empirical 
matrices are also characterized by some increase of probability in substitutions of G → T, T → G, A → C and 
C → A (Fig. S1). The third principal component explained only 5.6% of variance and separated most minimizing 
matrices from several others including also empirical matrices. Substitutions C → T and G → T showed the larg-
est correlation with this component (−0.605 and −0.561) and were more frequent in the second set of matrices.

Generally, both empirical and the minimized matrices are characterized by higher probability of substitutions 
A → G/G → A and C → T/T → C as well as lower probability of substitutions C → G/G → C than the maximized 
matrices (Fig. S1). Differences in these probabilities between the empirical/minimized and the maximized matri-
ces are statistically significant (p < 0.05, Kruskal-Wallis test) but not between the empirical and minimized matri-
ces (p > 0.38). The empirical and the minimized matrices show also significantly smaller probabilities of A → T 
and T → A substitutions than the maximized matrices. The empirical matrices differ from the both optimized 
matrices in larger values of A → C/C → A and G → T/T → G substitutions, whereas the minimized matrices have 
the highest probabilities of G → C/C → G substitutions of all matrices (Fig. S1). We obtained similar results when 
all 21 pairwise combinations of 7 physicochemical amino acid properties were analyzed (Fig. S2). Only the differ-
ences in G → T/T → G and G → C/C → G substitutions were less pronounced.

Discussion
In this study, we checked to what extent the pattern of nucleotide substitutions in empirical mutational matrices 
from bacterial genomes minimizes or maximizes costs in replacements of amino acids. Since mutations are usu-
ally considered spontaneous and random, we could await no signs of this optimization. However, most mutations 
in protein-coding sequences are harmful, therefore, we can expect that mutational pressures should have a ten-
dency to minimize their effect on protein genes. Since such types of sequences constitute a significant fraction of 
bacterial genomes, i.e. more than 90%71, it seems reasonable to analyze the optimization of mutation pressure in 
the context of these sequences. On the other hand, mutations are responsible for genetic variation of organisms, 
which accelerates their evolution and adaptation to variable environments. Then, an increased level of substitu-
tions associated with positive selection should be expected. To verify these hypotheses, we compared the effect 
of the empirical matrices with reference matrices that were optimized to minimize and maximize costs of amino 
acid replacements according to physicochemical properties. In contrast to previous studies63, 64, we optimized 
the matrices simultaneously according to two properties and modelled the nucleotide substitutions by more gen-
eral unrestricted model72 assuming only the same stationary distribution as the compared empirical matrices. 
Furthermore, the new model does not assume restrictions on the time-reversibility and the same convergence 
speed to the stationarity as the empirical matrices. Therefore, the optimized matrices were searched here in much 
larger space of possible solutions and the results have a more general significance.

Figure 7. Biplot for results of Principal Component Analysis based on probability rates of the empirical 
matrices and matrices from Pareto fronts, which minimized or maximized both physicochemical costs of amino 
acid replacements A covariance matrix was assumed in the calculation of the principal components.
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The comparison of effects exerted by the matrices showed that the empirical matrices are quite well optimized 
to minimize the costs in amino acid replacements. Their influence on changes in physicochemical properties 
of amino acids was quite similar to the matrices that minimized costs in at least one of these two properties. 
Considering two extreme cases, in which costs in both properties were minimized or maximized, every empirical 
matrix was closer in the costs space to the matrices that minimised both criteria than matrices maximizing them. 
The results were independent on the genome and DNA strand (lagging or leading) from which the empirical 
matrix was derived. The empirical matrices appeared to minimize at best costs of amino acid replacement accord-
ing to conformational parameter for alpha helix, which can related with the common prevalence of this secondary 
structure in proteins.

It should be emphasized that the obtained effect is not trivial because the studied empirical matrices were 
not disturbed by selection on the amino acid level and did not include the effect of selection associated with 
translational speed or accuracy29, 73, 74. It is also noteworthy that the matrices were evaluated based on changes in 
physicochemical properties of amino acids without influence of any mutational pressure. Thus the two studied 
components of the model are independent. Results would be not surprising if we considered matrices describing 
nucleotide substitutions accepted after selection in non-synonymous sites of protein-coding sequences and/or the 
effect of matrices was tested based on PAM amino acid matrices, e.g. Dayhoff, Blosum or JTT, which are derived 
from sequence comparisons and then include substitutions resulting from both mutation and selection.

Comparison of elements (i.e. probabilities of particular nucleotide substitutions) between matrices demon-
strated that the studied minimization effects can be realized by decreasing probability of substitutions involving 
adenine and thymine. This observation is reflected in the genetic code, in which hydrophobic amino acids are 
coded by codons with thymine in the second position, whereas codons with adenine in such positions encode 
amino acids usually with hydrophilic properties75–77. As a result of this, the A↔T transversions in the second 
codon positions lead to drastic changes in properties of replaced amino acids. On the other hand, a higher proba-
bilities of C↔T substitutions are associated with the matrices minimizing costs of amino acid replacements. Such 
features show also the empirical matrices. Interestingly, the C → T transition is a consequence of the spontaneous 
deamination of cytosine to uracil and its homologue 5-methylcytosine to thymine and belongs to one of the most 
frequent point mutations3, 4, 6, 78, 79.

Although the point mutations are consequences of spontaneous processes related with structure and prop-
erties of mutated nucleotides and nitrogenous bases, their rate and intensity can be modified during replication 
and repair processes. In the evolutionary scale, the variable nucleotide substitution rate can be accomplished 
by evolution of DNA polymerases with different fidelity introducing nucleotides during synthesis of new DNA 
strands80–83. Similarly, the evolution can be also subjected proofreading properties of polymerases84, 85 and other 
enzymes involved in post-replicative correction of mismatches86, 87. Besides the changes in the global mutation 
rate, also relative rates between nucleotide substitutions can be modified by differentiated preferences of poly-
merases and repairing enzymes for individual nucleotides88–94. The various pattern of nucleotide substitutions can 
be also associated with a fluctuating production and pools of individual nucleoside triphosphates, precursors of 
nucleotides incorporated during DNA replication95–98.

Conclusions
Obtained results indicate that costs in amino acid replacements described by differences in their physicochem-
ical properties and generated by bacterial mutational matrices are more similar to the matrices that minimized 
rather than maximized these costs. It implies that the empirical mutational matrices show a tendency to minimize 
consequences in amino acid replacements in products of protein-coding genes. The minimization is, however, 
not perfect because it is possible to find theoretical transition probability matrices that minimize costs more 
effectively than the empirical ones. Thereby, the empirical matrices can provide some genetic variation essential in 
adaptation of organisms to rapidly changing environments. Mutational pressures operating in bacterial genomes 
are not completely random and can be adjusted during evolution to current selective constraints. Thereby, the 
represent an interesting example of evolvability.

Materials and Methods
Empirical nucleotide substitution matrices. We studied empirical mutational pressures found in 
nine genomes represented different bacterial groups: Bacillus, Borrelia burgdorferi, Escherichia coli, Chlamydia 
muridarum, Chlamydia trachomatis, Neisseria, Rickettsia, Staphylococcus aureus and Streptococcus pyogenes29, 73, 

74 – Table S1. The pressures were expressed by mutational probability matrices describing all possible nucleotide 
point mutations. It should be noted that these matrices were derived from sequences subjected to neutral muta-
tions in the absence of selection on amino acid properties, i.e. pseudogenes or synonymous sites in homologous 
genes of closely related species or strains. What is more, the authors eliminated highly expressed genes from the 
final set to get rid of a potential influence of selection associated with a specific codon bias and translational speed 
or accuracy99–104. Since bacterial genomes are characterized by significant mutational bias characteristic of differ-
ently replicated DNA strands8, 15, 16, 105, we analysed the mutational pressures for the leading and lagging strands, 
separately (see Table 2 for an example).

Generation of optimized nucleotide transition probability matrices. The empirical mutational 
matrices were compared with other transition probability matrices that were optimized according to costs of 
mutations. Each matrix describes a nucleotide substitution process. Mathematically speaking, it is a realization of 
continuous-time homogenous Markov process defined by a rate matrix Q = (qij), where qij is a transition rate from 
nucleotide i to j. In this approach, we adopted the unrestricted (UNREST) model of nucleotide substitution72 
presented in the Table 3.
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This choice was due to the fact that it is the more general model than others commonly used (e.g. GTR). 
Therefore, this model can include more complex effects disregarded in the restricted models. Every UNREST-type 
rate matrix Q fulfils the following system of equations:

π =Q 0, (1)

where π = {πA, πT, πG, πC} is a stationary distribution of four nucleotides: adenine (A), thymine (T), guanine (G) 
and cytosine (C), without any extra assumption on Q. Since we were interested in the comparison of properties 
of the optimized matrices with the empirical mutational matrices, we assumed for the former the same stationary 
distribution as in the respective empirical matrices (Table 4).

To calculate the rates qij for the fixed stationary distribution π, we had to reformulate the system of equation 
(1). This procedure was described in details in Błażej et al.106. Briefly, this system of linear equation allows usually 
to find π for known rates but we wanted to calculate rates providing known π. Thereby, in the latter case π plays a 
role of coefficients, which leads to the following system of homogeneous linear equations:

β =X 0, (2)T

where:

β = q q q q q q q q q q q q[ , , , , , , , , , , , ] (3)AT AG AC TA TG TC GA GT GC CA CT CG

and

π π π π π π
π π π π π π

π π π π π π
=










− − −
− − −

− − − −










X
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 (4)

A A A T G C

A T T T G C

A T G G G C

under the general condition:

A T G C

A 0.7600 0.0594 0.1394 0.0412

T 0.0452 0.7828 0.0508 0.1212

G 0.1534 0.0481 0.7720 0.0265

C 0.0368 0.2491 0.0290 0.6852

Table 2. The transition probability P matrix describing mutational pressure in the leading DNA strand from 
Escherichia coli genome. A nucleotide from the column is replaced by a nucleotide from the row.

A T G C

A — qAT qAG qAC

T qTA — qTG qTC

G qGA qGT — qGC

C qCA qCT qCG —

Table 3. Substitution rate matrix Q for the unrestricted model of nucleotide substitutions (UNREST). The 
diagonals of Q are determined to each row sum up to 0. The nucleotide stationary distribution π = (πA, πT, πG, 
πC) is given by the set of equations πQ = 0 under the constraint ∑i∈{A,T,G,C}πi = 1.

Genome

Leading strand Lagging strand

A T G C A T G C

Bacillus species 0.356 0.273 0.229 0.141 0.273 0.356 0.141 0.229

Borrelia burgdorferi 0.317 0.488 0.137 0.059 0.488 0.317 0.059 0.137

Chlamydia muridarum 0.245 0.252 0.282 0.222 0.225 0.227 0.290 0.259

Chlamydia trachomatis 0.234 0.214 0.293 0.260 0.253 0.252 0.253 0.242

Escherichia coli 0.247 0.328 0.247 0.179 0.268 0.308 0.207 0.217

Neisseria species 0.222 0.305 0.244 0.229 0.305 0.222 0.229 0.244

Rickettsia species 0.295 0.308 0.207 0.190 0.327 0.272 0.238 0.163

Staphylococcus aureus 0.407 0.393 0.121 0.080 0.353 0.450 0.087 0.110

Streptococcus pyogenes 0.326 0.420 0.123 0.131 0.301 0.402 0.094 0.203

Table 4. Nucleotide stationary distribution generated by matrices from leading and lagging DNA strands for 
studied genomes.
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∀ > .
≠

q 0
(5)i j ij

We get immediately from linear algebra that every homogeneous linear system of equations has at least one 
trivial solution. If there is at least one nontrivial solution then infinitely many possible solutions exist. These 
solutions generate a vector space V, where operations are inherited from the finite-dimensional Euclidean space. 
Obviously, the equation (2) has at least one nontrivial solution. Therefore, we were able to find the set of nine lin-
early independent vectors (generators) v1, v2, …, v9 ∈ R12 that span the vector space V. As a result, each considered 
stochastic process of nucleotide substitution with a given stationary distribution π has a unique representation:

β β β β β= + + … + +v v v v (6)1 1 2 2 8 8 9 9

Clearly, the formula (6) is a linear combination of vectors v1, v2, …, v8, v9 with coefficients βi, i = 1, 2, …, 8, 9, 
whereas β is composed of rows of matrix Q. It is worth noting that from the condition (5) the rate matrices 
Q = (qij) constitute only a subset (not a subspace) of the whole vector space V. This method allowed us to generate 
rate matrices Q under minimal restrictions.

Furthermore, we needed to transform every rate matrix Q to a transition probability matrix P = (pij) because 
this representation was more appropriate in the context of calculating the fitness function. To do this transforma-
tion, we applied the uniformization method107, which is generally used to modify the original continuous-time 
Markov process with non-identical leaving rates qij to an equivalent of stochastic process, in which the transition 
epoch is generated by a suitable Poisson process with a fixed rate.

Measure of fitness. To study the mutational effect of the empirical and optimized artificial matrices, we 
used an objective vector F consisting of two components describing costs of amino acid replacements and related 
with amino acid differences in two selected physicochemical properties (a and b), e.g. hydropathy and polarity:

=F F F( , ), (7)a b

where Fi, i = a, b are costs of amino acid replacements in respective properties of amino acids:

∑=
< >∈

→F u c p g c d( ) ( , ),
(8)

i
c d D

c d i
,

where: D is the set of pairs of codons c and d, which differ in one codon position, u(c) is the average usage of the 
codon c in respective protein-coding sequences, pc→d is the probability of transition from the codon c to d, which 
is an element of a transition probability matrix P, whereas gi(c, d) is a difference between a physicochemical prop-
erty of two amino acids which are coded by the codon c and d, respectively. The difference was based on several 
commonly used amino acid scoring matrices and indices describing various physicochemical and biochemical 
properties of amino acids: conformational parameter for alpha helix and beta-sheet67, hydropathy65, polarity66, 
Grantham’s chemical distance68, Miyata’s amino acid pair distance69 and Mohana’s EMPAR matrix70. In the case 
of indices, we calculated an absolute difference between the corresponding index values for given amino acids 
which are coded by the codon c and d. The matrices and indices were downloaded from AAindex database108. In 
the case when a sense codon was replaced into stop codon, we assumed their costs as the largest value of all amino 
acid substitution costs in the given measure.

To investigate simultaneously an optimization degree of mutational matrices according to the costs of change 
both in hydropathy and polarity, we applied a multiobjective optimization approach. In particular, we considered 
four scenarios of optimizing these costs for mutational matrices:

1. Min, in which both costs were minimized;
2. MaxMin, in which the cost of hydrophobicity change was maximized, whereas the polarity cost was 

minimized;
3. MinMax, in which the cost of hydrophobicity was minimized, whereas the polarity cost was maximized;
4. Max, in which both costs were maximized.

These criteria contain all possibilities in the optimization of two objectives.
The mutational effect exerted by empirical and optimized artificial matrices was investigated based on 

protein-coding sequences from bacterial genomes, for which the empirical mutational pressures were derived. 
The sequences and their annotations were downloaded from GenBank database109 – Table S1. Since differently 
replicated DNA strands in bacterial chromosomes are subjected to distinct mutational pressures, we considered 
the derived pressures and protein-coding sequences from the leading and lagging DNA strands separately. The 
location of these genes according to the DNA strands was deduced based on DNA asymmetry calculated in the 
Oriloc software110.

Algorithm for finding optimized solutions. Evolutionary Multiobjective Optimization (EMO) approach 
is used in many optimization problems due to its simplicity and flexibility. Here, we used a modified version of the 
Strength Pareto Evolutionary Algorithm (SPEA2)111, which is an efficient technique used in many multiobjective 
optimization problems. Moreover, SPEA2 turned out to be very effective in comparison to others and has become 
one of the most important reference point in various recent investigations and applications, see e.g. Zitzler, et 
al.112. It produces a set of optimal solutions called Pareto set, which consists of non-dominated solutions such 
that none of their objective functions can be improved in value without degrading the other objective value. To 

http://S1
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visualize a tendency in solutions, we plotted Pareto fronts, which are sets of objective vectors calculated for ele-
ments from the respective Pareto sets.

The applied algorithm operates on potential solutions divided into parental (regular) and archive (external) 
populations (Fig. 8). The latter represents an approximation of the Pareto set and gathers the final solutions. 
In each optimized matrix case, the initial parental population consisted of 2000 randomly generated candi-
date solutions representing substitution probability matrices, which fulfilled conditions given by equations (4) 
and (5). After evaluation of fitness functions for individuals in the parental and archive populations, all their 
non-dominated solutions were copied into the new archive population. If its size exceeded the assumed limit of 
500 individuals, the set was reduced by a truncation operator. Otherwise, the set was supplemented by the best 
dominated individuals from parental and archive populations. Next, in the mating selection stage, individuals 
from the new archive population were subjected to binary tournament with replacement to fill the mating pool. 
Winning individuals were mutated and recombined to increase variation in the set and then became the parental 
population for the next iteration step of this algorithm.

It is well known that every evolutionary based algorithm is founded on mutation and crossover operators, 
which are responsible for diversity of candidate solutions. Therefore, the most important step in using these 
algorithms is to define the structure of each candidate solution, which allows describing effectively the genetic 
operators. In our case, each candidate solution is uniquely defined by the formula (3). This representation implies 
directly the shape of mutation operator, which is defined as a random shift of vi generated according to the 
Normal distribution N(0, σ). The final value of σ parameter was selected after its tuning during preliminary simu-
lations tests. The crossover operator is a modified version of Linear Crossover LBGA113. It produces an offspring, 
which is a random linear combination of its parents. Obviously, we checked in every case the quality of newly 
produced offspring’s, i.e. if they possess a proper representation of mutational pressure, especially if they fulfil the 
condition given by the formula (5). It follows from the fact that both operators do not guarantee by themselves 
that this condition is hold.

The simulations run with the probability of mutation 0.9 and crossover 0.4 till 2000 steps. For each optimized 
matrix, we performed in total 21 independent runs, from which we collected the best optimized matrices, which 
were Pareto optimal under a given restriction for the objective vector F of fitness functions.

Figure 8. The workflow of the algorithm SPEA2.
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Distance measure of empirical matrices to optimized matrices. To assess the effect of the empirical 
mutational matrices on costs of amino acid replacement in comparison to the optimized matrices, we calculated 
the minimal Euclidean distances mi, i = Min, MaxMin, MinMax, Max between costs produced by the empirical 
matrices and the respective artificial matrices lying on Pareto front that were optimized according to the four 
scenarios. Since the physicochemical indices were in different scales, the distance for the particular physicochem-
ical property was normalized by the maximum cost found in all scenarios. Based on the normalized minimal 
distances, we calculated a relative minimal distance of empirical matrices to Pareto fronts for the individual sce-
narios ri, i = Min, MaxMin, MinMax, Max, which is defined by:

=
+ + +

r m
m m m m (9)i

i

Min MaxMin MinMax Max

Clearly, ri can be used as a quantitative measure of tendencies in optimization of costs in changes of amino 
acid properties by empirical matrices. This parameter has a value from 0 to 1. The small value implies that the 
costs produced by the empirical matrices are similar to those generated by matrices from the respective Pareto 
front (scenario).
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