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ABSTRACT The design of novel antibiotics relies on a profound understanding of
their mechanism of action. While it has been shown that cellular effects of antibiot-
ics cluster according to their molecular targets, we investigated whether compounds
binding to different sites of the same target can be differentiated by their transcrip-
tome or metabolome signatures. The effects of three fluoroquinolones, two aminocou-
marins, and two cystobactamids, all inhibiting bacterial gyrase, on Pseudomonas aerugi-
nosa at subinhibitory concentrations could be distinguished clearly by RNA sequencing
as well as metabolomics. We observed a strong (2.8- to 212-fold) induction of autolysis-
triggering pyocins in all gyrase inhibitors, which correlated with extracellular DNA
(eDNA) release. Gyrase B-binding aminocoumarins induced the most pronounced
changes, including a strong downregulation of phenazine and rhamnolipid virulence
factors. Cystobactamids led to a downregulation of a glucose catabolism pathway. The
study implies that clustering cellular mechanisms of action according to the primary
target needs to take class-dependent variances into account.

IMPORTANCE Novel antibiotics are urgently needed to tackle the growing worldwide
problem of antimicrobial resistance. Bacterial pathogens possess few privileged tar-
gets for a successful therapy: the majority of existing antibiotics as well as current
candidates in development target the complex bacterial machinery for cell wall syn-
thesis, protein synthesis, or DNA replication. An important mechanistic question
addressed by this study is whether inhibiting such a complex target at different sites
with different compounds has similar or differentiated cellular consequences. Using
transcriptomics and metabolomics, we demonstrate that three different classes of
gyrase inhibitors can be distinguished by their molecular signatures in P. aeruginosa.
We describe the cellular effects of a promising, recently identified gyrase inhibitor
class, the cystobactamids, in comparison to those of the established gyrase A-bind-
ing fluoroquinolones and the gyrase B-binding aminocoumarins. The study results
have implications for mode-of-action discovery approaches based on target-specific
reference compounds, as they highlight the intraclass variability of cellular com-
pound effects.
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The rise of antimicrobial resistance (AMR) has been identified as a serious threat for
global health (1). The number of novel antibiotics in clinical development to fight

AMR is small, and most of them represent improved versions of established drug classes.
To acknowledge “innovation,” antibiotic pipeline reports highlight those belonging to a
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new structural class and those with a new mechanism of action (2). However, the latter
classification into new versus old is not clear-cut: for example, does an antibiotic that
addresses a novel binding site on bacterial ribosomes and that causes a distinct arrest of
translation fall into “new” or “old”? A medically relevant criterion concerns the ability of
the new agent to break resistance, whereas a more mechanistic perspective looks at over-
all cellular consequences of antibiotic treatments, e.g., on the cellular transcriptome or
metabolome (3, 4). A series of recent elegant studies has demonstrated that antibiotics
addressing different cellular targets induce differential responses on the metabolome or
transcriptome (5–9). Moreover, the typical response pattern can serve to assign the mode
of action of novel antibacterial compounds (6, 9). The underlying assumption behind
such target-predicting methods, which are also widely applied for the study of eukaryotic
cell biology (10, 11), is that the molecular signatures of bioactive compounds cluster
according to the target, irrespective of their structure.

We wanted to probe this assumption and questioned whether or not antibiotics
that bind to the same target but belong to different structural classes induced distin-
guishable molecular signatures. For this purpose, representatives of three classes of
DNA gyrase inhibitors, the fluoroquinolones, the aminocoumarins, and the recently dis-
covered cystobactamids, were selected and compared with respect to their metabo-
lome and transcriptome effects on the opportunistic human pathogen Pseudomonas
aeruginosa. The Gram-negative, opportunistic pathogen P. aeruginosa is a causative
agent for nosocomial infections and for infections associated with cystic fibrosis, classi-
fied as a priority 1 pathogen by the WHO (12). P. aeruginosa shows substantial resist-
ance to antibiotics by expression of multidrug efflux pumps and establishes infection
by specific virulence factors, such as phenazines and rhamnolipids (13). The gyrase A-
binding fluoroquinolones, in particular ciprofloxacin, constitute a standard treatment
of P. aeruginosa infections (14). Subinhibitory concentrations of ciprofloxacin induce
phenotypic alterations such as a reduction in swimming and swarming (14, 15) but
also modulate the expression of hundreds of genes (14, 16, 17).

Recently, a novel class of gyrase inhibitors, the cystobactamids, were isolated from
the soil myxobacterium Cystobacter sp. (18, 19). It could be shown in gyrase supercoil-
ing assays and gyrase mutant assays that cystobactamids stabilize the gyrase cleavage
complex, indicating that they are type II topoisomerase poisons (18). Cystobactamids
engage the gyrase A subunit for target binding as well as the minor groove of the
bound DNA through the right-hand side of the molecule (20). Medicinal chemistry
efforts lead to cystobactamid analogs like CN-DM-861 and AR351, which showed
improved activities against P. aeruginosa and other bacterial pathogens compared to
those of the natural products (21, 22). As a third class, we included the aminocoumar-
ins, which are competitive inhibitors of the ATP-binding site of the gyrase B subunit
(23). Crystal structures revealed that the deoxy-sugar of the aminocoumarins overlaps
the ATP-binding site and thereby inhibits the catalytic activity of the ATPase (24, 25). In
contrast to cleavage-complex-stabilizing compounds or gyrase poisons, aminocoumar-
ins do not cause DNA double-strand breaks (25).

While transcriptome effects of ciprofloxacin on P. aeruginosa have been reported
before (15–17, 26), this study represents the first integrative and systematic investiga-
tion of the cellular effects associated with gyrase inhibition across three drug classes of
gyrase inhibitors.

RESULTS AND DISCUSSION
Gyrase inhibitors at subinhibitory concentration induce class-specific large-

scale changes in Pseudomonas aeruginosa PA14 transcriptome and metabolome.
In order to identify and compare interclass versus intraclass effects of gyrase inhibitors
on the bacterial transcriptome and metabolome, the P. aeruginosa model strain PA14
was exposed to the three fluoroquinolones ciprofloxacin, levofloxacin, and lomefloxa-
cin, the two aminocoumarins novobiocin and coumermycin A1, and the two cystobac-
tamids CN-DM-861 and AR351 (Fig. 1a). To avoid that the observed effects simply
reflected consequences of altered growth, subinhibitory concentrations were applied
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that did not impair growth until the target optical density (OD) of 0.6, corresponding
to a mid-exponential phase, was reached. We selected the respective 50% inhibitory
concentration (IC50) as the sub-MIC of the compounds (Table 1), as these conditions
did not impair growth but allowed to capture the transcriptional and metabolic
response to the antibiotic challenge after several hours of exposure. The obtained
growth curves were identical, and a minimal retardation of growth for ciprofloxacin-
treated cultures was nonsignificant (Fig. 1b).

The metabolomes and transcriptomes were detected by untargeted liquid chroma-
tography coupled to (tandem) mass spectrometry (LC-MS/MS) and RNA sequencing,
respectively, according to a workflow depicted in Fig. 1c. RNA and metabolites were
isolated from the same cultures at the target OD to ensure correspondence of
transcriptome and metabolome. Metabolites were extracted using 80% methanol,
separated by reverse-phase chromatography, and analyzed using electrospray ioni-
zation-high-resolution time-of-flight mass spectrometry (ESI-QTOF-MS). The extrac-
tion protocol was a compromise in order to access a fraction of primary metabolites
and also to cover the richness of P. aeruginosa’s secondary metabolome. The sec-
ondary metabolome was of particular interest to us because of the emerging

FIG 1 Study design. (a) Chemical structures and names of the antibiotics used in this study. The chemical class (FQ for fluoroquinolones, AC for
aminocoumarins, CY for cystobactamids) is indicated to the left. (b) Growth curves of the P. aeruginosa PA14 cultures after treatment with antibiotics at
IC50. Curves display the mean of biological triplicates, and the error bars show the standard deviation. (c) Multi-omics workflow used for this study.
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understanding that subinhibitory concentrations of antibiotics function as signals to
activate bacterial secondary metabolism (27). Data preprocessing led to a peaktable
with 836 features. After deisotoping and removal of features that stem from internal
standards or the applied gyrase inhibitors, 657 features remained, of which 123
could be annotated (Tables S1 and S3).

After RNA was isolated and purified, the constructed cDNA library was sequenced
on a NovaSeq device (2� 50 bp), followed by short read-alignment, count estimation,
and differential expression analysis.

We first performed a principal-component analysis (PCA) and a hierarchical cluster-
ing on both the transcriptome and metabolome data. All scaled and centered features
were used for the PCA of the metabolomics data, and centered log2-transformed
counts per million (log CPM) data of all 5,979 transcripts were used for the PCA of the
transcriptomics data. The PCA score plots of transcripts showed a complete separation
of the fluoroquinolones, aminocoumarins, cystobactamids, and the untreated controls
for all biological replicates (Fig. 2a). In the PCA score plot of the metabolite features,
the classes were also separated, but the 95% confidence ellipses were more spread
out, and the cystobactamids partially overlapped the fluoroquinolones. For hierarchical
cluster analysis, all pairwise Euclidean distances using the normalized and scaled
metabolite features (Fig. 2b, left) and log CPM values of the transcripts (Fig. 2b, right)
were calculated. For the RNA-Seq data, three main clusters were formed. The amino-
coumarins were grouped in one cluster, with the biological replicates in closest prox-
imity that had the largest distance to all others. The fluoroquinolones spanned a sec-
ond cluster, with levofloxacin replicates in one subcluster and ciprofloxacin and
lomefloxacin in another. The third cluster was split into a cystobactamid subcluster
and into a subcluster with the untreated control replicates, indicating that cystobacta-
mids exerted the smallest effect on PA14 transcriptome and showed the highest simi-
larities to the untreated controls. The clustering of the metabolomics data gave a simi-
lar result, with the clearest separation of the aminocoumarin cluster from the others.
Also, the fluoroquinolones spanned a distinct subcluster. Cystobactamids split into two
subclusters, with AR351 replicates in closer proximity to the fluoroquinolones, whereas
the CN-DM-861 cluster was grouped closer to the untreated control. Overall, fluoroqui-
nolones, aminocoumarins, and cystobactamids have distinct effects on the transcrip-
tome and metabolome of PA14 and can be distinguished according to their class; the
gyrase B-binding aminocoumarins were distant from the gyrase A-binding fluoroqui-
nolones and cystobactamids. The differences cannot be traced back to a technical var-
iance of the method, because both biological replicates of a given compound as well
as different congeners of a compound class (i.e., ciprofloxacin, levofloxacin, and lome-
floxacin) were more similar to each other than to members of other classes. While a
complete separation was achieved for the transcriptome data, metabolome data had a
broader spread. This can be explained with the higher experimental variability of the
metabolomics extraction protocol. In addition, the expression values of all 5,979 tran-
scripts were assessed, whereas only the midpolar fraction with an emphasis on second-
ary metabolites of the PA14 metabolome was sampled, thus obscuring a potential
class separation by nonrepresented metabolites undetected.

TABLE 1 Antibacterial activities and number of regulated transcripts and metabolite features of gyrase inhibitors

Antibiotic Class
MIC
(mg/ml) IC50 (mg/ml)

No. genes
upregulateda

No. genes
downregulateda

No. features
upregulateda

No. features
downregulateda

Ciprofloxacin Fluoroquinolone 0.1 0.06 343 179 63 87
Levofloxacin Fluoroquinolone 0.2 0.1 172 45 20 77
Lomefloxacin Fluoroquinolone 1.2 0.3 203 71 32 83
Novobiocin Aminocoumarin 388 213 277 444 48 176
Coumermycin A1 Aminocoumarin 5.3 3.8 512 825 123 165
CN-DM-861 Cystobactamid 3.9 1.8 163 14 60 10
AR351 Cystobactamid 2.4 2.2 86 8 154 41
aDifferentially expressed genes (fold change. 2, FDR, 0.05), differential abundance of metabolite features (fold change. 1.5, P, 0.05).

Franke et al.

July/August 2021 Volume 6 Issue 4 e00610-21 msystems.asm.org 4

https://msystems.asm.org


To pinpoint the transcripts and metabolites that contribute to class separation, their
relative abundances, expressed as fold changes in comparison to those of the
untreated controls, and the associated P values were calculated for all analytes. Cutoffs
for fold change of 2 for the transcripts and of 1.5 for the metabolite features were
applied. The number of transcripts and metabolite features that are regulated by all
members of one inhibitor class are shown in Table 2, and those that are jointly

FIG 2 Global outcome of transcriptome and metabolome analysis. (a) Principal-component analysis (PCA) scores plots. Left, metabolome, calculated from
all scaled and centered metabolite features; right: transcriptome, centered log CPM expression data of all genes. (b) Hierarchical clustering using Ward’s
linkage criterion. Left, metabolome, Euclidean distances calculated from all normalized and scaled metabolic features; right, transcriptome, Euclidean
distance calculated from log CPM expression values. (c) Venn diagram displaying the numbers of differentially abundant metabolic features and transcripts
for each class of gyrase inhibitors compared to untreated controls (total numbers in black, numbers in red show up-/downregulated features or genes).
Left, differentially abundant metabolic features (log2fold change [FC] . log2[1.5] or log2FC , 2log2[1.5] and P, 0.05); right, differentially expressed genes
(log2FC. 1 or log2FC , 21 and FDR, 0.05).
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regulated by all members of two or all three classes are depicted in Venn diagrams
(Fig. 2c). The degree of regulation found for transcriptome and that found for metabo-
lome correlate well. The numbers of significantly regulated transcripts and differen-
tially abundant metabolites differed strikingly between the antibiotic classes (Tables 1
and 2 and Tables S2 and S3): whereas cystobactamids affected the smallest number of
transcripts and metabolic features, the aminocoumarins induced differential effects in
the highest number of genes and metabolic features. Particularly regarding downregu-
lation of transcripts and feature levels, the aminocoumarins had by far the most pro-
nounced effect. The fluoroquinolones in comparison also induced upregulation of 154
genes (intersection of the three fluoroquinolones used) but had fewer downregulating
effects (Tables 1 and 2). Aminocoumarins also had the highest number of differentially
regulated transcripts and metabolic features that are not shared with the two other
classes. The Venn diagrams in Fig. 2c show the intersections of the transcripts and met-
abolic features that are jointly affected by two or three classes of gyrase inhibitors. The
pool of transcripts and metabolic features used to construct the Venn diagrams was
created by taking the intraclass intersections of regulated transcripts and differentially
abundant metabolic features (i.e., regulated transcripts/features shared by all com-
pounds of a class). Overall, the numbers of jointly regulated transcripts and metabolite
features (59 and 21, respectively) are far smaller than the numbers of analytes affected
by only one (up to 394 transcripts and up to 108 metabolite features) or two classes
(up to 47 transcripts and up to 36 metabolite features). Thus, a striking result of this
summary analysis is that the three classes of gyrase inhibitors have widely differing
(rather than similar) imprints on PA14 transcriptome and metabolome with respect to
the cutoff criteria. In the following section, we go through the most striking changes
that are caused by gyrase inhibitor perturbation.

Gyrase inhibitors of all classes induce SOS responses. Gyrase poisoning and the
resulting DNA double-strand breaks according to previous studies (28) induce the SOS
response, which is characterized by RecA-mediated LexA-induced gene expression.
Because the LexA regulon of P. aeruginosa was first described for PAO1 (16), the PAO1
locus IDs were mapped to the PA14 genome using the BACTOME annotator (29). All
gyrase inhibitors investigated in this study induced upregulation of the LexA regulon,
albeit to different extents (Fig. 3a). The strongest induction was found for ciprofloxacin,
followed by the other fluoroquinolones, whereas the cystobactamids had weaker
effects. Surprisingly, the LexA regulon was also induced by the aminocoumarins,
although they do not directly cause DNA double-strand breaks. A possible explanation
is that DNA damage is caused not only by gyrase A poisoning but also through the
action of reactive oxygen species (ROS). In fact, Collins and coworkers have shown that
bactericidal antibiotics induce hydroxyl radical formation through an oxidative damage
pathway, which then triggers RecA and the DNA damage response (30). The presence
of ROS triggers cellular protective responses to oxidative modifications of proteins
(e.g., carbonylation) (31). We indeed observed an upregulation of chaperones and heat
shock proteins indicating protein damage (Fig. 3a). Thus, we speculate that the amino-
coumarins elicit a strong protective response to ROS via upregulation of heat shock
proteins and chaperones and a subsequent RecA-mediated SOS induction without
causing direct DNA damage.

TABLE 2 Number of regulated transcripts and metabolite features shared by all members of
a gyrase inhibitor class

Class
No. genes
upregulateda

No. genes
downregulateda

No. features
upregulateda

No. features
downregulateda

Fluoroquinolones 154 16 11 49
Aminocoumarins 206 297 33 142
Cystobactamids 83 8 37 8
aDifferentially expressed genes (fold change. 2, FDR, 0.05), differential abundance of metabolite features (fold
change. 1.5, P, 0.05).
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Strong upregulation of pyocin regions and Alp pathway and detection of eDNA
verify self-cell lysis in response to gyrase inhibitor treatment. The most pro-
nounced upregulation of gene expression as a consequence of gyrase inhibitor treat-
ment could be mapped to the so-called prophage R/F-pyocin region of PA14. The
effect was strongest for fluoroquinolones; in particular, ciprofloxacin induced up to
212-fold changes in transcript abundance (log2 fold change of 7.73) (Fig. 3b).

The upregulation of the R/F-pyocin region within the PAO1 genome was described
in response to the treatment with hydrogen peroxide as a consequence of oxidative
stress (32). It was also observed as a consequence of ciprofloxacin treatment of P. aeru-
ginosa strains PAO1 and PAK (26, 33). We mapped the PAO1 locus IDs to orthologs in
the PA14 genome and found exactly the same region to be affected by each gyrase in-
hibitor used in this study.

Pyocins are protein toxins that are used in interspecies competitions against the
same or closely related strains. P. aeruginosa produces three types of pyocins: The S-
type pyocin is a colicin-like protein, and the R- and F-type pyocins are derived from
phage tails and are evolutionary specialized as bacteriocins (13). It has been shown
that clinical isolates of P. aeruginosa produce distinct ranges of pyocins, which

FIG 3 (a) Heatmap of differentially expressed genes of the SOS regulon, as defined by Cirz et al. (16), heatshock and chaperone genes, S-pyocins, and the
Alp cell lysis pathway. PAO1 locus tags were mapped to PA14 locus tags where necessary. Numbers display the log2 fold change (log2FC) in comparison to
the untreated control, which is also translated into the color scale. Number of asterisks denotes FDR thresholds: ***, 0.001; **, 0.01 *, 0.05. (b) Heatmap of
differentially expressed genes of the prophage/RF-pyocin region. (c) Quantification of eDNA from planktonic cultures of PA14 at OD of 0.6, treated with
ciprofloxacin (n = 4), novobiocin (n= 4), CN-DM-861 (n= 4), and buffer control (n= 4). The P values were determined by ordinary one-way analysis of
variance (ANOVA) with Bonferroni’s multiple-comparison test (F = 1,047.0; df = 15). Error bars show standard deviation. (d) Scheme showing endolysin-
mediated autolysis in P. aeruginosa adapted from reference 13.
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influence biofilm formation and the strain composition in the cystic fibrosis (CF) lung
(34) and thus clinical outcome. The R/F-pyocin region is regulated by prtN, a positive
regulator of pyocin production under the control of the prtR repressor. RecA causes
the autocleavage of PrtR, leading to the expression of prtN and upregulation of expres-
sion of pyocins (35), and thereby links the SOS response directly to pyocin induction.

In fact, there is a qualitative correlation between the strength of SOS response and
pyocin production by the different gyrase inhibitors in this study. Novobiocin treat-
ment causes the weakest SOS induction and also the weakest pyocin induction,
whereas ciprofloxacin is the strongest inducer for both processes.

Within the R/F-pyocin region, a putative holin protein (PA14_07990) and the endo-
lysin Lys (PA14_08160) are encoded. According to Turnbull et al., Lys crosses the inner
membrane via holin proteins and degrades the peptidoglycan cell wall, which eventu-
ally leads to cell lysis (36) (Fig. 3d). Self-lysis is also induced by the holin protein AlpB
through the Alp pathway (37). Cleavage of the regulator AlpR leads to derepression of
the alpA gene, which encodes a positive regulator that activates the expression of the
alpBCDE lysis cassette (37). The Alp pathway contributes to the lethality for the individ-
ual cell, although the whole population might benefit by release of eDNA and biofilm
formation.

We found that both lys and the Alp pathway were consistently upregulated, again
with the fluoroquinolones eliciting the strongest effects, followed by the cystobacta-
mids, whereas the aminocoumarins induced the smallest fold changes.

The autolysis of a fraction of the P. aeruginosa population should lead to the release
of DNA into the medium. We therefore investigated whether the induction of the RF-
pyocin region correlated with the amount of released extracellular DNA (eDNA). For
this purpose, eDNA was quantified following a protocol by Allesen-Holm et al. using
the same cultivation conditions as for the omics experiments (38), with one representa-
tive of each gyrase inhibitor class (Fig. 3c). For ciprofloxacin, the eDNA concentration
of 261.28mg/ml released to the medium exceeded the control value of 18.86mg/ml by
far (P, 0.0001). Also, the treatment with the cystobactamid CN-DM-861 led to a signifi-
cant increase of eDNA (51.48mg/ml, P, 0.001). In contrast, novobiocin induced no stat-
istically significant difference compared to the control. We also tested for association
between the expression of the endolysin lys in CPM and the amount of eDNA detected
in mg/ml and obtained a Spearman rank correlation coefficient r of 1 (P=0.083), indi-
cating a strong positive correlation (Fig. S1). This is a clear hint that indeed the postu-
lated mechanism of endolysin/holin upregulation leads to degradation of the peptido-
glycan layer, destabilization of the cell wall, and finally autolysis of the bacterial cell.
Self-lysis may contribute substantially to the efficacy of gyrase inhibitors, irrespective
of their class.

Aminocoumarins induce a strong downregulation of virulence factors. The
pathogenicity of P. aeruginosa is strongly mediated by low-molecular-weight virulence
factors, including the phenazines, the rhamnolipids, and quorum-sensing mediators
(39). The phenazines are redox-active heterocycles that contribute to pathogenesis by
subjecting host cells to harmful oxidative stress (40). Two almost identical operons
(phz1 and phz2) code for the phenazine biosynthesis pathway, which produces phen-
zine-1-carboxylic acid as the precursor for all other phenazines, that is further con-
verted to pyocyanin by PhzM and PhzS (41).

We observed a strong downregulation of both phz1 and phz2 operons for amino-
coumarin-treated samples (Fig. 4a). Correspondingly, the concentrations of phenazine
metabolites like phenazine-1-carboxylic acid and pyocyanin were strongly decreased
(Fig. 4b and Table S2). Smaller or nonsignificant downregulating effects were exerted
by fluoroquinolones and cystobactamids, respectively.

The rhamnolipids, glycolipids with surfactant-like properties, span another class of im-
portant virulence factors, because they enable P. aeruginosa to eliminate leucocytes and
evade the most important immune mechanisms in the CF lung (13). The transcripts rhlA,
rhlB, and rhlC, which encode key enzymes that attach the fatty acids to rhamnose units,
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were strongly downregulated upon aminocoumarin treatment (Fig. 4a). In line with this,
decreased rhamnolipid concentrations were found in the metabolome (Fig. 4b). Thus, a
differentiating property of the aminocoumarins, reflected on the transcriptome and
metabolome level, lies in their strong downregulating effect on virulence factors.

Cystobactamids induce a unique downregulation of a glucose catabolism
pathway. The only consistently downregulated pathway we found for the cystobacta-
mids concerns two operons that were not fully annotated in the PA14 genome but
could be matched to the 2-ketogluconate utilization operon of PAO1 (42) and the gad
(gluconate dehydrogenase) operon (43) (Fig. 5).

P. aeruginosa metabolizes glucose exclusively via the Entner-Doudoroff pathway
(44). Glucose enters the periplasm via an OprB porin and is then metabolized via three
parallel routes that all converge on 6-phosphogluconate (45) (Fig. 5a). One of the
routes comprises the 2-fold oxidation of glucose to gluconate and further to 2-keto-
gluconate in the periplasm, the transport of 2-ketogluconate to the cytoplasm, its
phosphorylation by KguK to 2-keto-6-phophogluconate, and a final reduction to 6-
phosphogluconate, which enters the Entner-Doudoroff pathway. This branch was
selectively downregulated by cystobactamid treatment, whereas fluoroquinolones or
aminocoumarins induced weak or nonsignificant effects. However, it is unclear
whether addressing this arm of primary metabolism has an impact on the overall glu-
cose metabolism of P. aeruginosa PA14. For P. aeruginosa PAO1, it has recently been
shown by flux analysis approaches that approximately 90% of its glucose is oxidized
into gluconate via the periplasmic route (46). Strikingly, the porin OprB, which medi-
ates glucose uptake across the outer membrane, was strongly downregulated for the
fluoroquinolones (2- to 4-fold), less (1.6- to 2.6-fold) for the aminocoumarins, and only
1.3- to 1.7-fold for the cystobactamids. In the case of the cystobactamids, glucose utili-
zation was additionally diminished by downregulating enzymes of the 2-ketogluconate
utilization operon, whereas for the other two classes, this effect was achieved by regu-
lating OprB alone.

General discussion. Efforts to use untargeted metabolomics for mode-of-action
studies of bioactive compounds rely on the assumption that molecules addressing a
given target induce similar molecular signatures. The current study puts a note of cau-
tion on this assumption by demonstrating that there are clear differences depending
on the drug class. Unsurprisingly, these were pronounced when different subunits
with distinct functions, i.e., gyrase A versus gyrase B, were targeted. But even

FIG 4 (a) Heatmap displaying log2FC values and FDR values for two phz operons coding for phenazine biosynthesis (blue) and the genes rhlABC coding for
rhamnolipid synthesis (red). Number of asterisks denotes FDR thresholds: ***, 0.001; **, 0.01; *, 0.05. (b) Box plots displaying the distributions of the
abundance of representative metabolites of the phenazine and rhamnolipid class. Asterisks denote P values for comparison to the untreated controls
(***, 0.001; **, 0.01; *, 0.05).
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compounds addressing proximal binding sites on the same subunit like fluoroquino-
lones and cystobactamids could be differentiated by the transcriptomic, and to a lesser
extend metabolomic, changes they induce in Pseudomonas aeruginosa PA14. A part of
the discrimination can be attributed to differing sizes of effects going to the same
direction, with some treatments falling above cutoff criteria and others below, whereas
strong and significant effects going into opposite directions are rare. Thus, the cellular
effects of different gyrase inhibitors are not fundamentally different. However, the find-
ings have implications for mode-of-action assignments based on correlation methods.
Ideally, more than one drug class for given targets or mechanisms is required to prop-
erly validate an inter- versus intratarget spread of signatures.

In this gyrase study, the aminocoumarins stand out by exerting the broadest effect
and inducing the highest number of differentially regulated genes/metabolite features.
We noted their strong downregulation of phenazines and rhamnolipids, important vir-
ulence factors of P. aeruginosa. The pronounced anti-virulence activity even at subinhi-
bitory concentrations suggests a potential role for aminocoumarins as pathogenicity
blockers of P. aeruginosa infections beyond that of a classical antibiotic, in particular
when combined with compounds that exert synergism in PA14 like chlorhexidine or
colistin (47).

Exposure to aminocoumarins also led to a surprisingly strong SOS response, which
has been a hallmark of gyrase A poisoning. This observation contrasts a study in
Staphylococcus aureus that describes an inhibiting effect of novobiocin at higher, not
subinhibitory, concentrations on the ciprofloxacin-induced SOS response (48). On the
other hand, the activation of the SOS response has been observed in Escherichia coli
(49) and in Bacillus subtilis (50) following aminocoumarin treatment. We speculate that
reactive oxygen species, indicated by an upregulation of stress response genes, are
mediating DNA damage and subsequent induction of the SOS response.

The fact that aminocoumarins induce a much higher number of differentially
expressed genes could be explained by the different inhibition mechanism of the
gyrase. The DNA gyrase introduces negative supercoils in an ATP-dependent manner
to maintain the DNA in an underwound state (51). By blocking the ATP-binding site,
aminocoumarins cause partial relaxation toward a relaxed state (51). It has been shown
that gene expression is directly influenced by the degree of supercoiling, with some
genes showing enhanced expression when DNA is relaxed, while others are more

FIG 5 (a) Scheme of glucose utilization pathways in Pseudomonas subspecies, adapted from references 73 and 74. OM, outer membrane; PS, periplasmic
space; IM, inner membrane; Gcd, glucose dehydrogenase; Gad, gluconate dehydrogenase; GntP, gluconate transporter; KguT, 2-ketogluconate transporter;
Glk, glucokinase; GnuK, gluconate kinase; KguK, 2-ketogluconate kinase; Zwf, glucose-6-phosphate dehydrogenase; Pgl, 6-phosphogluconolactonase;
KguD, 2-keto-6-phosphogluconate reductase. Downregulated enzymes are shown in red. (b) Heatmap displaying log2FC values and FDR values for the 2-
ketogluconate (kgu) utilization operon (42) and the gad operon coding for the enzymes involved in transport and conversion of 2-ketogluconate into 6-
phosphogluconate, which is then funneled into the Entner-Doudoroff pathway as shown in panel a (43). Number of stars denote FDR thresholds: ***, 0.001;
**, 0.01; *, 0.05.
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highly expressed when negative supercoils are introduced (51, 52). Several studies
demonstrate an effect of supercoiling on transcription initiation and detect bacterial
genes that exhibit changes in expression that correlate with changes in DNA supercoil-
ing (51–53). Increased amounts of exposed single-stranded DNA (ssDNA) as a conse-
quence of negative supercoiling induced by the aminocoumarins provide an alterna-
tive explanation for the triggering of the SOS response (54). The binding of RecA to
ssDNA leads to an increased proteolytic cleavage of LexA by RecA, thereby inducing
expression of the LexA regulon (55).

A potential contributor to the observed differences between classes is off-target
effects. Network-based approaches led to the finding that an average number of target
proteins per drug of 6.3 can be calculated (56). Chemical proteomics approaches have
revealed that it is also not uncommon to find multiple targets for antibiotics (57). For
instance, vancomycin was found to inhibit the major staphylococcal autolysin Atl in
addition to the primary mechanism of action exerted by binding to the dipeptide ter-
mini of peptidoglycan (58). Novobiocin inhibited the eukaryotic heat shock protein
HSP90 by interacting with an ATPase binding domain (59), and an inhibition of bacte-
rial ATPases might in principle contribute to the unique aminocoumarin signature
observed here. The risk of hitting off-targets was deemed to be particularly high for
novobiocin, because the applied IC50 was substantially higher than those of the other
antibiotics. However, the number of regulated genes and features was actually 2-fold
lower than that for coumermycin, which was applied at an IC50 in the low mM range,
comparable to the other substances.

A striking finding of our study concerns the strong induction of pyocin production,
ultimately leading to auto cell lysis, as demonstrated by the detection of eDNA. Pyocin
upregulation in P. aeruginosa has been detected before, after triggering by hydrogen
peroxide, ciprofloxacin, or genotoxic agents such as mitomycin C (32, 36–38, 60, 61).
We show that the level of pyocin induction depends very much on the inhibitor class,
with the fluoroquinolones inducing the strongest effects, and that the release of eDNA
correlates directly with the endolysin expression. Evolutionarily, this altruistic suicide
(36) of a bacterial subpopulation only makes sense by providing a survival advantage
for the whole population, e.g., by releasing eDNA and enhancing biofilm formation
(35). In fact, biofilm formation has been shown to drastically impair the efficacy of anti-
biotics such as fluoroquinolones (62). While this caveat concerns all compounds stud-
ied here, it remains to be probed whether the less pronounced pyocin induction of
cystobactamids may translate to advantages in terms of biofilm formation.

Conclusions. Through a combination of transcriptomics and metabolomics, we
demonstrated that the molecular signatures induced by three classes of gyrase inhibi-
tors differ from each other. The findings enhance our understanding on the mode of
actions of these important current (fluoroquinolones, aminocoumarins) and potential
future (cystobactamids) antibiotics. They also suggest that signature correlation meth-
ods for target identification should consider intra-target-class variances. The differen-
tial effect of the three gyrase inhibitor classes is likely being caused by a combination
of on- and off-target effects. To tease these effects apart, we plan to use resistant
mutants of PA14 with strongly reduced target affinity. Another logical expansion of
the approach to further gyrase A and B inhibitor classes, or to other prominent antibi-
otic targets (e.g., protein translation, cell wall synthesis), is also subject to future
studies.

MATERIALS ANDMETHODS
Reagents. Cystobactamids CN-DM-861 and AR351 were synthesized in the lab of the corresponding

author according to reference 21. Ciprofloxacin was purchased from AppliChem. Coumermycin A1, levo-
floxacin, lomefloxacin HCl, novobiocin sodium salt, trimethoprim, nortriptyline HCl, caffeine, (NH4)2SO4,
and Fe(II)SO4 7�H2O were obtained from Sigma-Aldrich. Glipizide was purchased from ACROS Organics,
and (S)-naproxen was purchased from Cayman Chemical Company. D(1)-Glucose monohydrate and
K2HPO4 were obtained from Merck Millipore, and MgSO4 7�H2O and casamino acid were obtained from
Roth. Acetonitrile ultra LC/MS grade, water ultra LC/MS grade, and methanol ultra LC/MS grade were
obtained from Fisher Scientific.
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Bacteria. The Pseudomonas aeruginosa PA14 strain was obtained from the DSMZ (DSM 19882).
MIC and IC50 determination via microdilution method.MIC values were determined following the

microdilution method but using BM2 medium instead of Mueller-Hinton broth. A starting OD of 0.1 of
Pseudomonas aeruginosa PA14 was used as inoculum in BM2 medium. Cultivation at 37°C was carried
out in microtiter plates.

Compounds were serially diluted in 96-well microtiter plates in triplicate. After incubation of the
plates for 18 h at 37°C, the absorbance at 600 nm was measured to determine the MIC value and the
IC50 value. We used a Gompertz function to fit the data in R and determine the IC50 and MIC according
to Lambert and Pearson (63).

Bacterial culture and addition of gyrase inhibitors. For profiling of the effects of gyrase inhibitors
on the Pseudomonas aeruginosa PA14 metabolome and transcriptome, planktonic bacteria were culti-
vated to mid-exponential phase (OD600 = 0.6) in the presence of subinhibitory concentration of the
antibiotic.

A preculture was prepared by inoculation of 20ml BM2 medium [2mM (NH4)2SO4, 40mM K2HPO4,
22mM KH2PO4, 2mM MgSO4, 10mM FeSO4, 0.4% (wt/vol) glucose, 0.01% (wt/vol) Casamino Acids] with
Pseudomonas aeruginosa PA14 from the glycerol stock. The preculture was shaken (150 rpm) overnight
at 37°C. The 1:10 diluted preculture was then used to calculate the precise dilution to inoculate a 20ml
BM2 culture at an OD600 of 0.05. Immediately after adjusting the starting OD, the amount of gyrase inhib-
itor that resulted in the concentration corresponding to the IC50 that was determined via the broth
microdilution method was added to the culture (see Table 1).

The compounds were added from a dimethyl sulfoxide (DMSO) stock solution, apart from lomefloxa-
cin and novobiocin that were added from an H2O stock solution. For each flask it was ensured that the
same amount of DMSO was added, so in the case of lomefloxacin and novobiocin, 10.1 ml of DMSO was
additionally added, and for the untreated control we used a mock treatment of 10.1 ml DMSO as well.
For each gyrase inhibitor that was tested and for the control, three independent 20 ml main culture
flasks were prepared and incubated at 37°C and 150 rpm until an OD of 0.6 was reached. The OD was
monitored regularly and growth curves were recorded. At the target OD of 0.6, 2 ml of culture was trans-
ferred to an Eppendorf tube and centrifuged for 5min (9,000 � g, 4°C) for metabolomics measurements.
The supernatant was discarded, and the pellet was washed with 0.9% NaCl and frozen with liquid nitro-
gen. For RNA-Seq measurements of the same sample, 0.75ml from the same culture (at OD of 0.6) was
added to an Eppendorf tube with 0.75ml RNAprotect (Qiagen, Hilden, Germany), briefly agitated, and
left for 10min at room temperature. After centrifugation at 8,000 rpm, the supernatant was removed
and frozen with liquid nitrogen.

Measurements of extracellular DNA in planktonic culture. Culture samples of P. aeruginosa PA14
were cultivated and treated with ciprofloxacin, novobiocin, or CN-DM-861 as described in the section
above.

To quantify the amount of extracellular DNA (eDNA) in planktonic cell culture, we employed the
method described by Allesen-Holm et al. (38). After reaching the target OD of 0.6, cultures were centri-
fuged (3min, 10,000 rpm) and the supernatant was transferred to a new Eppendorf tube. NaCl solution
(2.5 M) was added to the supernatant to a concentration of 0.25 M. After vortexing, a 2:1 volume of etha-
nol was added to precipitate the DNA. After vortexing and standing for 5min, the suspension was centri-
fuged (10min, 16,000 rpm) and the supernatant was removed with a pipette. The residue (eDNA) was
dissolved in Tris-EDTA (TE) buffer and thoroughly vortexed. The amount of eDNA was quantified by
measuring the OD260 and using TE buffer as a reference. Four independent cultures (biological repli-
cates) were used for each treatment.

Metabolomics extraction and LC-MS analysis. For the analysis of the intracellular metabolome,
cell pellets were extracted with 500ml 80% methanol containing caffeine (0.1mg/liter), nortriptyline
(0.1mg/liter), glipizide (0.3mg/liter), and naproxen (0.8mg/liter) as internal standards. Extraction was
achieved through shaking vigorously for 5min and sonication in an ultrasonic bath for 20min at 0°C.
After centrifugation (13,000 rpm, 4°C), 400 ml of the supernatant was concentrated to dryness using a
SpeedVac and resuspended in 40 ml acetonitrile/water (1:1, containing 0.1% [vol/vol] formic acid) using
ultrasonication for dissolving the residue.

For each sample, 1ml was analyzed by reversed phase ultrahigh-performance liquid chromatography
coupled to quadrupole time-of-flight mass spectrometry. In addition, a pool sample was prepared by
mixing 5ml of each sample.

The samples were separated using ultra high-performance liquid chromatography, performed on a
Dionex Ultimate 3000 UPLC system (Thermo Fisher Scientific, Waltham, MA) using a 150 by 2.1mm
Kinetex C18 column with 1.7-mm particle size (Phenomenex, Aschaffenburg, Germany) column with a
flow rate of 300ml/min.

Gradient elution with water with 0.1% (vol/vol) formic acid as eluent A and acetonitrile with 0.1%
(vol/vol) formic acid as eluent B was run as follows: 1% B for t= 0min to t= 2min, linear gradient from
1% B to 100% B from t= 2 min to t= 20 min, hold 100% B until t=25 min, and linear gradient from 100%
B to 1% B from t= 25 min to t= 30 min.

The samples were analyzed by positive mode electrospray ionization quadrupole time-of-flight mass
spectrometry on a maXis HD QTOF (Bruker, Bremen, Germany) in full scan mode (50 to 1,500Da).
Accurate masses were obtained by internal calibration using an ion cluster of sodium formate and lock
mass calibration. The pooled sample was analyzed using data-dependent MS/MS by collision-induced
dissociation of the three most abundant ions in each scan, making use of Bruker’s “Smart Exclusion”
functionality to minimize multiple fragmentation of the same ion.
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RNA isolation and library preparation and sequencing. The bacterial suspensions treated with
RNAprotect (Qiagen) were stored at 280°C. Libraries for transcriptomics were generated according to
references 64 and 65.

RNA samples were quality checked by the use of the RNA Nano kit with an Agilent Bioanalyzer 2100
(Agilent Technologies, CA, USA). To remove rRNA, the Ribo-Zero bacteria kit (Illumina, CA, USA) was
used. Samples were sequenced in paired-end mode on an Illumina NovaSeq 6000 device (2� 50 bp).

Bioinformatics processing of metabolomics data. LC-MS data generated with the Bruker maXis
HD mass spectrometer were converted to the mzXML format from the Bruker centroid data using Bruker
Compass Xport. Preprocessing of the mzXML raw files was carried out using XCMS (version 3.4.4) (66) as
follows.

For peak picking, the centWave algorithm was employed with parameter settings peakwith from 5
to 25 s, ppm=10, snthresh = 100, mzdiff = 0.01, prefilter = c(2, 1000), noise = 100. For chromatogram
alignment, the obiwarp algorithm was used with default settings, and grouping of peaks from different
samples was achieved by using the group.density function with settings bw=5, mzwid= 0.015,
minfrac = 0.5, minsamp= 1.

Feature annotation (isotopic features and adduct formations, dimers, multimers, neutral losses) was car-
ried out using the CAMERA package (version 1.38.1) (67) with parameters perfwhm=0.6, mzabs=0.01,
cor_eic_th=0.75.

Further processing of the peak table employed an in-house script involving the following steps. A
retention time filter (features with a retention time lower than 50 s or higher than 1,200 s were removed
from the peak table) was employed to get rid of the sodium formate cluster peak and the signals arising
from impurities that elute during washing of the column with 100% acetonitrile. To account for experi-
mental variability, peak areas were normalized using the internal standard nortriptyline. After removal of
all features belonging to internal standards, the data for each sample were further normalized through
the use of the OD at harvest of the respective culture as a proxy for cell number. Missing value imputa-
tion was carried out using the imputeRowMinRand function of the XCMS package, which replaces miss-
ing values with random numbers from a normal distribution based on the row minimum. For metabolite
identification, tandem mass spectra recorded from a pooled sample were compared to an in-house data-
base of spectra from authentic standards and/or metabolite databases using the Bruker DataAnalysis
software (version 4.0, for results see Tables S1 and S3). To perform hierarchical clustering, the data set
was scaled, Euclidean distance was utilized as distance measure, and Ward’s method was utilized as link-
age criterion. For PCA, the data set was scaled and centered. To identify significantly abundant features,
Welch’s t test was used and a threshold of log2(fold change) of log2(1.5) or greater and of 2log2(1.5) or
lower, respectively, with a P value of ,0.05 was applied. The raw data are deposited as MassIVE data set
MSV000086820 (https://massive.ucsd.edu/). The R scripts used for preprocessing and analyzing the data
are deposited in a GitHub archive: https://github.com/raimofranke/PA14_gyr_inhibitors.

Bioinformatics processing of transcriptomics data. Short reads were aligned to the UCBPP-PA14
reference genome (NC_008463, available for download from the Pseudomonas genome database, http://
pseudomonas.com) using the subread algorithm (68) implemented in R (R version 3.5.3, Foundation for
Statistical Computing, Vienna, Austria; Rsubread version 1.32.4) (69). Count estimation was performed
using the featureCounts function (70) as implemented in Rsubread. Differential gene expression analysis
was performed using the R package edgeR (version 3.24.3) (71). Trimmed mean of M-values (TMM) nor-
malization was performed, followed by quasi-likelihood F-test to test for significant differential expres-
sion in each gene (glmQLFTest-function). To correct for multiple testing, the Benjamini Hochberg proce-
dure was used to calculate the false discovery rate (FDR). For the identification of differentially
expressed genes between gyrase inhibitor treatment and untreated control, a threshold of log2(fold
change) of 1 or greater and of 21 or lower, respectively, with FDR of ,0.05 was applied. For clustering
and PCA, moderated log counts per million (log CPM) were calculated using the CPM function. For PCA,
centered log CPM data were used. For hierarchical clustering, the log CPM data were used with
Euclidean distance as distance measure and Ward’s method as linkage criterion. For annotation of the
results table (Table S2) with KEGG pathway, GO term, and pseudoCAP class information, the annotator
functionality of the BACTOME database was used (29).

Data and code availability. The RNA-Seq data generated during this study have been deposited in
NCBI’s Gene Expression Omnibus (72) and are accessible through GEO series accession number
GSE166602. The metabolomics data have been deposited in the MassIVE database (https://massive.ucsd
.edu/) under accession number MSV000086820. The R scripts used for processing the RNA-Seq, metabo-
lomics data, and generation of figures have been deposited in a GitHub archive: https://github.com/
raimofranke/PA14_gyr_inhibitors.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 2.4 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, XLSX file, 1.5 MB.
TABLE S3, XLSX file, 0.5 MB.
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