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Abstract: Presented here are five members of a family that was ascertained from an isolated,
consanguineous, indigenous Amerindian community in Colombia that was affected with calpain
3-related, limb-girdle muscular dystrophy type R1. These patients are homozygous for a unique
and novel deletion of four bases (TGCC) in exon 3 of the calpain 3 gene (CAPN3) (NM_000070.2;
NP_000061.1) (g.409_412del). The mutation site occurs at the CysPc protein domain, triggering
a modified truncated protein structure and affecting motifs within the calpain-like thiol protease
family (peptidase family C2) region. The patients reported here developed a very severe phenotype
with primary contractures, spinal rigidity in the early stages of the disease, and bilateral talipes
equinovarus (clubfoot) in the most affected patients who had the selective involvement of their
extremities’ distal muscles in a way that resembled Emery–Dreifuss syndrome. We recommend
mandatory screening for calpainopathy in all patients with an Emery–Dreifuss-like syndrome or
those presenting a non-congenital illness with primary contractures and who, because of other data,
are suspected of having muscular dystrophy.

Keywords: calpain 3-related, limb-girdle muscular dystrophy type r1; calpain gene; calpainopathy;
Emery–Dreifuss-like syndrome; novel mutation; deletion; clinical presentation; Amerindian
populations; founder effect

1. Introduction

In 1954, John Walton and Frederick Nattrass described limb-girdle muscular dystrophy (OMIM:
253600) as muscular weakening with an onset during the first three decades of life, which follows an
autosomal recessive model of inheritance, and which affects either the shoulder or pelvic girdle but
without the compromise of both the facial muscles and the pseudohypertrophy of the calves [1–3].

In 1991, by studying families from “La Reunion Island,” Jacques Beckmann linked this phenotype
to a minimal critical region (MCR) that is harbored in chromosome 15q [4]. Later, it was found that
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mutations that are harbored in this 15q MCR in the Homo sapiens CAPN3 gene—which encodes the
proteolytic enzyme calpain-3—are the cause of this phenotype (named muscular dystrophy, limb-girdle,
type 2a; muscular dystrophy, limb-girdle, type 2; Lgmd2, muscular dystrophy, pelvofemoral,
Leyden-Moebius muscular dystrophy, calpainopathy, limb-girdle muscular dystrophy type 2a, Lgmd2a,
and calpain 3-related, limb-girdle muscular dystrophy type R1, Lgmdr1) [5].

Additional studies of this phenotype were carried out in genetically isolated, endogamous
communities from the Basque Country region [6], the Amish Community [7], Turkey [8], and the Italian
Alps [9]. The term calpainopathy was coined to identify the cluster of signs and symptoms that define
the phenotype that originated as consequence of pathogenic mutations that are harbored in the CAPN3
gene. Furthermore, Pollitt et al. (2001) and Mercuri et al. (2005) independently reported on a variant of
clinical expression of calpainopathy that showed spinal rigidity and early primary contractures [10,11].

In this report, we characterize an indigenous Amerindian, consanguineous family by segregating a
novel deletion of four bases (TGCC) in exon 3 of the calpain 3 gene (CAPN3) (NM_000070.2; NP_000061.1)
(g.409_412del), clustering a phenotype with early severe contractures.

We are sure that this severe clinical presentation will be important to outline the calpainopathy
phenotype, which, at the end, will complement the differential diagnosis and definition of correlations
between mutations (genotype), clinical presentation (molecular phenotype), and the natural history of
this devastating disease.

2. Materials and Methods

2.1. Ethics Statement, Consent, and Permissions

This study was conducted in accordance with the Declaration of Helsinki and was approved by
the Institutional Review Board of the Antioquia University, Colombia. Written informed consent was
obtained from each participant and their parents.

2.2. Subjects

Originally from “El Carmen-Piendamo,” State of Cauca, in the Southwestern Andean region
of Colombia, the patients were ascertained at the “Hospital Universitario San José de Popayán.”
The family belonged to a geographically and culturally isolated community of ~1200 aboriginal
Amerindians from the “Paez” tribe, where the affected proband had originally been diagnosed with
limb-girdle muscular dystrophy after presenting signs and symptoms that were compatible with the
disease. Later, four more cases were described, and a sixth member was said to have been affected by
the same syndrome but had died at the age of fourteen of unknown causes (Figure 1).
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Figure 1. Genealogical tree revealing consanguinity. V3: case 1; V4: case 2; V5: case 3; V7: case 4; and 
V8: case 5. Numbers inside of the symbols represent the sum of the individuals with this standard 
representation. 

2.3. Clinical Assessment 

The diagnosis was based on parameters of the clinical–neurological examination and studies of 
electrophysiology, histology, biochemistry, and genetics. Diagnostic criteria were based on those that 
were proposed by the 229th European Neuromuscular Centre Workshop and which have changed 
the nomenclature on calpainopathy from calpain 3-related LGMD2A to LGMDR1 [12]. 

A continuous 4-year evaluation of the five living members of the family (two males and three 
females) was performed. The protocol included a detailed examination of muscular strength by using 
the guidelines of the Medical Research Council (1943) [13] and a functional stratification of muscular 
dystrophies ranging from stage I to stage VII in accordance with the scale proposed by Gardner-
Merwin and Walton (1974) [14]. Photographs were taken of each patient. The analyses, done on all of 
the patients with their prior consent, included: serum creatine kinase (CK) levels, electromyography, 
sensory and motor neuro-conduction velocities, a histopathological study, an electrocardiogram, a 
bi-dimensional echocardiogram, chest x-rays, spirometry, psychological evaluations (Wechsler 
scale), and molecular genetic studies. Computerized axial tomography, used to examine the extent 
of muscular involvement of the lower limbs, was done in 2 patients who gave their consent. For four 
of the patients with different degrees of symptoms severity, a biopsy of the deltoid muscle was taken 
by using the “mini-open” procedure. The histopathological studies were done with hematoxylin–
eosin and with Mason’s trichromic stains. Genealogical trees were diagramed with the help of the 
patients and their families (Figure 1). 

2.4. Sequencing of the CAPN3 Gene 

Mutations in CAPN3 were screened through direct sequencing by using primer pairs for the 24 
coding CAPN3 exons, GCF_000001405.25_GRCh37.p13 (19 April 2017). All exons were amplified 
with PCR by using a hot start Taq polymerase (Qiagen). PCR products were sequenced by using the 
BigDye Terminator Cycle Sequencing kit (Applied Biosystems). Amplicons were analyzed with 
capillary electrophoresis on an automated sequencer 3130 (Applied Biosystems), and the obtained 
DNA sequences were manually compared with wild type gene sequences. 

Figure 1. Genealogical tree revealing consanguinity. V3: case 1; V4: case 2; V5: case 3; V7: case
4; and V8: case 5. Numbers inside of the symbols represent the sum of the individuals with this
standard representation.

2.3. Clinical Assessment

The diagnosis was based on parameters of the clinical–neurological examination and studies of
electrophysiology, histology, biochemistry, and genetics. Diagnostic criteria were based on those that
were proposed by the 229th European Neuromuscular Centre Workshop and which have changed the
nomenclature on calpainopathy from calpain 3-related LGMD2A to LGMDR1 [12].

A continuous 4-year evaluation of the five living members of the family (two males and three
females) was performed. The protocol included a detailed examination of muscular strength by using
the guidelines of the Medical Research Council (1943) [13] and a functional stratification of muscular
dystrophies ranging from stage I to stage VII in accordance with the scale proposed by Gardner-Merwin
and Walton (1974) [14]. Photographs were taken of each patient. The analyses, done on all of the
patients with their prior consent, included: serum creatine kinase (CK) levels, electromyography,
sensory and motor neuro-conduction velocities, a histopathological study, an electrocardiogram,
a bi-dimensional echocardiogram, chest x-rays, spirometry, psychological evaluations (Wechsler scale),
and molecular genetic studies. Computerized axial tomography, used to examine the extent of muscular
involvement of the lower limbs, was done in 2 patients who gave their consent. For four of the patients
with different degrees of symptoms severity, a biopsy of the deltoid muscle was taken by using the
“mini-open” procedure. The histopathological studies were done with hematoxylin–eosin and with
Mason’s trichromic stains. Genealogical trees were diagramed with the help of the patients and their
families (Figure 1).

2.4. Sequencing of the CAPN3 Gene

Mutations in CAPN3 were screened through direct sequencing by using primer pairs for the
24 coding CAPN3 exons, GCF_000001405.25_GRCh37.p13 (19 April 2017). All exons were amplified
with PCR by using a hot start Taq polymerase (Qiagen). PCR products were sequenced by using
the BigDye Terminator Cycle Sequencing kit (Applied Biosystems). Amplicons were analyzed with
capillary electrophoresis on an automated sequencer 3130 (Applied Biosystems), and the obtained
DNA sequences were manually compared with wild type gene sequences.
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3. Results

There are five living patients with the phenotype—two males and three females (Figure 1).
The ages of the onset of the symptoms were eight (case 1, female), 14 (case 2, male), 10 (case 3, female),
12 (case 4, male), and 10 (case 5, female) with an average age of onset of 10.8 years and their ages at the
moment of the last clinical exam being 14, 22, 29, 41 and 44, respectively (Table 1).

For all of the patients, the parents described toe walking as the first clinical manifestation. During
the early phase of the disease (functional stage II, case 1), bilateral contractures of the elbows, ankles,
and Achilles tendons, all of which appeared with the shortening of the calf muscles. Furthermore,
the bilateral and symmetrical weakness of the pelvic girdle and the inferior members, while the
impossibility of the abduction or extension of the legs and the areflexia of the lower extremities,
appeared simultaneously.

At an average of 2.5 years later, weakness in the scapular girdle (functional stage lll, case 1)
became evident with the presence of a winged scapula and areflexia in the superior extremities. In this
phase, the onset of spinal rigidity, lumbar lordosis, and generalized primary contractures in the elbows,
shoulders, knees, and hips were clearly observed, along with decreased cervical spine flexion due to
contractures of the posterior cervical muscles.

The advanced stages were characterized by a complete inability to climb stairs (stage lV, case 2) or
to stand up from a sitting position (stage V, case 3). By functional stage VI (case 4), walking could
only be done with assistance (Figure 2). At this stage, bilateral talipes equinovarus (club foot) was
clearly evident. In functional stage VII, i.e., case 5, the patient was confined to a wheel chair (Figure 2)
with demonstrable abdominal laxity and curled fingers that were not present in the other patients.
The involvement of the facial muscles was not observed. We closely evaluated each of the following
functional stages: II, III, IV, V, VI, and VII. Likewise, computerized axial tomography made it possible
to distinguish the pattern of muscular involvement of the case 4 lower limbs that were classified as
part of functional stage VI and case 5 that was classified as functional stage VII, and both patients were
categorized as Mercuri grade IV (severe) with more than 60% of muscle involvement (see Figure 2) [11].
The cardiac evaluation did not reveal any abnormalities. The electrocardiogram and echocardiogram
results were normal for all of the patients. For the patient in functional state VI (case 4) and the patient
in functional stage VII (case 5), a decrease in the diaphragmatic function was revealed by spirometry,
with a reduction in vital capacity of up to 35% and 55%, respectively, for each patient. The chest X-rays
of these two patients revealed a flattened hemidiaphragm.

Serum CK levels were as high as 15 times the normal reference value for the patient in functional
states II–III, and they were twice the normal value in the functional state VII patient. In all five patients,
the sensory and motor neuroconduction velocities demonstrated latencies, increased amplitudes of
potentials, and normal velocities of conduction. Electromyography studies revealed a myopathic
pattern. The histopathological cuts with hematoxylin–eosin and Mason’s trichromic stains revealed a
muscular dystrophy pattern (Figure 3). The psychometric evaluations that were performed on all the
patients disclosed an average intelligence quotient of 79 (normal range 61–94).

DNA sequencing revealed a novel deletion of four bases (TGCC) in exon 3 of the calpain 3 gene
(CAPN3) (NM_000070.2; NP_000061.1) (g.409_412del), (Figure 4A) that was homozygous in the five
affected patients and was heterozygous in the two parents. The specific mutation site occurred at the
protein CysPc domain (Figure 4B), triggering a change from the standard protein structure (Figure 4C)
to a modified truncated protein structure when the mutation was present, thus affecting motifs within
the calpain-like thiol protease family (peptidase family C2) region, with the large subunit corresponding
to a calcium-activated neutral protease. (Figure 4D). The linkage analysis with microsatellite markers
spanning the CAPN3 gene reported a significant linkage to the gene, thus suggesting a founder effect
that was inferred by the rareness and novelty of the mutation.
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Table 1. Clinical data on Colombian calpain 3-related LGMD R1 patients. Cases are referenced as in the genealogical tree (Figure 1).

Case Sex Age at Onset
(Years)

Onset of
Impairment Age Functional

Stage
Age Ambulation

Lost (Years) CK Observations

V3 Female 8 Pelvic 14 II–III Still walking X 15 Contractures of the elbows, ankles
neck and Achilles tendons

V4 Male 14 Pelvic 22 IV Still walking X 14
Described clinical manifestations
for case 1 plus inability to climb

stairs

V5 Female 10 Pelvic 29 V Still walking X 10
Described manifestations for cases
1 and 2 plus inability to stand up

from a sitting position

V7 Male 12 Pelvic 41 VI Walks only with aid X 4
Described above for cases 1, 2 and

3 plus walking only with
assistance and equinovarus foot.

V8 Female 10 Pelvic 44 VII Ambulation lost X 2 Manifestations above plus
ambulation lost
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Figure 2. (A). Presence of severe generalized primary contractures of the elbows and lordosis shown 
in case 4, functional stage VI. (B). Winging scapula in case 4. (C). Presence of bilateral equinovarus 
foot in case 5, functional stage VII. (D). Case 4, functional stage VI, showing Mercuri grade IV affection 
with thigh proximal femur’s bilateral atrophy and a confluence of fatty infiltrated areas in the 
posterior, anterior, and the adductors muscular groups with unaffected gracilis and sartorius muscles. 

 
Figure 3. (A). Mason’s trichromic stain histopathological view that reveals hypertrophy, atrophy and 
normal striated muscle fibers that are surrounded by fibrosis and perimysial fat; magnification 10x. 
(B). Hematoxylin–eosin stain that shows striated muscle with intermingled hypertrophic, atrophic, 
and normal fibers that are surrounded by a proliferation of collagenous fibro connective tissue that is 
replaced, in other instances, by adipose tissue; magnification 4x. 

 
Figure 4. (A) Localization of the mutation consisting of a DNA deletion of four bases (TGCC) in exon 
3 of the CAPN3 gene (409–412 del TGCC) (red rectangle). (B) The mutation is located within the 
calpain-like thiol protease family (peptidase family C2) region, with the large subunit corresponding 
to a calcium activated neutral protease. (C) Main calpain 3 protein. (D) Domain I of the calpain 3 
protein when the described mutation is present. 

Figure 2. (A). Presence of severe generalized primary contractures of the elbows and lordosis shown in
case 4, functional stage VI. (B). Winging scapula in case 4. (C). Presence of bilateral equinovarus foot in
case 5, functional stage VII. (D). Case 4, functional stage VI, showing Mercuri grade IV affection with
thigh proximal femur’s bilateral atrophy and a confluence of fatty infiltrated areas in the posterior,
anterior, and the adductors muscular groups with unaffected gracilis and sartorius muscles.
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4. Discussion

The laboratory and clinical analyses carried out for this study led to the diagnosis of calpainopathy
for the five patients. Besides presenting the classical characteristics described in previously published
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studies, these patients also presented generalized primary contractures and spinal rigidity in the early
stages of the disease, as well as bilateral clubfoot in the most affected patients, with the selective
involvement of certain distal muscles in the extremities. This severe “contracted” phenotype was
described as being similar to an Emery–Dreifuss-like syndrome due to the presence of early bilateral
contractions in the neck, elbows, ankles, and Achilles tendons.

Pollitt et al. already showed the presence of generalized primary contractures, spinal rigidity,
and distal weakness in a group of patients from Britain [10]. Mercuri et al. reported the development
of early contractures including fingers’ flexors in patients from Britain [11], similar to those reported
in these consanguineous Amerindian patients from Colombia. These findings are important for the
clinical findings’ correlation to the very severe “contracted” phenotype and the range of associated
mutations. All the patients presented a novel deletion of four bases (TGCC) in exon 3 of the calpain
3 gene (CAPN3) (NM_000070.2; NP_000061.1) (g.409_412del), thus leading to a change in the reading
frame of this gene and to a truncated protein.

Though the precise role of the calpain family is still poorly understood, calpains have been shown
to be active in the proteolysis of a variety of substrates and to participate in the cell mobility, cell cycle
and cell fusion of myoblasts [15]. We hypothesized that the 409–412 del TGCC in CAPN3 could affect
the calcium binding capacity, as structural studies have revealed that calpain’s Ca2+-requiring protease
activity is mediated by Ca2+ binding to the CysPc domain, which is located in the calpain-like thiol
protease family (peptidase family C2) domain, and amino acids 56–425 [15–17]. Furthermore, it seems
that the 409–412 del TGCC in CAPN3 may affect calcium-dependent proteolytic system and muscle
physiology, as shown by the calpain 3-related, limb girdle muscular dystrophy R1 symptomatology.
It was shown that calpain cleavage of desmin, talin, myristoylated alanine-rich C kinase substrate
(MARCKS) actin binding and fibronectin caused membrane fluidity and cytoskeletal organization,
thereby allowing myoblasts to fuse [18,19]. Calpain 3-related, LGMDR1 was not affected during
embryogenesis, suggesting that calpain plays a role later in life, during myogenesis and sarcomere
remodeling. In that vein, calpain 3 is able to cleave many cytoskeletal proteins and intervene in
muscle–cell–cytoskeleton regulation, particularly during processes such as adaptive responses to
exercise or regeneration after muscle wasting. Additionally, evidence has suggested that the inhibition
of calpains leads to a reduction of myoblast migration in cell cultures [18], which could be linked to the
control of cell membrane proteolysis and its requirement for cell migration, an earlier event for cell
adhesion and de-adhesion [20]. We believe that the lack of production of a functional protein would
cause a more severe phenotype than that found in other populations. Additionally, the patients in this
study are the first Amerindians reported with this disease, and we cannot discard that the phenotypical
differences of this syndrome may be related to the genetic background of the patients.

The community described in this study has a high consanguinity and has remained geographically
isolated from other populations due to the surrounding mountains. The mutation described herein
has not been reported in other studies, which suggests the existence of a founder effect in this
particular population.

In light of our findings and with the antecedent that Pollitt et al. [10] and Mercuri et al. [11]
established a differential diagnosis with Emery–Dreifuss syndrome, we recommend mandatory
screening for calpainopathy in all patients who present an Emery–Dreifuss-like muscular dystrophy or
those presenting a non-congenital illness with early primary contractures and who, because of other
data, are suspected of having muscular dystrophy.

5. Conclusions

We report here findings from a Colombian pedigree with calpain 3-related, limb-girdle muscular
dystrophy type r1 born from parents with known consanguinity, being the first Amerindian family
reported with this disorder. The molecular diagnosis showed a frameshift mutation of a novel deletion
of four base pairs that might explain the severe contracted phenotype observed in these patients and it
would help to the outlining of this calpainopathy phenotype.
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