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Abstract: A marine-derived Stilbella fimetaria fungal strain was screened for new bioactive compounds
based on two different approaches: (i) bio-guided approach using cytotoxicity and antimicrobial
bioassays; and (ii) dereplication based approach using liquid chromatography with both diode array
detection and high resolution mass spectrometry. This led to the discovery of several bioactive
compound families with different biosynthetic origins, including pimarane-type diterpenoids and
hybrid polyketide-non ribosomal peptide derived compounds. Prefractionation before bioassay
screening proved to be a great aid in the dereplication process, since separate fractions displaying
different bioactivities allowed a quick tentative identification of known antimicrobial compounds
and of potential new analogues. A new pimarane-type diterpene, myrocin F, was discovered in trace
amounts and displayed cytotoxicity towards various cancer cell lines. Further media optimization
led to increased production followed by the purification and bioactivity screening of several new and
known pimarane-type diterpenoids. A known broad-spectrum antifungal compound, ilicicolin H,
was purified along with two new analogues, hydroxyl-ilicicolin H and ilicicolin I, and their antifungal
activity was evaluated.

Keywords: bioguided-discovery; dereplication; cytotoxicity; antifungal, MS/HRMS; marine-derived;
pimarane-type diterpenoids; ilicicolin H

1. Introduction

With the ocean covering almost two thirds of the Earth’s surface area, the marine environment
offers a great diversity of microorganisms and thereby a promising potential for new bioactive
natural products displaying unique chemical scaffolds [1-3]. Fungal strains isolated from the marine
environment have attracted increased attention due to the discovery of several secondary metabolites
rich in biological activity [1-4]. The majority of fungal strains have been isolated from sources such
as algae, sponges, and mangrove habitats [1] with deep sea sediments emerging as a new niche of
potentially interesting compounds [1,5]. It is under much debate, however, what the real origin of these
fungal strains is; being true marine or opportunistic strains adapted to the marine environment [4].
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This is due to the fact that many fungal strains are isolated from intertidal zones and mangrove habitats
and thereby not likely true marine habitats [4,6-8]. The most common secondary metabolite producing
species come from Aspergillus and Penicillium, with only few belonging to the well-documented lineage
of marine fungi [4,6-8]. That said, the origin of these marine-derived fungal strains, whether true
marine or opportunistic, may not be as critical when it comes to drug discovery if the opportunistic
strains produce new bioactive compounds not found in their terrestrial counterparts.

Dereplication is an essential step in natural product (NP) discovery to prevent re-isolation and
re-characterization of known bioactive compounds. It is especially important in primary bioactivity
screening, where the target is often non-selective and there is a high chance of rediscovering
general cytotoxic compounds. This is due to a great number of highly bioactive compounds being
observed across the fungal kingdom of which several are found in multiple fungal species [9-11].
One dereplication approach is based on ultra-high performance liquid chromatography-diode array
detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS) and database
searching [10,12,13]. This can be combined with auto tandem high resolution mass spectrometry
(MS/HRMS) and use of a MS/HRMS library, which has been shown to be a robust and effective way
of tentatively identifying known bioactive compounds on a given instrument [9,11]. The MS/HRMS
library may serve as a database of compounds for targeted dereplication, matching peaks in the
unknown spectrum against the library spectrum and vice versa, or to identify compounds sharing
similar fragment ions, but that do not share the same molecular formula [11]. Another dereplication
strategy based on MS/MS involves molecular networking proposed by the Dorrestein/Bandeira
labs [14-16], where a pairwise comparison of MS/MS spectra results in clustered networks of
structurally related compounds. Early integration of the MS/MS networking approach and bioassay
data has been shown to enable the targeted discovery of new bioactive compounds [17]. However, a
limiting factor is the lack of back-integration of raw data to find the corresponding full scan data and
retention times resulting in detailed analysis being time consuming.

Pre-fractionation serves as another highly valuable step in NP discovery for the success of both the
initial dereplication and bioactivity screening. This is because metabolites present in minor amounts
may go undetected, their activity being masked or interfered with by major components in a complex
crude extract [18-20]. Wyeth [19] and Appleton et al. [18] reported that primary bioactivity screening
of pre-fractionated crude samples showed that the bioactivity was masked in up to 80% of the cases
with no activity being observed for the original crude extracts, but only for the fractions. Meanwhile,
up to 13% of the crude samples lost their activity upon fractionation [18,19], meaning that it can be
advantageous to screen both the crude extract and fractions in the primary assay. In addition to
using traditional reversed phase (RP) chromatography for pre-fractionation, orthogonal purification
strategies such as Explorative Solid-Phase Extraction (E-SPE) can be used to facilitate the removal or
reduction of co-eluting interferences [21]. Pre-fractionation can aid the discovery of new compounds
or activities which would have otherwise been missed either due to: (1) the crude extract containing
more than one compound responsible for the observed activity; (2) a single compound displaying
multiple activities, or (3) several compounds displaying various activities.

In this paper, we describe a combined bioassay-guided and dereplication based discovery
approach for a marine-derived fungus Stilbella fimetaria IBT 28361 using cytotoxicity and antimicrobial
screening assays and UHPLC-DAD-QTOFMS with MS/HRMS in combination with our in-house
MS/HRMS library [9]. This method led to the discovery of different bioactive compound families in
Stilbella fimetaria, including pimarane-type diterpenoids and hybrid polyketide-non ribosomal peptides
belonging to the ilicicolin H family. To the best of our knowledge, the latter has not previously been
obtained from the genus Stilbells. New and known compounds of both families were isolated and
elucidated by nuclear magnetic resonance (NMR) spectroscopy and their cytotoxicity and antimicrobial
activities evaluated. The outcome of the primary bioassay screening on both the crude extracts and their
fractions assisted in the dereplication of the crude extract allowing for a quick tentative identification
of known antimicrobial compounds and potential new bioactive analogues.
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2. Results and Discussion

Bioactivity-guided purification was performed using cytotoxicity and antimicrobial bioassays on
the marine-derived fungus Stilbella fimetaria IBT 28361 isolated from a seawater sample off the coast of
the island Fanoe, Western part of Denmark. The fungus was cultivated in small cultivation on yeast
extract sucrose agar (YES) and czapek yeast extract agar (CYA) plates. The YES and CYA plates were
combined and extracted together with EtOAc containing 1% formic acid (FA). An EtOAC extract of
plates from both YES and CYA media were chosen in order to increase the spectrum of compounds
produced by the fungus. The EtOAc crude extract was fractionated by RP flash chromatography with
a gradient of acetonitrile (MeCN) and water going from 15% to 100% MeCN into six fractions and
both the crude extract and the six fractions were subsequently evaluated for their cytotoxicity and
antimicrobial activity. No activity was observed for the screening of the crude extract on its own,
whereas the fourth, fifth, and sixth flash fractions (ranging from 40% to 100% organic) displayed
cytotoxic, antibacterial, and antifungal activities, respectively (Figure 1). Dereplication of the separate
bioactive fractions using UHPLC-DAD-QTOFMS allowed a quick tentative identification of several
bioactive compound families likely responsible for the observed activities (Figure 1).
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Figure 1. Base peak chromatograms (BPC) of the EtOAc crude extract and three bioactive fractions
(ranging from 40% to 100% organic) in positive electrospray ionization (ESI) mode. The fractions were
obtained by RP flash chromatography with a gradient of MeCN and water going from 15% to 100%
MeCN. In the bioactive fractions the marked peaks indicate the tentatively identified peptaiboitics,
helvolic acid, ilicicolin H, and a potential new ilicicolin H analogue.

Different further fungal cultivations (1-3, see below) were prepared in order to purify potential
new compounds and confirm the bioactivity of the known compounds in the applied bioassays.
The identity of the cytotoxic compounds and their analogues were obtained using bio-guided
isolation on large scale cultivation YES media (Cultivation 1). YES media was chosen as it displayed
weak activity when crude extracts for one YES and one CYA plate were tested separately. Further
media optimization was performed to find the optimal growth conditions for potential cytotoxic
compounds otherwise only present in trace amounts on YES media and in order to circumvent a
group of co-eluting peptaibiotics (Cultivation 2, rice media incubated for 10 days at 25 °C in the dark)
[Section 2.1]. The known antibacterial nortriterpenoid, helvolic acid [22-24] was identified as one
of the main components in the fraction displaying antibacterial activity against methicillin-resistant
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Staphylococcus aureus (MRSA) reported by Kildgaard et al. [11]. This was done using an in-house
MS/HRMS library and comparison of its retention time to a standard from our compound library
and suggested to be the compound exhibiting the observed activity. In this study, the activity of
the pure compound against MRSA was confirmed, MICqy < 0.25 pg/mL (1D NMR data shown in
Figures 59-511). The compound responsible for the antifungal activity was tentatively identified as the
broad-spectrum antifungal metabolite, ilicicolin H [25-28]. Due to the tentative identification of new
ilicicolin H analogues with similar retention times to ilicicolin H, it was isolated along with two new
analogues on large cultivation rice media incubated for 21 days at 25 °C in the dark (Cultivation 3)
[Section 2.2].

2.1. Pimarane-Type Diterpenoids Exhibiting Cytotoxicity

From cultivation 1, the RP flash chromatography fractions (40-60% organic) displayed cytotoxicity
against patient derived glioblastoma stem-like cells (GSCs). The observed cytotoxicity was comparable
to that of the fraction from the original small scale EtOAc crude extract of the YES and CYA plates
combined and extracted together. GSCs were chosen for the study as there is an acute need for
novel therapeutics targeting this tumor subpopulation as they exhibit resistance to the current
standard therapy for glioblastoma [29]. UHPLC-DAD-QTOFMS-MS/HRMS and use of an in-house
MS/HRMS library [11] and The Comprehensive Peptaibiotics Database [30] tentatively identified
the major components of the active fractions to be peptaibiotics belonging to the antiamebins family.
Antiamebin I [31] was tentatively identified by comparison to its reference standard in the MS/HRMS
library reported by Kildgaard et al. [11]. Furthermore, Stilbella fimetaria (syn. S. erythrocephala) is
well-known for its production of antiamebins [32,33]. At a glance, the antiamebins might be suspected
as responsible for the observed bioactivity, but a second fractionation revealed the active component to
be the compound obscured by the group of co-eluting antiamebins and present only in trace amount in
the first fractionation. The molecular formula for the compound was established to be CyoH»O4 based
on the pseudomolecular ion, [M + H]* of m/z 329.1745 with an accuracy of 0.6 ppm (HRESITOFMS)
and the ultraviolet (UV) spectrum displayed absorption bands at Amax 215 and 270 nm. A NMR
spectroscopic analysis of the isolated compound and comparison to the data reported for myrocins
A-E [34-37] allowed for the structural elucidation of a new pimarane-type diterpene, myrocin F (1)
(Figure 2). 'H, 13C, HMBC and NOESY data is shown in Table 1.

Figure 2. Structures of pimarane diterpenoids; myrocin F (1), libertellenone M (2), the suggested
opened y-lactone of libertellenone M (3), libertellenone C (4), and libertellenone E (5).
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Table 1. NMR spectroscopic data (400 MHz, MeOD, $ in ppm, ] in Hz) for myrocin F (1).

Position s13¢ 51y (Mult, J) HMBC NOESY

1 14.0 1.63 m 3 2b,5,11,20b
2a 19.8 1.78 m 34 3a,20a
2b 1.81m 34 1,518

3a 28.8 1.44m 1,4,5,19 2a,20a
3b 1.74 m 4,19 18

4 428 -

5 525 211s 4,6,9,10,18-20 1,2b,7,16a,18

6 107.6 -

7 774 424 5,6,8,9,14 5,14

8 135.5 -

9 138.6 -

10 205 -

11 114.6 5.24 t(4.5) 8,10,12-14 1,12,20b
12 37.0 219m 9,11,13-15,17 11,15,17
13 389 -

14 135.8 556 7,9,11-13,15,17 7,16a,17
15 144.0 5.67 dd(17.4/10.4) 13,14,17 12,16a/b,17
16a 112.3 5.03dd (17.4/1.5) 13 5,14,15,17
16b 4.89 dd(10.4/1.5) 13 15

17 28.0 1.15s 12-15 12,14,15,16a
18 29.6 142s 3-5,19 2b,3b,5
19 185.6 -
20a 17.1 0.85 (5.2) 1,5,9 2a,3a
20b 0.25 dd(8.2/5.7) 2,9 1,11

'H-NMR spectrum revealed the presence of six methines (including one oxygenated and three
olefinic), five methylenes (including one cyclopropylic and one olefinic), and two singlet methyl
groups. The '3C-NMR spectrum identified one ester carbonyl group and six quaternary carbon signals
(including one oxygenated and two olefinic). The DQF-COSY spectrum defined three spin systems
besides the two singlet methyl signals at 6y 1.15 (CH3-17) and 6y 1.42 (CH3-18). One spin system
included the terminal vinyl group with protons at 6y 5.67 (1H, dd, | = 17.4, 10.4, H-15), éy 5.03 (1H,
dd, ] =174, 1.5, H-16a), and 6y 4.89 (1H, dd, | = 10.4, 1.5, H-16b). The second spin system included the
olefinc methine at 0gy 5.24 (CH-11) and the enantiotopic methylene at d¢y 2.19 (CH;-12). The third spin
system included the diastereotropic methylenes at 61y 1.74/1.44 (CH;-3) and 6y 1.81/1.78 (CHy-2) and
cyclopropylic protons (as indicated by the characteristic upfield chemical shift and coupling pattern
of H-20) at éy 1.63 (H-1), 6y 0.85 (1H, t, ] = 5.2, H-20a), and by 0.25 (1H, dd, | = 8.2, 5.7, H-20b).
The connection of these COSY spin systems and assignment of remaining signals and quaternary
carbons was done by analysis of the HMBC spectrum obtaining the long range H-C correlations.
The important HMBC correlations from H-16 to C-13, H-17 to C-12, C-13, C-14, and C-15, H-11 to
C-8, C-10, and C-13, H-14 to C-7, C-9, C-12, C-13, and C-17, H-7 to C-5, C-6, C-8, and C-9, H-5 to
C-4, C-6, C9, C-10, and C-18, H-2 and H-3 to C-4 confirmed the presence of the pimarane-type
diterpene structure [36]. The fusion of the lactone ring through C-4 and C-6 and the cyclopropyl ring
(C-1-C-20-C-10) to the pimarane skeleton was supported by the important HMBC correlations from
H-5, H-3, and H-18 to the ester carbonyl signal at 6y 185.6 (C-19) and from H-20a to C-1, C-5, and C-9
and H-20b to C-2 and C-9 (See Figure 3 for important HMBC correlations). The relative configuration
of myrocin F is based on an analysis of the NOESY spectrum with key NOE correlations from H-1
to H-2b and H-5, from H-5 to H-2b, CH3-18, H-7, and H-16a, and from CHj3-18 to H-2b, H-5, and
H-3b. Further key NOEs from H-20a to H-2a and H-3a and between the latter two and from H-20b
to H-1 and H-11 and between the latter two suggested the cyclopropyl group with the cyclopropylic
protons H-20a/H-20b in each direction, CH3-17 and the hydroxyl group at C-7 to be on the same face
of the molecule and CHj3-18, H-5, and the vinyl group on the opposite face. The hydroxyl group at
C-6 is suggested to be positioned to the latter face based on observed strong NOE correlation between
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H-7 and H-14 and no correlation between H-7 and CH3-18 (See Figure 3). The relative configuration
of myrocin F is in agreement with that of previously reported myrocin A-C [34,35] with absolute
configuration reported by X-ray diffraction analysis of myrocin C monoacetate [38].

Figure 3. Selected key HMBC and NOESY correlations for myrocin F (1).

Optimization of media and growth conditions led to the discovery of a highly enriched profile of
the pimarane-type diterpenoids when Stilbella fimetaria IBT 28361 was grown on rice media for 10 days
at 25 °C in the dark (Cultivation 2). This enabled the purification of two new libertellenones obtained
from the same fraction, libertellenone M (2) and what we propose to be the opened y-lactone ring
of libertellenone M (3) that were both present as trace amounts in cultivation 1 (Figure 2). The two
known compounds, libertellenone C (4) [39] and libertellenone E (5) [36] (Figures 2 and S31 and
Table 2 with NMR Spectroscopic Data, Supplementary information) were isolated from the same
extract and identified based on their spectroscopic profiles (1D and 2D NMR, HRMS, MS/HRMS,
Uy, [oc}zDO). Both compounds have been reported with their absolute configurations, determined by
X-ray diffraction analysis for libertellenone E [36]. The BPC of the crude rice extract with extracted ion
chromatogram (EIC) identifying the libertellenones is shown in Figure 54, Supplementary information.

Table 2. NMR spectroscopic data (800 MHz CD3CN, $ in ppm, | in Hz) for libertellenone M (2) and
(800 MHz MeOD, 6 in ppm, ] in Hz) for the suggested opened y-lactam libertellenone M (3).

Opened y-lactam

Libertellenone M (2) libertellenone M (3)

Position 813, 81y (Mult, ) HMBC 513, 81y (Mult, ) HMBC
1 130.7 5.78 dd(9.9,3.0) 3,5,6,10,20 130.7 5.94m 3,10
2 127.4 591 m 34,10 126.7 5.98 m 3,10
3a 343 2.36 dt(16.5,2.5) 1,2,4,5,18 36.2 2.16m -
3b 2.43 dd(16.5,5.9) 1,2,4,18,19 2.64m 1,2
4 462 - 46.8 - -
5 146.9 - 137.0 - -
6 143.1 - * - -
7 177.3 - 183.6 - -
8 137.6 - * - -
9 76.6 - 76.0 - -
10 455 - 46.6 - -
11a 27.5 2.24m 9,10,12,13 27.4 2.16m -
1.72
11b ddd(14.05.03.5) 8-10,12,13 1.93m -
12a 30.9 1.59 m 9,11,14,17 30.6 1.60 m -
12b 1.78 td(13.0,3.5) 9,11,13-15,17 1.92m 17
13 39.8 - 40.0 - -
14 148.8 6.90's 7-9,12,13,15,17  148.8 6.98 s 7,9,12,15

15 147.0 593 m 12-14,17 147.0 592m -
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Table 2. Cont.

Opened y-lactam

Libertellenone M (2) libertellenone M (3)

Position 8B¢ 51y (Mult, J) HMBC 813¢ 81y (Mult, J) HMBC
16a 113.5 5.09 d(17.5) 13,15 113.0 5.12.d(17.2) 13
16b 5.07 d(10.5) 13,15 5.06 d(10.5) 13

17 24.8 1.17 s 12-15 23.8 1.16 s 12-15

18 23.4 1.48s 3-5,19 24.1 1.55s 3-5,19

19 181.2 - 181.1 -

20 24.1 1.29s 1,5,9,10 28.3 1.23s 1,5,9,10

*13C chemical shift not observed.

Libertellenone M (2) possessed the molecular formula Cy9H3,04 based on the pseudomolecular
ion, [M + HJ* of m/z 327.1592 (accuracy —0.27 ppm). The 'H and '3C NMR spectra were similar to
those of libertellenone C with the exception of the C-1/C-2 double bond with the downfield carbon
shifts of ¢ 130.7 (C-1) and 8¢ 127.4 (C-2) compared to 5¢ 70.1 (C-1) and 5¢ 29.3 (C-2) and replacement
of the ketone at 5c 181.2 (C-19) with the hydroxyl methylene group at dc 70.2 (opened y-lactam
ring). The planar structure of libertellenone M is the same as that reported for libertellenone G [40]
with a different relative configuration suggested based on the NOESY spectra (Figure 4). Key NOEs
of compound (2) were observed from CH3-17 to H-11a and H-12a, from H-11a to H-12a, CH3-20
and a weak NOE to CHj3-18, from CHj3-20 to H-12a and CH3-18, and from H-11b to H-12b and
H-1 placing all the methyl groups (CH3-17, CH;3-20, and CHj3-18) on the same face of the molecule
(Figure 4). The position of the hydroxyl group at C-9 was assigned to the opposite face of the methyl
groups based upon strong NOE correlations observed between CH3-20 and H-11a. Furthermore,
libertellenone M showed a similar relative configuration to those of the closely structurally related
known compounds (4) and (5) supporting the assignment (Figure 2).

Figure 4. Selected key NOESY correlations for libertellenone M (2).

HRESITOFMS showed a 18.01 Da mass difference between compounds (3) (M + H]* m/z
345.1692, accuracy —0.76 ppm) and (2) suggesting the latter to be a dehydrated analogue of the former.
Compound (3) degenerated gradually during the NMR run, complicating the interpretation of the
NMR data and preventing further analysis and bioactivity studies of the compound. With this in
regard, 'H, DQF-COSY and HSQC spectra of compounds (3) and (2) were highly similar, suggesting
compound (3) to be the opened y-lactone ring of libertellenone M (2) formed through hydrolysis of the
ester. Further in the HMBC experiment, key correlations were observed resembling those exhibited
by compound (2) and with the most notable difference in the carbon chemical shift seen at C-5 that
shifted upfield to dc 137.0 ppm compared to 146.9 ppm for compound (2) (a similar upfield shift was
observed for libertellenone C (4) in comparison to compound (2)). A table with NMR spectroscopic
data is shown for both compounds (2) and (3) in Table 2. Analysis of the MS/HRMS data assisted in
the confirmation of the structure of compound (3) to be the opened y-lactone ring of libertellenone
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M (2). The major degeneration product of compound (3) was observed at m/z 299.1644 [M + H]*
(also present as a fragment ion in the MS/HRMS spectra of both compounds (2) and (3)) indicating the
loss of HCO,H (A 46.0048 between fragment ion and [M + H], caled. 46.0054). The three compounds
displayed highly similar fragmentation patterns with similarity scores >84% (compound (3)) and
>88% (m/z 299.1644) for all MS/HRMS spectra (10, 20 and 40 eV) compared to libertellenone M (2).
These were observed searching the MS/HRMS spectra of both analogues against our MS/HRMS
library spectra (libertellenone M included) by similarity scoring as in Kildgaard et al. [11], identifying
compounds that share the same fragment ions but have different molecular masses. MS/HRMS spectra
are shown for compounds (2) and (3) in Figures S2 and S3, Supplementary information. In addition
compound (2) was observed as a minor degeneration product of compound (3), suggesting the relative
configuration of both to be the same.

Myrocin F (1), libertellenone M (2), libertellenone C (4) and libertellenone E (5) were all evaluated
for their activity towards GSCs and compounds (1), (2), and (4) were shown to display ICs¢ values
of 40, 18, and 40 uM, respectively. The cytotoxicity of the diterpenoids was also evaluated towards
the following cancer cell lines: A549 (lung carcinoma), MCF7 (breast carcinoma), SW480 (colorectal
adenocarcinoma), and DU145 (prostate carcinoma). Myrocin F (1) showed the strongest effect with ICsg
values between 20-50 uM, whereas compounds (2) and (4) proved to be much less cytotoxic towards
these cell lines (See Figures 546 and S47 for data). Libertellenone E (5) did not display any activity
towards any of the cell lines at the tested concentrations (ICs5y > 300 uM). The higher cytotoxicity
displayed against all cancer cell lines for myrocin F could indicate the cyclopropane ring’s influence
on the bioactivity, in agreement with previous reports for other pimarane diterpenoids [38].

As far as antibacterial (Escherichia coli and methicillin-sensitive S. aureus (MSSA)) and antifungal
activity (Aspergillus fumigatus and Candida albicans) was concerned, none of the compounds were active
at the concentrations tested (MICyy > 64 png/mL).

2.2. Ilicicolin H, A Broad-Spectrum Antifungal, and New Analogues

From the original small scale cultivation (eight plates) combined YES and CYA extract, the
sixth flash fraction (ranging from 85% to 100% organic) displayed antifungal activity against
A. fumigatus. UHPLC-DAD-QTOFMS revealed the molecular formula Cp7H31NOy (0.7 ppm accuracy)
for one of the major compounds in the fraction. AntiBase 2012 [41] suggested the broad spectrum
antifungal compound, ilicicolin H (Figure 5, (7)) as a candidate, consistent with UV data [25] and
the biological activity of the fraction [27,28]. Ilicicolin H is a hybrid polyketide—non-ribosomal
peptide derived fungal metabolite that was originally isolated in 1971 from the ‘imperfect fungus’
Cylindrocladium ilicicola [42], with its structure elucidation described in 1976 [25], biosynthesis in
1983 [26], and total synthesis of racemic ilicicolin H in 1985 [43]. The production of this compound was
highly increased when incubation time on rice media was extended from 10 days (as was optimal for
the pimarane diterpenoids) to three weeks at 25 °C in the dark (Cultivation 3). This led to isolation
of the compound in high amounts ( >50 mg) and 1D and 2D NMR confirmation (See Table 3) of the
structure to be ilicicolin H, confirmed by comparing 'H- and *C- chemical shifts to that of published
data [25,26].

Table 3. NMR spectroscopic data (500 MHz and 800 MHz, MeCN-d3, 6 in ppm, | in Hz) for
hydroxyl-ilicicolin H (6), ilicicolin H (7), and ilicicolin I (8).

Hydroxyl-ilicicolin H (6) Ilicicolin H (7) Ilicicolin I (8)
Position 813¢ 81y (Mult, J) 81B¢ 81y (Mult, ) 818 81y (Mult, J)
1 1259 - 125.8 - 126.0 -
3’5’ 116.4 6.83 d(8.6) 116.6 6.83 d(8.6) 116.4 6.84 d(8.6)
2'¢/ 131.8 7.27 d(8.6) 131.7 7.26 d(8.6) 131.8 7.29 d(8.6)
4 157.8 - 157.8 - 157.9 -
4'0OH - 16.7 brs. - 17.6 br.s. - -

1INH - 9.46 br.s. - 9.56 br.s. - 9.44 br.s.
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Table 3. Cont.

Hydroxyl-ilicicolin H (6) Ilicicolin H (7) Ilicicolin I (8)
Position s8¢ 81y (Mul, J) 818¢ &'y (Mult, J) 813¢ 51y (Mult, J)

2 163.0 - 162.9 - 163.3 -

3 108.7 - 108.1 - 107.5 -

4 178.2 - 178.0 - 179.5 -

5 114.9 - 114.8 - 115.1 -

6 141.3 7.40s 1414 740s 141.2 742

7 210.8 - 211.0 - 195.7 -

8 54.1 4.98 m 54.1 497 m 127.5 7.98 d(16.0)

9 45.7 2.56 q(10.4) 46.2 2.48 q(10.4) 160.2 7.26 d(16.0)
10 445 1.28m 445 1.23m 426 -
11a 40.6 0.61 q(11.8) 40.6 0.58 q(11.8) 432 1.41m
11b 1.78 m 1.77 m
12a 33.8 1.40m 33.8 1.38 m 28.5 1.07 dq(12.4,3.4)
12b 1.40 m
13a 36.6 0.97 m 36.6 0.97 m 36.8 1.73m
13b 1.76 m 1.77 m 1.00 dq(12.5,3.4)
14a 31.0 2.07 m 31.0 2.04m 343 1.47 m
14b 0.99 m 0.99 m
15a 45.6 1.70 m 45.4 1.68 m 43.1 1.80 m
15b 0.80 q(12.5)
16 139.5 - 139.5 - 39.3 1.81m

17 121.0 5225 120.9 521 m 131.1 5.41 d(10.0)
18 21.4 1.65s 215 1.63s 1325 5.58 ddd(10.0,4.7,2.6)
19 233 0.90 d(6.5) 23.4 0.89 d(6.5) 445 1.91m

20 134.1 5.41 dd(15.5,8.2) 134.8 521 m 232 0.90 d(6.5)

21 132.6 5.47 dt(15.5,5.1) 127.3 5.32m 18.6 0.98 d(7.0)

22 63.5 3.85 d(4.8) 18.5 1.53 d(6.5) 18.5 1.10s

* very weak carbon chemical shift.

Figure 5. Structures of hydroxyl-ilicicolin H (6), ilicicolin H (7), ilicicolin I (8).

HRMS and MS/HRMS of a group of peaks eluting in close proximity to ilicicolin H in cultivation 3
showed the presence of several ilicicolin H analogues in searching their MS/HRMS spectra against
our MS/HRMS library spectra (ilicicolin H included) by similarity scoring as in Kildgaard et al. [11].
Ilicicolin H and the tentatively identified analogues all shared the dominant fragment ion at m/z
230.0451 that corresponds to the left hand part of the molecule (Figure 5) with incorporation of
phenylalanine, [C1,HgNO,4]* formed from cleavage of the C-7/C-8 bond. See Figure S5, Supplementary
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information for BPC of the crude rice extract with EIC from MS/HRMS showing the fragment ion
m/z 230.0451 and EIC from MS displaying ilicicolin H (434.2323 calculated for [Cp7H3;NO,4 + H]Y)
and the tentatively identified analogues and their position in the chromatogram. Two new analogues,
hydroxyl-ilicicolin H (6) and ilicicolin I (8) (See Figure 5) were isolated from the crude rice extract and
their structures elucidated by NMR spectroscopy (See Table 3). The first new analogue (6) was purified
in low amounts (0.4 mg), eluting slightly earlier than ilicicolin H in the ESI* chromatogram. The ESI*
HRMS spectrum displayed the pseudomolecular ion, [M + H]* with m/z 450.2278, from which the
molecular formula could be deduced as CyH31NOs (accuracy —1.23 ppm), indicating the addition
of an oxygen atom. In relation to ilicicolin H, a similarity score of 90% was observed by comparing
the MS/HRMS spectra at 40 eV and the same absorptions maxima at 250 nm, 295 nm, and 350 nm
were displayed in the UV spectra. The structure of hydroxyl-ilicicolin H (6) was proposed from 1D
and 2D NMR spectroscopic analysis (See Table 3 for 'H and '3C chemical shifts). The NMR data for
the phenyl-pyridone moiety were comparable to those of ilicicolin H elucidated in the same solvent.
For the decalin moiety, the 'H-NMR spectrum exhibited eight methines (including three vinylic),
four methylenes (including three diastereotopic), and two methyl groups (including one singlet).
This indicated the difference of an oxidation of the methyl group at 6y 1.53 (CH3-22) in ilicicolin H to
the enantiotopic methylene at 8y 3.85 (CH;-22) in hydroxyl-ilicicolin H, with the observed downfield
chemical shift of the methylene supporting the presence of the hydroxyl group at C-22. The position
of the CH,-22 was confirmed by identification of observed vicinal couplings in the COSY spectrum
between by 5.47 (CH-21) and 6y 3.85 (CH,-22) belonging to the spin system including CH-8 to CH-15,
CH-17, CHj3-19 and CH-20 to CH,-22. Furthermore, HMBC correlations were observed from the vinylic
protons at 0y 5.41 (CH-20) and 6y 5.47 (CH-21) to the methylene carbon at 6c 63.5 (C-22) (See Figure 6).
The relative configuration of hydroxyl-ilicicolin H (6) was suggested to be the same as ilicicolin H (7),
based on the inspection of coupling constants and observed NOEs in the NOESY spectra (See Figure 6)
together with the close structural similarity of compounds (6) and (7). A trans diaxial relationship
was suggested for the protons at H-8 and H-9 and H-9 and H-10, as H-9 was observed as a quartet
in the 'H-NMR spectrum with a coupling constant | = 10.4 Hz. Furthermore, the proton at &y 0.61
(H-11a) also appeared in the 'H-NMR spectrum as a quartet with a coupling constant | = 11.8 Hz,
indicating a trans diaxial relationship between the protons H-10 and H-11a and H-11a and H-12. This
was supported by observed NOEs of H-10 with H-8, H-11b and H-14b, and of H-11b with H-12 that
placed these protons on the same face of the molecule, whereas NOEs of H-11a with H-9, H-15, CH3-19
and H-13a and of H-15 with H-9, H-13a and H-14a placed these protons on the opposite face of the
molecule. The size of the vicinal coupling constants for H-20/H-21 of | = 15.5 Hz suggested trans
stereochemistry and NOEs were observed of H-20 with H-11b and of H-21 with H-9.

Figure 6. Selected important HMBC correlations (*H-13C) to C-22 and NOESY correlations for the
decalin moiety of hydroxyl-ilicicolin H (6).
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The second new analogue (8) was observed eluting as a small peak at almost the same retention
time as ilicicolin H in the ESI* chromatogram and it was deduced to possess the same molecular
formula of Cy;Hj31NO4 (M + HJ* with m/z 434.2325, —0.20 ppm accuracy), indicating the presence of
an ilicicolin H isomer. The compound showed a similarity score of 92% (MS/HRMS spectra, 40 eV) and
the UV spectrum displayed a slight bathochromic shift to longer wavelength with absorption maxima
at 254 nm, 308 nm, and 365 nm to that of ilicicolin H. The structure of ilicicolin I (8) was elucidated
by 1D and 2D NMR spectroscopic analysis (See Table 3). The NMR data for the phenyl-pyridone
moiety were comparable to those of ilicicolin H, whereas observed changes to the decalin moiety
revealed the compound to be a structural isomer. The 'H-NMR spectrum for the decalin moiety
displayed eight methines (including four vinylic), three methylenes (all diastereotopic), and three
methyl groups (including one singlet). The DQF-COSY spectrum defined two spin systems besides
the singlet methyl group at 655 1.10 (CH3-22). One spin system consisted of the two vinylic protons at
511 7.98 (CH-8) and 6y 7.26 (CH-9) with the size of the coupling constant of Jgg = 16.0 Hz, indicating
trans stereochemistry. The second spin system consisted of the two vinylic methines at oy 5.41 (CH-17)
and oy 5.58 (CH-18), four methines at oy 1.41 (CH-11), 6y 1.47 (CH-14), 5y 1.81 (CH-16) and by 1.91
(CH-19), three diastereotopic methylenes at éy 1.40/1.07 (CH;-12), 6y 1.73/1.00 (CH,-13), and by
1.80/0.80 (CH,-15) and two methyl groups at &y 0.90 (CH3-20) and 6y 0.98 (CH3-21). The linking
between these two COSY spin systems and the phenyl-pyridone moiety together with the assignment
of the singlet methyl group at CH3-22 and quaternary carbons was accomplished by analysis of the
HMBC spectrum (See Figure 7). Important HMBC correlations from the vinylic protons H-8 and H-9 to
the ketone at 5¢ 195.7 (C-7) assisted in the connection of this spin system to the phenyl-pyridone moiety.
The upfield shift observed for the ketone at C-7 (decreasing from 211.0 to 195.7 ppm) in comparison
to ilicicolin H and the downfield shift of the 3 carbon at ¢ 160.2 (C-9) supports that the C-8/C-9
double bond is in conjugation with the ketone at C-7. HMBC correlations from H-8 and H-9 to 5¢c 42.6
(C-10), H-9 to 6¢ 18.5 (C-22), H-12, H-18, H-21, and H-22 to C-10 and H-11 and H-19 to C-22 linked
the spin system of CH-8 and CH-9 to the remaining spin system of the polyketide chain (including
CH-11 to CH-21) via the quaternary carbon at C-10 and singlet methyl group at C-22. Further key
HMBC correlations from H-12 and H-18 to 6¢ 39.3 (C-16) and from H-15 and H-17 to 6¢ 43.2 (C-11)
assisted in the assembly of the decalin ring system. The relative stereochemistry of ilicicolin I was
proposed based on coupling constants and observed NOEs in the NOESY experiments (See Figure 7).
A trans diaxial relationship was suggested for the protons H-16 and H-15b and H-15b and H-14 based
on the observation that H-15b appears as a quartet in the 'H-NMR spectrum with a coupling constant
of ] = 12.5 Hz. Furthermore, a trans diaxial relationship was also assumed for the protons H-14 and
H-13b, H-13b, and H-12a and H-12a and H-11 based on H-13b and H-12a appearing in the IH-NMR
spectrum as double quartets with coupling constants of | = 12.4 and 3.4 Hz. This was supported by
observed NOEs of H-8 with CH;3-22, CH;3-22 with H-16 and H-19, H-16 with H-14 and H-15a, H-14
with H-12a and H-13a placing these protons on the same side of the plane, whereas correlations of H-9
with CH3-21, H-11, and H-12b, H-11 with H-15b and CH3-21, and of H-12b with H-13b placed these
protons on the opposite side of the plane.

Based on the structural similarities between ilicicolin I and ilicicolin H, we hypothesize that the
decalin moiety for ilicicolin I is biosynthesized by the fungus via cyclization between C-10 and C-19
and between C-11 and C-16 through an intermolecular Diels-Alder reaction of the reduced octaketide
chain instead of cyclization between C-8 and C-9 and C-10 and C-15 as in ilicicolin H [26].

Two other ilicicolin H analogues with the pseudomolecular ions, [M + H]" m/z 452.2436
(Co7H33NOs, accuracy —1.26 ppm) and m/z 420.2126 (CysHoNOy, accuracy —0.87 ppm) were
tentatively identified by HRMS and MS/HRMS to also elute in close proximity to ilicicolin H. This
suggested the new structures with the possible addition of H,O for the former and one less methyl
group (difference of a CH; unit) for the latter compound compared to ilicicolin H. The two compounds
shared the dominant fragment ion at m/z 230.0451 and showed similarity scores of 80% and 92% to that
of ilicicolin H for their 40 eV MS/HRMS spectra, respectively (See Figures S5 and S6, Supplementary
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information for MS/HRMS spectra). Only trace amounts insufficient for purification were present of
these two possibly new analogues in the crude extract.

HO 21

Tz

——  HMBC
------ NOESY

Figure 7. Selected important HMBC correlations ('H-13C) and NOESY correlations for the decalin
moeity of ilicicolin I (8).

Hydroxyl-ilicicolin H (6) and ilicicolin I (8) were evaluated together with ilicicolin H (7) for
their antifungal activity against A. fumigatus, C. albicans, Candida parapsilosis, and Candida tropicalis.
Compounds (6) and (8) did not show any activity at the tested concentrations (MICqy > 128 pug/mL).
In contrast, ilicicolin H (7) exhibited strong activities against A. fumigatus (MICyy 0.5-1 pug/mL),
C. albicans (MICqy < 0.25 pg/mL), and C. parapsilosis (MICqy 0.5 pug/mL) to confirm the observed
activity of the antifungal fraction. Structure-activity relationship (SAR) studies have previously been
performed during structural modifications (chemical, biotransformation, and enzymatic) to ilicicolin
H [27,28,44]. As shown here, a series of semisynthetic analogues produced by biotransformation of
ilicicolin H generally showed a significant loss of activity when oxidized [44]. The importance of
the -diketone feature (C-4-C-3-C-7) has been indicated in the antifungal activity and in general a
significant reduction or loss of activity has been seen for compounds with modification around the
B-diketone and hindrance of an established bioactive conformation with a perpendicular orientation
between the left hand phenyl-pyridone side and right hand decalin side [27,28]. The loss of activity
seen for ilicicolin I may be due to the hindrance of this structural isomer to take up the right
bioactive conformation.

3. Materials and Methods

3.1. General Experimental Procedures

UHPLC-DAD-QTOFMS was performed on an Agilent Infinity 1290 UHPLC system (Agilent
Technologies, Santa Clara, CA, USA) equipped with a DAD. Separation was achieved on an Agilent
Poroshell 120 phenyl-hexyl column (2.1 x 150 mm, 2.7 um) with a flow rate of 0.35 mL/min at
60 °C using a linear gradient of 10% acetonitrile (MeCN) in Milli-Q water buffered with 20 mM
formic acid (FA) increased to 100% in 15 min staying there for 2 min, returned to 10% in 0.1 min
and kept there for 3 min before the following run. MeCN was LC-MS grade. MS detection was
done on an Agilent 6545 QTOF MS equipped with Agilent Dual Jet Stream electrospray ion source
with a drying gas temperature of 160 °C, a gas flow of 13 L/min, and a sheath gas temperature of
300 °C and flow of 16 L/min. Capillary voltage was set to 4000 V and a nozzle voltage to 500 V.
Other MS parameters including description of the automated data-dependent MS/HRMS (at 10,
20, and 40 eV) can be found in Kildgaard et al. 2014 [11]. The MS data were analyzed in three
different ways. First, full scan HRMS data were data mined (aggressive dereplication) for [M + H]*,
[M + Na]*, [M — H]~, and [M + HCOO]~ adducts of all known elemental compositions described
from Stilbella and related genera [11], here the mass accuracy, isotopic ratios, and isotopic spacing [45]
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were added into a combined score (0-100%), where only hits above 70% were considered. Secondly,
the MS/HRMS spectra were searched against the in-house library using the Agilent MassHunter
PCDL manager (Agilent Technologies), with 20 ppm accuracy on the parent ion and 30 ppm on the
fragment ions, giving a score of 0-100%. Finally, the elemental composition of peaks not identified
in the previous two steps, were identified based on the mass accuracy, isotopic ratios, and isotopic
spacing (sometimes providing several candidates above 70%). Then similarity search (>50% of 100%)
was used for matching peaks in the library spectrum against the unknown spectrum (independent on
parent mass) [11] to pinpoint related pimarane diterpenoids and hybrid polyketide-non ribosomal
peptides, since both had groups displaying unique and very different fragment ions (Supplementary
information). Pre-fractionation was performed using flash chromatography of the crude extract with
an Isolera One automated flash system (Biotage, Uppsala, Sweden). Purification of compounds was
conducted using a Waters 600 Controller (Milford, MA, USA) coupled to a Waters 996 Photodiode
Array Detector. One and two dimensional NMR experiments were acquired using standard pulse
sequences on a 400 MHz Bruker Ascend spectrometer with a Prodigy cryoprobe, 600 MHz Bruker
Ascend with a SmartProbe (BBO) and a 800 MHz Bruker Avance spectrometer with a 5 mm TCI
cryoprobe, alternatively on a 500 MHz Bruker Avance with a 1.7 mm cryoprobe at Fundaciéon Medina,
Spain. Optical rotations were measured on a Perkin Elmer 341 polarimeter (Perkin Elmer, Waltham,
MA, USA).

3.2. Fungal Strain and Identification

The filamentous fungus was isolated from a sea water sample off the coast of the Danish island
Fanoe. The fungus was 3-point inoculated on CYA, OAT, PDA, and V8 agar plates [46] and incubated
at 25 °C in the dark. After 11 days of growth on V8, microscope slides were made and a morphological
examination identified the fungus as Stilbella fimetaria (Pers.) Lindau. Molecular sequencing of the ITS
region confirmed the morphological identification. The fungus (IBT 28361) is stored in the IBT culture
collection at DTU Bioengineering, Technical University of Denmark.

3.3. Cultivation

Original small scale cultivation: the marine-derived fungus was 3-point inoculated on ten agar
plates (five CYA and five YES) and incubated for 9 days in the dark at 25 °C [46]. Cultivation 1:
the fungus was 3-point inoculated on 200 YES plates and incubated for 9 days in the dark at 25 °C.
Cultivation 2: the fungus was inoculated into 6 x 1.8 L conical culture flasks with organic grain rice
(150 g per flask) and Milli-Q water (150 g per flask) and incubated at 25 °C in the dark for 10 days.
Cultivation 3: the fungus was inoculated into 15 small conical flasks 0.5 L with organic grain rice (50 g
per flask) and Milli-Q water (50 g per flask) and incubated for 21 days at 25°C in the dark.

3.4. Extraction and Isolation

Original small scale cultivation: Extraction of the eight plates (four CYA and four YES) was
achieved with 150 mL EtOAc containing 1% FA. The crude extract was then fractionated on a RP Cig
flash column (Sepra ZT, Isolute, 10 g) using the Isolera One automated flash system. The gradient
used was MeCN and water buffered with 20 mM FA going from 15% to 100% MeCN over 28 min
(12 mL/min). Six flash fractions were automatically collected based on UV signal (210 nm and 254 nm).
MeCN was of HPLC grade and water was purified and deionized by a Millipore system with a 0.22 um
membrane filter (Milli-Q water). For one CYA plate and one YES plate 4 plugs were taken from one
colony with a 6-mm plug drill, covering the diameter of the colony and extracted with 1 mL EtOAc
containing 1% FA and otherwise prepared in accordance with the micro-scale extraction method
described by Smedsgaard [47].

Cultivation 1: Extraction was achieved with 150 mL EtOAc with 1% FA for every 10 plates.
Liquid-liquid extraction was performed with 1:9 Milli-Q water:methanol (MeOH) and 1:1 heptane,
resulting in two phases, the Milli-Q water/MeOH phase was added Milli-Q water to a ratio 1:1,
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and metabolites were extracted with dichloromethane (DCM). This was done to remove unwanted
carbohydrates from the media as well as fatty acids. The crude extract from the DCM phase was
fractionated on a RP Cyg flash column (Sepra ZT, Isolute, 25 g) using the Isolera One automated flash
system. The gradient used was 15-100% MeCN buffered with 20 mM FA over 28 min (25 mL/min).
Fractions were automatically collected based on UV signal (210 nm and 254 nm). The bioactive fraction
(going from 40-50% MeCN) was further fractionated on the Isolera system using a diol flash column
(Diol, 25 g, 33 mL) and fractions were eluted with two column volumes (2 col. vols.) per fraction with
DCM, DCM/EtOAc, EtOAc, EtOAc/MeOH, and MeOH with a flow rate of 25 mL/min. The bioactive
fractions going from 50% to 60% and 60% to 85% MeCN were fractionated further on the Isolera system
using a RP C;g flash column (10 g/15 mL). The gradient was 5% stepwise (13 col. vols.) from 35%
to 100% MeOH buffered with 20 mM FA with a flow rate of 15 mL/min. Fractions were collected
manually for every 5%. Myrocin F and helvolic acid were purified on the Waters 600 semi-preparative
HPLC. Myrocin F separation was achieved on a Luna Il Cyg, 5 pm, 250 X 10 mm column (Phenomenex,
Torrance, CA, USA) with a flow rate of 5 mL/min using a linear gradient of 45% MeCN in Milli-Q
water with 20 mM FA going to 75% MeCN in 20 min. Helvolic acid separation was achieved on a Luna
IT Cqg, 5 um, 250 x 10 mm column (Phenomenex, Torrance, CA, USA) with a flow rate of 4 mL/min
using a linear gradient 60% MeCN in Milli-Q water going to 100% MeCN in 20 min.

Cultivation 2: Extraction was achieved using 600 mL per flask of EtOAc with 1% FA. Liquid-liquid
extraction was performed with 1:9 Milli-Q water:MeOH and 1:1 heptane, the Milli-Q water/MeOH
phase was added Milli-Q water to a ratio 1:1, and metabolites were extracted with DCM, leaving
the crude extract from the DCM phase. The crude extract was fractionated on a diol flash column
(Diol, 25 g, 33 mL) and compounds were eluted with 2 col. vols. per fraction: heptane, heptane/DCM,
DCM, DCM 3: 1 EtOAc, DCM/EtOAc, EtOAc, EtOAc 3:1 MeOH, EtOAc/MeOH, and MeOH. Fractions
DCM 3: 1 EtOAc and DCM/EtOAc were further fractionated on a RP Cyg column (15 pm/100 A,
10 g/15 mL) using the Isolera One automated flash system. The gradient was 5% stepwise (13 col. vols.)
from 35% to 100% MeOH buffered with 20 mM FA with a flow rate of 15 mL/min. Fractions were
collected manually for every 5%. Libertellenone M, the suggested opened y-lactone of libertellenone
M and libertellenone C were purified on the Waters 600 semi-preparative HPLC. Libertellenone M
and the opened y-lactone of libertellenone M separation was achieved on a Gemini Cg-Phenyl, 5 pm,
250 x 10 mm column (Phenomenex, Torrance, CA, USA) with a flow rate of 4 mL/min using a linear
gradient 40% MeCN in Milli-Q water with 20 mM FA going to 100% MeCN in 28 min. Further
libertellenone M separation was done on a Luna II Cyg, 5 um, 250 x 10 mm column (Phenomenex,
Torrance, CA, USA) with a flow rate of 4 mL /min isocratic 55% MeCN in Milli-Q water with 20 mM FA
in 20 min and a Kinetex Biphenyl, 5 pym 250 x 10 mm column (Phenomenex, Torrance, CA, USA) with
a flow rate of 4 mL/min using a linear gradient 30% MeCN in Milli-Q water with 20 mM FA going to
100% MeCN in 25 min. Libertellenone C separation was achieved on a Luna Il Cyg, 5 um, 250 x 10 mm
column (Phenomenex, Torrance, CA, USA) with a flow rate of 5 mL/min using a linear gradient of 30%
MeCN in Milli-Q water with 20 mM FA going to 70% MeCN in 30 min. Libertellenone E was purified
from the EtOAc 3:1 MeOH fraction on the Waters 600 semipreparative HPLC. Separation was achieved
on a Luna I Cqg, 5 um, 250 x 10 mm column (Phenomenex, Torrance, CA, USA) with a flow rate of
5 mL/min using a linear gradient of 30% MeCN in Milli-Q water with 20 mM FA going to 70% MeCN
in 20 min and a Kinetex Biphenyl, 5 pum 250 x 10 mm column (Phenomenex, Torrance, CA, USA ) with
a flow rate of 4 mL/min using a linear gradient of 30% MeCN in Milli-Q water with 20 mM FA going
to 100% MeCN in 25 min.

Cultivation 3: Extraction was achieved using 150 mL EtOAc per flask. Liquid-liquid extraction
was performed with 1:9 Milli-Q water:MeOH and 1:1 heptane, the Milli-Q water/MeOH phase was
added Milli-Q water to a ratio 1:1, and metabolites were extracted with DCM, leaving the crude extract
from the DCM phase. The crude extract was pre-fractionated on a diol flash column (Diol, 25 g, 33 mL)
and compounds were eluted with 2 col. vols. per fraction: heptane, heptane/DCM, DCM, DCM 3:1
EtOAc, DCM/EtOAc, EtOAc, EtOAc 3:1 MeOH, EtOAc/MeOH, and MeOH. Interesting fractions were
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further fractionated on a RP C;g column (15 um/100 A, 10 g/15 mL) using the Isolera One automated
flash system. The gradient was 5% stepwise (13 col. vols.) from 35% to 100% MeOH buffered with
20 mM FA with a flow rate of 15 mL/min. Fractions were collected manually for every 5%. Ilicicolin H
and hydroxy-ilicicolin H purification was achieved from the 80% MeOH and 50% MeOH fractions,
respectively, on a Gemini Cg-Phenyl, 5 pm, 250 x 10 mm column (Phenomenex, Torrance, CA, USA)
with a flow rate of 4 mL/min using a linear gradient from 80% MeCN in Milli-Q water with 20 mM FA
going to 100% MeCN in 15 min for ilicicolin H and from 50% MeCN in Milli-Q water with 20 mM FA
going to 90% MeCN in 20 min for hydroxy-ilicicolin H. Ilicicolin I was purified from the 60% MeOH
fraction on a Kinetex Biphenyl, 5 pm 250 x 10 mm column (Phenomenex, Torrance, CA, USA ) with a
flow rate of 4 mL/min using an isocratic gradient at 75% MeCN in Milli-Q water with 20 mM FA for
20 min.

Helvolic acid: white solid; UV (MeCN) Amax: 234 nm; 1>C NMR see Figure S12 and Table 1; HRESIMS
m/z 591.2932 ([M + Na]* calculated for C33Hy4OgNa, m/z 591.2922)

Myrocin F: white solid; UV (MeCN) Apax: 215 nm, 270 nm; 13C- and 'H-NMR see Table 1; HRESIMS
m/z329.1745 ([M + H]" calculated for CogHp50y4, m/z 329.1746)

Libertellenone M: white solid; [oc]2D0 —81° (¢ 0.10, MeOH); UV (MeCN) Amax: 220 sh nm, 270 sh nm,
290 nm; 13C- and '"H-NMR see Table 2; HRESIMS m/z 327.1592 (M + H]* calculated for CpoHp304,
m/z 327.1590)

Opened vy-lactone ring of libertellenone M: white solid; UV (MeCN) Apax: 220 sh nm, 270 nm,
315 nm; 13C- and '"H-NMR see Table 2; HRESIMS m/z 345.1692 (M + H]* calculated for CpoHy50s,
m/z 345.1695)

Libertellenone C: white solid; [oc]ZDO —98° (¢ 0.11, MeOH); UV (MeCN) Amax: 218 nm, 270 nm, 325 nm;
13C- and 'H-NMR see Figure S31 and Table 2; HRESIMS m/z 349.2012 ([M + H]* calculated for
C20H2905, m/z 349.2007)

Libertellenone E: white solid; [a]g) +24.6° (¢ 0.13, MeOH); UV (MeCN) Amax: 214 nm, 268 nm, 314 nm;
13C- and 'H-NMR see Figure S31 and Table 2; HRESIMS m/z 347.1858 ([M + H]* calculated for
CooHyyOs, m/z 347.1851)

Ilicicolin H: yellow solid; [a]%) —159° (¢ 0.11, MeOH); UV (MeCN) Amax: 250 nm, 295 nm, 350 nm;
13C- and 'H-NMR see Table 3; HRESIMS m/z 434.2325 (M + HJ* calculated for CoyH3NOy,
m/z 434.2323)

Hydroxyl-ilicicolin H: yellow solid; UV (MeCN) Apax: 250 nm, 295 nm, 350 nm; 13C- and 'TH-NMR
see Table 3; HRESIMS m/z 450.2278 ([M + H]" calculated for CpyH3,NOs, m/z 450.2272)

Hicicolin I: yellow solid; UV (MeCN) Amax: 254 nm, 308 nm, 365 nm; *C- and 'H-NMR see Table 3;
HRESIMS 1/z 434.2325 (M + H]* calculated for Co7H3pNOy, m/z 434.2323

3.5. Cytotoxicity Assay

NCH421k GSCs were derived from primary GBM patients who underwent surgical resection
according to the research proposals approved by the Institutional Review Board at the Medical
Faculty of Heidelberg. Tissues were enzymatically dissociated and cells were cultivated as floating
neurospheres under standard conditions (37 °C, 95% humidity, and 5% CO;) in serum-free stem cell
medium (DMEM/F-12 medium, 20% (v/v) BIT-admixture and 20 ng/mL each of basal fibroblast
growth factor (bFGF) and epidermal growth factor (EGF)). Cells were generally cultivated in 75 cm?
untreated cell culture flasks (Sarstedt, Newton, MA, USA). When spheres reached around 150-300 pm
in diameter, cells were passaged into new medium. Spheres were separated from debris and dead
cells by gravity sedimentation, before suspension in 1 mL accutase and shaking at 1100 rpm at 37 °C.
Accutase was removed after centrifugation at 900 g for 4 min and cells resuspended in 1 mL stem cell
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medium. Cells were passaged at 1:5-1:10 into 13 mL fresh stem cell medium, depending on the density
of the previous culture. Malignant cell lines A549 (lung carcinoma), MCF7 (breast adenocarcinoma),
SW480 (colorectal adenocarcinoma) and DU 145 (prostate carcinoma) were cultivated adherently in
DMEM supplemented with 10% FCS and 1% (v/v) penicillin/streptomycin. Stilbella fimetaria extracts
were initially tested for anticancer activity in NCH421k cells. To this end, cells were seeded in 96-well
plates (Greiner, Munich, Germany) at a density of 20,000 cells per well in 100 uL medium. Dried
fractionated fungal extracts were dissolved in DMSO and 10, 2, 0.4, 0.1, and 0.025 nug/well was applied
to the cells. 48 h after incubation under standard cell culture conditions, cell viability was assessed
using the CellTiter-Glo® luminescent cell viability assay (Promega, Madison, WI, USA). Cells incubated
with DMSO only were used as a control. In order to determine ICsy values for the pure diterpenoids,
cells were seeded in 96-well plates (Greiner, Munich, Germany) at a density of 5000 cells per well
for adherent cells and 8500 cells per well for NCH421k cells. Adherent cells were seeded 24 h in
advance to allow the cells to attach. Compound was dissolved to 30 mM in 100% DMSO and three-fold
serial dilutions were performed in cell culture medium. The compound containing medium was then
applied with a dilution factor of ten, contributing to eight concentrations, starting at 300 uM for all the
assays. Cell viability was assessed by the CellTiter-Glo® (Promega, Madison, WI, USA) luminescent
cell viability assay after 48 h incubation with the compound. Data were normalised to the DMSO
control. Viability curves were plotted using Excel and ICs( values estimated from the curves. The assay
was performed in biological triplicate.

3.6. Antibacterial and Antifungal Assays

Previously described methods were used for evaluating antibacterial and antifungal properties
of extracts/compounds [48,49]. The pimarane diterpenoids were tested for their ability to inhibit the
growth of Gram-negative and Gram-positive bacteria (E. coli ATCC25922 and MSSA MB2865), fungi
(A. fumigatus ATCC46645) and yeast (C. albicans ATCC64124). Ilicicolin H and analogues were tested
for their ability to inhibit the growth of A. fumigatus ATCC46645 and yeast (C. albicans ATCC64124,
C. parapsilosis ATCC22019, and C. tropicalis ATCC750). Helvolic acid was tested for its ability to inhibit
the growth of MRSA MB5393. Briefly, each compound was 3-fold serially diluted in DMSO with
a dilution factor of 2 to provide 10 concentrations starting at 128 ug/mL for all the assays (for the
pimarane diterpenoids only nine concentrations were used starting at 64 pg/mL). The MIC was
defined as the lowest concentration of an antibacterial or antifungal compound that inhibited >90% of
the growth of a microorganism after overnight incubation. The Genedata Screener software (Genedata,
Inc., Basel, Switzerland) was used to process and analyse the data and also to calculate the RZ’ factor
which predicts the robustness of an assay [50]. In all experiments performed in this work the RZ’ factor
obtained was between 0.87 and 0.98.

4. Conclusions

In this study, our combined bio-guided and dereplication-based discovery approach of cytotoxicity
and antimicrobial assays, UHPLC-DAD-QTOFMS-MS/HRMS using an in-house MS/HRMS library
and pre-bioassay fractionation of a marine-derived fungus Stilbella fimetaria proved to be quick and
effective in the identification of new and known bioactive natural products. There was no observed
bioactivity for the Stilbella fimetaria crude extract on its own, whereas pre-fractionation allowed the
observation of cytotoxicity, and antibacterial and antifungal activity, respectively, in three different
fractions. This led to the discovery of several cytotoxic pimarane-type diterpenoids, including the
two new diterpenes, myrocin F and libertellenone M, with ICs values of 40 an 18 uM, respectively,
towards patient derived glioblastoma stem-like cells. Myrocin F exhibited general cytotoxicity towards
various cancer cell lines with ICsg values between 20 to 50 uM. The known broad-spectrum antifungal
compound, ilicicolin H was revealed as the active compound contributing to the observed antifungal
activity and MS/HRMS was applied to tentatively identify several new ilicicolin H analogues,
including the two purified compounds, hydroxyl-ilicicolin H and ilicicolin I. Optimization on rice
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media allowed for the purification of compounds in the required amount for structure elucidation
and bioassay analysis, with the production being optimal at around one week for the pimarane-type
ditepenoids and three weeks for the ilicicolin H analogues.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/15/8/253/s1,
HRESITOFMS, MS/HRMS, UV and 1D and 2D NMR data of all new compounds are provided.
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