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An organism is defined as “an individual living thing capable of responding to stimuli,
growing, reproducing, and maintaining homeostasis.” Early during evolution multicellular
organisms explored the advantages of a symbiotic life. Mammals harbor a complex aggre-
gate of microorganisms (called microbiota) that includes bacteria, fungi, and archaea. Some
of these bacteria have already defined beneficial roles for the human host that include the
ability to break down nutrients that could not otherwise be digested, preventing the growth
of harmful species, as well as the ability to produce vitamins or hormones. It is intuitive
that along the evolutionary path several mechanisms favored bacteria that provided advan-
tages to the host which, in return, avoided launching an aggressive immunological response
against them.The intestinal immunological response does not ignore the lumenal content,
on the contrary, immune surveillance is favored by continuous antigen sampling. Some
intestinal epithelial cells (ECs) are crucial during the sampling process, others actively
participate in the defense mechanism. In essence the epithelium acts as a traffic light,
communicating to the inside world whether conditions are safe or dangerous, and thus
influencing immunological response. In this review we will discuss the dynamic factors
that act on the intestinal ECs and how they directly or indirectly influence immune cells
during states of health and disease.
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EVOLUTION OF THE DIGESTIVE SYSTEM
Evolution is defined as the change in the inherited characteristics of
biological populations over successive generations. Evolutionary
processes give rise to diversity at every level of biological orga-
nization, including species, individual organisms, and molecules
such as DNA and proteins (1). Life on Earth originated 3.7 billion
years ago. Given that an organism requires the intake of energy
to live, several strategies appeared during evolution to obtain effi-
cient food intake and digestion (Figure 1). Organisms that were
more efficient in capturing and digesting nutrients could prevail
in the battle for the survival of the species. Sponges are recognized
as the first multicellular organism to appear on Earth. These mul-
ticellular organisms did not have a specialized digestive tract, every
single cell obtained and digested food particles by filtering water
(2). An important step in the evolution of the digestive system
is represented by the digestive sac. Cnidarians are multicellular
organisms that represent a crucial step for the evolution of the
gastrointestinal tract as they evolved a single opening followed by
a cavity that served as a digestive space where extracellular diges-
tion produces products ultimately distributed to the entire body
(3). Hydra in particular are elegant multicellular organisms that
use their tentacles to introduce food in their gastrovascular cavity
(4). Among Hydra another crucial evolutionary step took place in
the Hydra viridis. This common organism belonging to the phylum
Cnidaria appeared on Earth 580 million years ago. Its characteristic
green color derives from cells of the unicellular alga symbioti-
cally living within the cells of the gastrodermis. Maintenance of

normal symbionts within host digestive cells at relatively constant
numbers is due to their avoidance of host digestion. Symbionts
continued to evolve together with the host organism. In humans
a complex digestive tract harbors an aggregate of microorgan-
isms (called microbiota) that includes bacteria, fungi, and archaea.
Some of these bacteria have already defined beneficial roles for the
human host, which include the ability to break down nutrients that
could not otherwise be digested, preventing the growth of harmful
species, as well as the ability to produce vitamins or hormones. It
is intuitive that along the evolutionary path several mechanisms
favored the microbiota that was able to provide advantages to
the host which, in return, offered a safe home where food rou-
tinely arrived. A sick host will stop providing food, thus negatively
selecting for microbiota that damaged the host by favoring inflam-
matory responses or harmful infections. At the same time the host
has the challenging duty of allowing controlled microbiota growth
and of reacting against possible treats.

INTESTINAL EPITHELIAL CELLS
The intestinal epithelial is a monolayer of cells responsible for
the absorption of nutrients taking place through the epithelial
cells’ (ECs) luminal side. To maximize this process and obtain the
largest surface area the small intestine consist of villi and crypts
that tremendously increase the number of ECs. Furthermore the
luminal surface of the ECs presents microvilli that further increase
the exchange surface area. In humans the overall surface covers
approximately 200 m2 (5). This strategy perfectly serves the need
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Eri and Chieppa Messages from the inside

FIGURE 1 | Crucial steps of intestinal tract evolution. Seven hundred
millions of years ago sponges were the first multicellular organisms to
obtain and digest food particles by filtering water. Six hundred millions of
years ago Cnidarians evolved a single opening followed by a cavity that
serves as a digestive space. The opening served both as the entrance for

food and the exit for waste. It was not until about 100 million years later
that, with the Nemertea, waste was eliminated through a second opening,
thus maximizing food absorption potential. The first mammals evolved 180
million years ago, but the human intestine first appeared about 160 million
years later.

to increase nutrient absorption, and at the same time exposes the
intestine to the largest possible contact area between the body
and the external world via the intestinal lumen. More than 160
species of bacteria populate the intestinal lumen (6). Their den-
sity increases along the length of the intestine, peaking in the colon
where water is reabsorbed and bacteria are packed and expelled as a
major component of feces. Since the first phases of gastrointestinal
evolution the ECs monolayer was exposed to challenging condi-
tions given the need for it to be simultaneously a physical, chemical,
and electrical barrier between the sterile internal environment
and the non-sterile external one. This complex luminal micro-
environment is called microbiota and includes bacteria, fungi,
nematodes, and viruses. The microbiota has the ability to break
down nutrients, produce vitamins or hormones, and prevent the
growth of harmful species, all factors that represent an advantage
to the host (7). Nevertheless the microbiota is not ignored by the
host’s defenses, as immune cells and ECs assemble a series of strate-
gies to achieve active vigilance of the luminal content (8–11). All
these mechanisms contribute in maintaining a stable state of the
internal environment, which is maintained by regulatory processes

despite changes that may occur in the external environment, a
phenomenon named “homeostasis” in 1929 by W.B. Cannon (12).

EPITHELIAL CELLS SECRETE FACTORS THAT SHAPE THE INTESTINAL
LUMEN CONTENT
The gastrointestinal tract has long been considered to contain the
largest number of lymphocytes in the human body, and although
recent studies have revised this idea, it has been confirmed that a
significant percentage – ranging between 5 and 20% of all lym-
phocytes – resides in the gut (13). A dense net of immune cells
underlines the ECs monolayer, with distinct aggregates of lym-
phoid follicles structured as isolated lymphoid follicles (ILFs) in
the colon or Peyer’s Patches in the small intestine. The intestinal
lumen is also the site where the greatest amount of immunoglobu-
lin is secreted, indeed IgA producing B cells are largely“instructed”
in the PPs. IgA are extremely important to the correct bacterial dis-
tribution along the intestine (14) as demonstrated by an elegant
experiment using immunocompetent (scid/+) or immunodefi-
cient (scid/scid) mothers. The neonatal intestinal distribution of
Segmented Filamentous Bacteria (SFB) was related to the passively
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acquired maternal secretory IgA (sIgA) in the milk. Milk lacking
IgA favored the abnormal SFB colonization of the ileum (15). IgA
induction is extremely limited under germ free conditions, but
can be rapidly established following intestinal colonization (16). A
proliferation-inducing ligand (APRIL) is a key factor for the class
switch recombination to IgA, and its production requires TLRs
engagement by intestinal ECs (17). sIgA are transported across
the ECs into the lumen by the polymeric immunoglobulin recep-
tor (pIgR). As sIgA represent the first line of defense preventing
an unneeded pro-inflammatory response as a consequence of the
adherence of bacteria to the mucus layer, the induction of pIgR has
to be constantly sustained (18–20). Commensal bacteria represent
at the same time the stimulus for the coordinated signals that
enhance sIgA production and pIgR expression. Intestinal bacteria
promote ECs Thymic Stromal Lymphopoietin (TSLP) production
(21). TSLP is an IL-7 related cytokine originally isolated from a
mice thymic stromal cell line (22). TSLP signaling is mediated
by TSLP binding to the IL-7Rα and TSLPR. Experiments that
used different approaches, including the TSLPR-deficient mice,
were crucial in demonstrating the importance of the TSLP–TSLP
axis in the production of APRIL (23), Th2, and Foxp3+ regula-
tory T cells (Tregs) induction (8–11, 24, 25) as well as Th1, Th17
inhibition (26, 27).

MUCOSAL LAYER MEDIATED PROTECTION
Epithelial cells are involved in the production of other key players
in correct intestinal homeostasis. Among them the mucus layer
and the antimicrobial protein (AMP) contribute significantly. The
mucus layer is produced by the goblet cells and is fundamen-
tal for the protection of the gastrointestinal tract. Its anatomical
distribution is consistent with the need to protect the epithelial
monolayer and create a disconnection between the body and the
luminal content. Indeed the small intestine does not present a well
defined mucus layer, as opposed to what happens in the colon and
in the stomach (28). The colonic mucus layer is organized in an
insoluble inner layer that is relatively sterile, protecting the ECs
from bacterial encounter, and a loose outer layer that is well colo-
nized by commensal bacteria (29). MUC2 is the major component
of the mucus layer in the small and large intestine and mutations
that involve MUC2 are related with chronic intestinal inflamma-
tion as a result of uncontrolled ECs exposure to the commensal
bacteria (30, 31). Another important role of the mucus layer is to
concentrate the epithelial AMPs near the epithelial surface. AMPs
production is another fundamental mechanism for commensal
control and selection. Enterocytes are the major producer of these
proteins (32), but immune cells can also efficiently contribute
(33). Diverse AMPs are produced in the small or large intestine
and even among the same anatomical compartment, while differ-
ent cells produce different AMPs. Paneth cells located at the base
of the intestinal crypts express α-defensins (34) and RNase (35),
while enterocytes produce C-type lectins in the small intestine (36)
and β-defensins in the colon (35). Together with the antimicro-
bial effects, these proteins affect the intestinal immune response
and in particular contribute to shape the inflammatory response
mediated by the intestinal dendritic cells (DCs) underlying the
ECs monolayer (37).

INTESTINAL DENDRITIC CELLS
Dendritic cells are defined as the most potent antigen presenting
cells, able to capture, process, and present antigens to initiate the
adaptive immune response (38). DCs are distributed all the way
through the gut in the lamina propria (LP), gut associated lym-
phoid tissue (GALT), and in discrete lymphoid aggregates (the
latter are generally present in the colon). DCs activate a series of
maturational processes in response to microbial antigens exposure
that are involved in the innate antimicrobial and inflammatory
responses. Furthermore DCs maturation activates T and B cells,
initiating the adaptive immune responses (39). Microbial anti-
gens can be detected by the DCs following traumatic events that
perturb the natural sterile habitat of the human body. This is
not true in tissues like the intestine or the skin where microbes
are not only tolerated but even welcome. As aforementioned, the
microbiota is an important player for food digestion, vitamin
production, and even defense against potential pathogens. The
symbiotic coexistence between bacteria and host preexists the
development of the immune system, it is therefore not surprising
that the immune system evolved mechanisms to avoid poten-
tially dangerous inflammatory responses in these compartments.
Intestinal DCs are pivotal for sustaining immune tolerance toward
oral antigens. Indeed, DCs promote differentiation, expansion,
and maintenance of Treg (40) and the induction of IgA produc-
ing B cells against commensal bacteria. The adaptive immune
responses initiate in the mesenteric lymph node (MLN) where
DCs migrate from the intestine. Worbs et al. demonstrated that
genetic defects that alter CCR7 mediated trafficking profoundly
affect the induction of tolerance to oral antigens (41).

INTESTINAL DCs SUBTYPES
Different DCs subtypes coexist in the intestinal LP. Iwasaki et al.
first defined intestinal DCs based on the expression of mark-
ers such as CD8α, CD11b, and CD11c (42, 43). More recently
the expression of αEβ7 (CD103) has been associated with the
DCs subset migrating to the MLN and promoting the tolerogenic
response. Indeed CD103+ DC are characterized by high levels of
retinoic acid (RA) synthesizing enzyme (RALDH), which is cru-
cial for the Treg inducing capacity (44). CX3CR1 is another crucial
marker that has been used to discriminate intestinal DCs subpop-
ulation. CX3CR1+ DCs do not express CD103 and, in marked
contrast with the CD11c+CD103+ DCs, do not migrate to the
MLN and are poor Treg inducers (45, 46). In summary MHCII+,
CD11b+, CD11c+, CD103+,CX3CR1− cells are migrating DCs
able to promote Treg conversion, imprint gut-homing proper-
ties and induce IgA switch, while MHCII+, CD11b+, CD11c+,
CD103−,CX3CR1+ are TNFα producers involved in Th17 induc-
tion. Starting from the observation that CX3CR1+DCs are not the
MLN migrating DCs, a recent work by McDole et al. (47), focused
on CD103+ DCs antigen uptake. This elegant study, which used
minimally disruptive in vivo imaging, suggests that small intes-
tine goblet cells deliver soluble luminal antigens to the underlying
CD103+ DCs. Several studies described the DCs ability to extend
processes between ECs, both along the small intestine (46, 48, 49),
in the PPs (50), and the trachea (51). This ability has been related
with the need to uptake luminal antigens to be presented in the
MLN even in the absence of inflammation. In this regard, Farache
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et al. were able to distinguish the antigen uptake ability of two
different DCs populations. Using a CD11c-YFP×CX3CR1+/gfp

mouse model, they described a population of CD103+ GFP−

YFPint DCs that are able to internalize non-invasive Salmonella
by sending dendrites between ECs. At the same time these cells
were not as efficient in the uptake of soluble OVA injected into the
intestinal lumen, which was mostly internalized by the CX3CR1+

macrophage population (46). In addition to the aforementioned
uptake mechanisms, an alternative sampling/capturing mecha-
nism has been recently studied. Arques et al. observed (CD11c+,
CX3CR1+, MHCII+, CD11b−, CD8a−) DCs trans-epithelial
migration in the small intestine of Salmonella treated mice (52).
The authors suggest that DCs migration in response to TLR5
engagement represents a strategy to prevent or limit the number
of pathogens that can penetrate the intestinal epithelium. These
hypotheses deserve to be further investigated but represent fasci-
nating mechanisms for the mucosal immune response. At the same
time, it is important to better understand the molecular mecha-
nisms that regulate DCs luminal sampling. Different approaches
demonstrated that DCs intralumenal sampling is a chemokine
related phenomenon (52), but the key factor has still to be iden-
tified. It is important to underline that trans-epithelial dendrites
have been clearly observed in vitro and in vivo,but considerable dif-
ferences between studies need to be carefully considered, including
those that argue against the relevance of such a mechanism in vivo
(46, 47, 53, 54). The in vivo observation of the intestinal lumen
requires an invasive procedure that may create acute inflammation
and alter the epithelial barrier permeability, eventually inducing
apoptosis. Variability between studies may be related to differences
in the animal facility condition, starvation periods, or by the pro-
cedures required to obtain clean observation areas. Altogether it is
clear that intestinal homeostasis is the result of dynamic processes
based on vigilant tolerance mediated by antigen presentation in the
absence of inflammation. DCs migrating in the MLNs provide the
intelligence that decides the outcome of the adaptive response, for
this reason so much effort has been devoted to define the intestinal
derived factors able to educate the intestinal DCs.

EPITHELIAL DERIVED IMMUNE FACTORS
The intestinal epithelium evolved to become the largest surface of
the body in contact with the external world. The intestinal lumen
represents an extremely challenging environment where the need
to protect the body from external treats has to coexist with the
necessity to permit nutrient absorption. For this reason the largest
amount of immune cells resides in close contact with the intesti-
nal ECs. Among them DCs continuously receive signals from the
ECs to verify if microbes and ECs are interacting properly. ECs are
indeed able to recognize pathogens through a variety of pattern
recognition receptors (PRR), including several TLRs expressed on
their luminal or basolateral surface (55–57). ECs response to TLRs
ligand discriminate TLRs from the luminal or basolateral side.
Lumenal TLRs represent constitutive conditions related with the
presence of the intestinal microbiota; ECs respond to TLRs engage-
ment by NFkB translocation into the nucleus that leads to the
production of chemokines, cytokines (58), and regulate epithelial
integrity (59). Basolateral TLRs engagement is more likely related
with bacterial invasion or epithelial monolayer discontinuity that

results in different types of ECs activation and consequently a
pro-inflammatory response (Figure 2). In case of bacterial inva-
sion DCs underlying the ECs monolayer should not be able to
respond in an inflammatory way. In fact, DCs conditioned by ECs
supernatant lose the ability to produce IL-12 while producing large
amounts of IL-10 even following Salmonella exposure (11, 60).
Efficient inflammatory response needs to be activated by incoming
monocytes that differentiate between DCs in a pro-inflammatory
environment (61). Resident DCs conditioning is obtained by ECs
release of soluble factors – including TSLP (62) and TGF-β (31) –
that appear to synergize in vitro (63). Intestinal DCs also appear to
be able to extend processes inside the capillaries of the LP to sample
circulating antigens (64). This important observation may shed
new light on the connection between inflammatory events that
occur in the intestinal compartment and systemic loss of tolerance
against self-antigens. More immunomodulating factors may arrive
from the intestinal lumen. On this question Agace and Persson
recently contributed to the understanding of the role of lumi-
nal content in imprinting the unique phenotypic and functional
characteristic of intestinal DCs.

LUMENAL PRODUCTS CONDITIONING IMMUNE CELLS
Food derived factors and the entire microbiota can influence
intestinal homeostasis affecting the epithelium or immune cells
directly. Vitamins, for example, act directly on the immune system.
Vitamin A was recently linked to intestinal immune response as
vitamin A metabolite RA is crucial in imprinting gut-homing
properties on T and B cells (65). Vitamin A is acquired through
diet but its active form requires the action of RALDSs to obtain all-
trans-RA. Together with the aforementioned gut-homing prop-
erties, RA promotes Treg and inhibits Th17 differentiation (66).
Another RA important feature is the ability to promote B cell class
switch imprinting IgA secretion abilities fundamental for correct
gut homeostasis and intestinal flora control. Vitamin D, E, and C
can act as antioxidants able to modulate immune response (67,
68). Polyphenols are food derived antioxidants also capable of
fine-tuning immune response by modulating the maturation of
the DCs as shown by the ability of curcumin and resveratrol to
suppress inflammatory cytokine secretion through in vitro cul-
tured DCs exposed to LPS (69). Notably, an interesting study by
Smith et al. describes the ability of microbial metabolites short-
chain fatty acids, to directly enhance colonic Treg frequency via
GPCR43 expressed by the immune cells (70). Overall, the idea of
nutraceuticals (products that have both nutritional and pharma-
ceutical qualities), a term coined by Stephen DeFelice in 1989 (71),
is becoming ever more interesting as we acquire information on
how to direct immune response toward tolerance or inflamma-
tion, as appropriate. It’s not surprising that the major apparatus
involved in food derived immunomodulation is the one that is
the most exposed to food derived products. An appreciation of
the systemic relevance of gut imprinted tolerogenic response will
teach us how to modulate inflammation and eventually prevent
and cure chronic inflammatory syndromes.

CONCLUSION
In conclusion, intestinal homeostasis is maintained in a dynamic
equilibrium by balancing the contribution of different players.

Frontiers in Immunology | Mucosal Immunity October 2013 | Volume 4 | Article 323 | 4

http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eri and Chieppa Messages from the inside

FIGURE 2 |Time progression, from homeostasis to inflammation and
inflammation remission. (A) Homeostasis: lumenal and epithelial derived
factors imprint an inflammatory impaired phenotype to the intestinal
resident DCs. These can sample antigens from the lumen but also from the
capillary, but migrating to the MLNs will not produce inflammatory
cytokines and will not activate an aggressive adaptive response. Incoming
DCs progenitor will enter a favorable environment becoming inflammatory
impaired. Sampling circulating antigens these DCs may be crucial to sustain
tolerance toward self. (B) Inflammatory insult: epithelial barrier loss or
invasive bacteria can change the intestinal milieu, which will lose the ability
to condition incoming DCs progenitors. These will possibly encounter
lumenal antigens and migrate to the MLN to begin a Th1/Th17 adaptive
response. Neutrophils will be recruited as well by the epithelial produced
IL-8/KC. Production of this chemokine appears to be mediated by TLR5
engagement that happens in cases of infection. Previously conditioned DCs
will not be able to produce an inflammatory response, but migrating to the
MLN their effect will be stochastically surmounted by the freshly recruited

DCs if the inflammation is prolonged. (C) Inflammation: incoming
inflammatory cells release TNFα that promotes mucus production by goblet
cells. A thicker mucus layer better protects from lumenal antigen exposure,
important to create the conditions to interrupt the pro-inflammatory
cascade. At the same time neutrophils and macrophages clean-up the
lamina propria. Incoming DCs progenitors retain the possibility of becoming
inflammatory, but the chances decrease in relation with the successful
resolution of the infection. Intestinal DCs that sample circulating antigens in
pro-inflammatory conditions inside the capillaries may erroneously induce
inflammatory responses toward self-antigens. This may enlighten new
aspects related with systemic inflammatory responses observed in patients
affected by chronic intestinal inflammation. (D) Inflammatory remission: the
epithelial barrier is back to normal and epithelial cells are exposed to
sustainable amount of antigens. The ECs cytokine cocktail favors DCs
polarization to the conventional intestinal phenotype. DCs migrating to the
MLN will produce increasing amounts of anti-inflammatory cytokines and
correct intestinal homeostasis is finally completed.

Nutritional intake has been the driving force shaping the system
and the microbiota, and the body evolved consequently. Many
aspects of mucosal immune response have been discovered during
the last few decades, but it appears evident that we are still far from
a full understanding of the complexity of the system. Oversimplifi-
cation obtained by in vitro studies or extreme conditions recreated
in various mice models are needed to dissect and understand key
elements of the system. Nonetheless the complete pattern is still
not quite clear, while the rate of intestinal inflammatory disorders

is increasing worldwide, with the consequent urgent need for new
and more efficient treatments.
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