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Background: Immune checkpoint inhibitors (ICIs), the treatment of multiple

cancer types, can be associated with respiratory system adverse events (AEs).

The aim of this study is to quantify the association of respiratory system AEs and

ICIs and to characterize the profiles of ICI-related respiratory system

complications from Food and Drug Administration Adverse Event Reporting

System (FAERS) data.

Methods: The disproportionality of respiratory system AE-related ICIs based on

FAERS data from January 2014 to September 2021 was analyzed using the

reporting odds ratio (ROR) and information component (IC) as measures of

potential risk increase.

Results: A total of 38,415,849 records were involved; among these, 36,923

records related to respiratory system AEs after ICI treatment were identified. In

the first 3 months, the cumulative proportion of respiratory system AEs was

75.40%. Men had a slightly higher reporting frequency than that of women (ROR

= 1.74, 95% CI: 1.70–1.78). Death cases had a slightly higher reporting frequency

in ICI-associated respiratory system AEs than that of other drug-associated

respiratory system AEs (ROR = 1.40, 95% CI: 1.38–1.41). Anti-programmed cell

death 1 (PD-1) drugs and anti-programmed cell death ligand 1 (PD-L1) drugs

were significantly associated with respiratory system toxicities. However, anti-

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) drugs did not

demonstrate an association with respiratory system toxicities. Interstitial lung

disease and pneumonitis were found to be significantly associated with all eight

types of ICIs. In addition, 7 in 10 class-specific respiratory system AEs (lower

respiratory tract disorders, pleural disorders, pulmonary vascular disorders,

respiratory disorders not elsewhere classified (NEC), respiratory tract infections,
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respiratory tract neoplasms, and thoracic disorders) were associated with ICIs.

The signal values of IC025 were from 0.08 to 2.66.

Conclusions: Overall, this study showed a high reporting frequency of

respiratory system toxicities caused by ICIs. Early recognition and

management of ICI-related respiratory system AEs are of vital importance in

practice. Maximizing the benefit while reducing potential respiratory system

toxicities of ICIs should become a priority.
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Introduction
Immune checkpoint inhibitors (ICIs) have become prevalent

in the treatment of multiple cancer types (1–7). The recently

approved ICIs include anti-cytotoxic T lymphocyte-associated

protein 4 (CTLA-4), anti-programmed cell death 1 (PD-1), and

anti-programmed cell death ligand 1 (PD-L1) (8, 9). By removing

the inhibitory effect and releasing the restraints on the antitumor

immune response (10), ICIs have shown significant efficacy and

improved clinical outcomes during the treatment of a variety of

solid tumours, such as lung cancer, melanoma, renal cell

carcinoma, and urothelial carcinoma (3, 4, 11). However, with

the increasing use of ICIs in practice, immune-related adverse

events (AEs) are increasingly being appreciated (12–14).

Respiratory system immune-related AEs are one of the most

common (15–17). Cases of respiratory system AEs have been

pointed out since the first clinical trials on ICIs. Moreover,

immune-mediated pneumonia was one of the most common

respiratory system immune-related AEs. But other respiratory

system AEs have also been reported recently, such as diaphragm

myositis and sarcoid-like granulomas (18, 19). However, due to

relatively small sample sizes and limited follow-up time, it was

difficult to evaluate sequelae of characteristics of respiratory

system toxicities from ICIs. Notably, some respiratory system

immune-related AEs could cause serious outcomes in practice.

Given the increasing number of patients with cancer expected to

be treated with ICIs in the coming years, more attention needs to

be paid to these respiratory toxicity issues.

The Food and Drug Administration Adverse Event Reporting

System (FAERS) is one of the largest pharmacovigilance databases

on AE reports from real-world data (19–21). By mining large

samples from the FAERS, it could be possible to better obtain

clinical characterization of AEs, such as onset time, outcomes, and

prognosis (20). In this study, we aimed to conduct a

disproportionality analysis leveraging FAERS to systematically
02
characterize and assess ICI monotherapy-associated respiratory

system toxicities.
Materials and methods

Study design and data sources

This observational pharmacovigilance study is a

disproportionality analysis based on the FAERS database

covering the period from January 2014 to September 2021.

The FAERS database is a large postmarketing database for the

safety surveillance of a drug. Currently, millions of AE reports

are submitted to this database by health care professionals,

consumers, manufacturers, etc. The FAERS files updates every

quarter online. All these data are available at https://fis.fda.gov/

extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html.

Variables such as Case Identification (CASEID), age, sex,

event date, drug names, and outcomes were extracted in each

report. Moreover, we removed duplicated records using the

FDA’s recommended method by choosing the latest FDA_DT

when the CASEID was the same and selecting the higher

PRIMARYID when the CASEID and FDA_DT were the same.

In the FAERS database, AEs are coded by the preferred term

(PT) according to the Medical Dictionary for Regulatory

Activities (MedDRA) (Version 24.1 English). A specific PT

can be assigned to several high-level terms (HLTs), high-level

group terms (HLGTs), and system organ classes (SOCs). In this

analysis, we categorized respiratory system entities according to

10 categories of SOCs (bronchial disorders, lower respiratory

tract disorders, pleural disorders, pulmonary vascular disorders,

respiratory disorders NEC, respiratory tract infections,

respiratory tract neoplasms, respiratory tract signs and

symptoms, thoracic disorders, and upper respiratory tract

disorders) (Table 1). More details of the SOCs used in our

study can be accessed in the Supplementary Materials (Table S1).
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ICIs in this study include anti-PD-1 antibodies (nivolumab,

cemiplimab, and pembrolizumab), anti-PD-L1 antibodies

(atezolizumab, avelumab, and durvalumab), and anti-CTLA-4

antibodies (ipilimumab and tremelimumab). Details for these

drug names are listed in the Supplementary Material (Table S2).
Statistical analysis

In this study, disproportionality analysis was applied to

evaluate whether suspected target respiratory system AEs were

differentially reported between ICIs and other drugs in the FAERS

database. The degree of disproportionality was calculated through

the reporting odds ratio (ROR) and Bayesian confidence

propagation neural networks of information components (ICs).

The criteria of a significant signal were identified by the 95%

confidence interval lower end for both ROR (ROR025) and IC

(IC025). If ROR025 was higher than one or IC025 exceeded zero, it
Frontiers in Oncology 03
was considered statistically significant to detect a potential signal. A

statistical shrinkage transformation model was applied to obtain

robust results (11). In order to reduce false-negative adverse

signals, the statistical shrinkage transformation was originally

recommended by the World Health Organization Uppsala

Monitoring Center. The formula is as follows:

NExpected = (NDrug*NEvent)=NTotal
ROR = (NObservrd + 0:5)=(NExpected + 0:5)

IC = log 2½(NObservrd + 0:5=(NExpected + 0:5)�
NExpected is the number of records expected for the target

drug AE combination;

NObserved is the number of observed target drug AE records;

NDrug is the number of any target drug-associated AE

records;

NEvent is the number of target AE records;

NTotal is the total number of any AE records for any drug.

The time to onset of AEs was carried out according to the

formula as follows: Time to onset = Event date –

Therapy start date.
Results

Data selection

In this study, a total of 38,415,849 records were extracted

from the FAERS database (Figure 1). After exclusion of
FIGURE 1

The selection process of adverse event records. ICIs, immune checkpoint inhibitors.
TABLE 1 Respiratory system event groups according to MedDRA 24.1.

MedDRA Term MedDRA Code

Bronchial disorders 10006436

Lower respiratory tract disorders 10024967

Pleural disorders 10035597

Pulmonary vascular disorders 10037454

Respiratory disorders NEC 10038716

Respiratory tract infections 10024970

Respiratory tract neoplasms 10029107

Respiratory tract signs and symptoms 10079101

Thoracic disorders 10013369

Upper respiratory tract disorders 10046304
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duplicates, the number of records was 31,915,696, among which

341,993 reports were associated with ICI-related AEs. Then,

36,923 records were found to be associated with respiratory

system AEs in ICI-related AEs. Moreover, 2,428,862 records

were related to respiratory system AEs in other drug AEs.
Baseline characteristics

The baseline respiratory system AEs for the ICI and control

groups are listed in Table 2. Most cases were reported in 2017–

2021, suggesting the substantially increased use of ICIs in recent

years. The ICI-related respiratory system AE records were mainly

from the United States (11,930, 32.31%), Japan (7,911, 21.43%),

France (3,234, 8.76%), and Germany (2,526, 6.84%). Regarding

respiratory systemAEs, men accounted for a larger proportion than

that of women. A total of 22,532 were reported in (61.02%) male

patients, while 11,734 (31.78%) were reported in female patients.

After further disproportionality analysis, the results showed that

men had a slightly higher reporting frequency than that of women

(ROR = 1.74, 95% CI: 1.70–1.78). Moreover, 11,314 (30.64%) death

cases were related to ICI-associated respiratory system AEs at levels

higher than those of respiratory system AEs related to other drugs

(74,758, 24.51%). Upon further analysis, death cases had a slightly

higher reporting frequency in ICI-associated respiratory system

AEs than that of other drug-associated respiratory system AEs

(ROR = 1.40, 95% CI: 1.38–1.41). In addition, patients aged ≥ 70

years accounted for a lower proportion of respiratory system AEs

than those aged<70 years (30.83% vs. 50.22%). But

disproportionality analysis showed that the two age groups were

not significantly different (ROR = 0.86, 95% CI: 0.84–0.88).
Time to onset

Figure 2 shows the differential spectra of time to onset in

ICI-related class-specific respiratory system AEs. After exclusion

of records without event time, a total of 17,999 records covered

the onset time of ICI-related respiratory system AEs. Overall, the

median onset time of respiratory system AEs was 36 days (Q1–

Q3: 14–98 days) after ICI initiation for all categories (Table S4).

The cumulative proportion of respiratory system AE records

that occurred at the 1-month landmark (50.58%, 9,014) was

higher than that at other times (Figure 2, Table S3). Within 3

months, the cumulative proportion of respiratory system AE

records was 75.40% (13,571) (Figure 2, Table S3). Data on upper

respiratory tract disorders showed the shortest median time of

28 days. Pulmonary vascular disorders and thoracic disorders

had the longest median time of 42 days (Table S4).
Outcome

Figure 3 shows the death and life-threatening proportions

according to the types of respiratory system AEs. In general,
Frontiers in Oncology 04
death accounted for 30.64% of all ICI-associated respiratory

system AE records with available final outcome information

(Table 2). Further analysis showed that the severity of these

events varied. In total, lower respiratory tract disorders,

respiratory disorders NEC, respiratory tract infections,

respiratory tract neoplasms, pulmonary vascular disorders, and

pleural disorders were the six conditions with the highest
TABLE 2 Characteristics of respiratory system AEs in the ICI group
and control group.

Characteristics Respiratory System
AEs in ICIs
(n = 36,923)

Respiratory System
AEs in other drugs
(n = 2,428,862)

Gender

Men 22,532 (61.02%) 841,590 (34.65%)

Women 11,734 (31.78%) 1,413,861 (58.21%)

Missing 2,657 (7.20%) 173,411 (7.14%)

Age

≥70 years 11,383 (30.83%) 467,185 (19.23%)

<70 years 18,543 (50.22%) 1,224,142 (50.40%)

Missing 6,997 (18.95%) 737,535 (30.37%)

Year

2014 318 (0.86%) 298,607 (12.9%)

2015 1,001(2.71%) 304,941 (12.55%)

2016 2,202 (5.96%) 248,505 (10.23%)

2017 4,395 (11.90%) 259,190 (10.67%)

2018 6,482 (17.56%) 306,827 (12.63%)

2019 7,175 (19.43%) 302,709 (12.46%)

2020 7,167 (19.41%) 347,712 (14.32%)

2021 8,183 (22.16%) 360,371 (14.84%)

Outcome

Death 11,314 (30.64%) 264,633 (10.90%)

Life-threatening 2,322 (6.29%) 107,634 (4.43%)

Disability 388 (1.05%) 41,057 (1.69%)

Hospitalization 13,622 (36.89%) 728,895 (30.01%)

Congenital anomaly 3 (0.01%) 7,930 (0.33%)

Other serious 7,589 (20.55%) 649,199 (26.73%)

Required intervention 0 (0.00%) 0 (0.00%)

Missing 1,685( 4.56%) 629,514 (25.92%)

Reporting country

United States 11,930 (32.31%) 1,408,884 (58.01%)

Japan 7,911(21.43%) 74,822 (3.08%)

France 3,234 (8.76%) 67,767 (2.79%)

Germany 2,526 (6.84%) 68,594 (2.82%)

Italy 982 (2.66%) 34,626 (1.43%)

Great Britain 1,250 (3.39%) 100,978 (4.16%)

Canada 1,567 (4.24%) 263,851 (10.86%)

Spain 587 (1.59%) 21,221 (0.87%)

Australia 528 (1.43%) 19,664 (0.81%)

Netherlands 230 (0.62%) 14,061 (0.58%)

Others 6,045 (16.37%) 277,477 (11.42%)

Missing 133 (0.36%) 76,917 (3.17%)
AEs, adverse events; ICIs, immune checkpoint inhibitors.
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proportions of death in all ICI regimens (31.16%, 33.36%,

33.42%, 37.16%, 33.15%, and 29.72%, respectively).
Disproportionality analysis

The signal values and the association between class-specific

respiratory system AEs and ICIs are shown in Table 3. Seven in

10 class-specific respiratory system AEs (lower respiratory tract

disorders, pleural disorders, pulmonary vascular disorders,

respiratory disorders NEC, respiratory tract infections,

respiratory tract neoplasms, and thoracic disorders) were

associated with ICIs. The signal values of IC025 were from 0.08
Frontiers in Oncology 05
to 2.66. Among these AEs, respiratory disorders NEC (N =

11,267, 30.52%), lower respiratory tract disorders (N = 8,699,

23.56%), and respiratory tract infections (N = 7,315, 19.81%)

largely comprised the reported problems. Notably, the

magnitude of the disproportionality association was the

highest for lower respiratory tract disorders (IC025 = 2.66,

ROR025 = 6.33).

The signal values and the association between class-specific

ICIs and respiratory system toxicities are shown in Table 4.

Regarding different class-specific ICI regimens, anti-PD-1 drugs

(nivolumab, pembrolizumab, and cemiplimab) and anti-PD-L1

drugs (atezolizumab, durvalumab, and avelumab) were

significantly associated with respiratory system toxicities

(Table 4). However, anti-CTLA-4 drugs (ipilimumab and

tremelimumab) did not demonstrate a significant association

with respiratory system toxicities. Upon further analysis, we

explored the spectrum of respiratory system toxicities among

different ICI subpopulations (Figure 4, Table S5). Notably, lower

respiratory tract disorders had the most significant signals in ICI

subpopulations (IC025: from 0.82 to 4.69) and then pleural

disorders (IC025: from 0.59 to 2.90). However, the drugs with

the least variety in respiratory system toxicities were cemiplimab

and tremelimumab. Lower respiratory tract disorders (IC025 =

1.51) and respiratory disorders (NEC) (IC025 = 0.25) were the

only two AEs with signals detected for cemiplimab. Lower

respiratory tract disorders (IC025 = 0.82) and pulmonary

vascular disorders (IC025 = 0.32) were the only two AEs with

signals detected for tremelimumab.

In addition, the top 5 most frequently reported PTs of

respiratory system AEs are shown in Figure 5. Dyspnea,

interstitial lung disease, and pneumonitis were found to be

significantly associated with all eight types of ICIs. Pneumonia

and pleural effusion were found to be significantly associated

with seven types of ICIs excluding tremelimumab. Nivolumab

had most significant signals in dyspnea (IC025 = 10.60),
FIGURE 2

Time to onset for ICI-related class-specific respiratory system
AEs. AEs, adverse events; ICIs, immune checkpoint inhibitors.
FIGURE 3

Records and proportions of death in class-specific respiratory system AEs. AEs, adverse events; ICIs, immune checkpoint inhibitors.
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TABLE 4 The associations of respiratory system AEs with different ICI regimens.

Drug N ROR ROR025 ROR975 IC IC025 IC975

Nivolumab 13,241 1.47 1.45 1.50 0.56 0.53 0.58

Pembrolizumab 9,958 1.36 1.33 1.38 0.44 0.41 0.46

Cemiplimab 215 1.29 1.12 1.48 0.37 0.14 0.53

Atezolizumab 3,928 1.53 1.48 1.59 0.62 0.56 0.66

Durvalumab 2,989 3.11 2.99 3.25 1.64 1.58 1.68

Avelumab 414 1.29 1.17 1.43 0.37 0.21 0.49

Ipilimumab 1,198 0.74 0.70 0.78 -0.44 -0.54 -0.37

Tremelimumab 25 1.43 0.94 2.16 0.51 -0.16 0.98
Frontiers in Oncology
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AEs, adverse events; ICIs, immune checkpoint inhibitors; N, number of records; IC025, the lower limit of a 95% CI for the IC; IC975, the upper limit of a 95% CI; ROR025, the lower limit of the
95% CI of ROR; ROR975, the upper limit of the 95% CI of ROR. IC025 >0 and ROR025 >1 were deemed a signal (bold mark).
TABLE 3 Results of the disproportionality analysis for class-specific respiratory system AEs associated with ICIs.

Respiratory system events N IC IC025 IC975 ROR ROR025 ROR975

Bronchial disorders 936 -0.75 -0.87 -0.67 0.59 0.56 0.63

Lower respiratory tract disorders 8,699 2.69 2.66 2.72 6.47 6.33 6.61

Pleural disorders 2,466 2.18 2.15 2.23 4.54 4.36 4.73

Pulmonary vascular disorders 1,288 0.59 0.50 0.66 1.50 1.42 1.59

Respiratory disorders NEC 11,267 0.48 0.44 0.50 1.39 1.36 1.42

Respiratory tract infections 7,315 0.12 0.08 0.15 1.08 1.06 1.11

Respiratory tract neoplasms 1,044 0.96 0.86 1.04 1.95 1.83 2.07

Respiratory tract signs and symptoms 2,610 -0.77 -0.83 -0.72 0.59 0.56 0.61

Thoracic disorders 318 0.48 0.30 0.62 1.40 1.25 1.56

Upper respiratory tract disorders 978 -1.00 -1.11 -0.95 0.50 0.47 0.53
AEs, adverse events; ICIs, immune checkpoint inhibitors; N, number of records; IC025, the lower limit of a 95% CI for the IC; IC975, the upper limit of a 95% CI; ROR025, the lower limit of the
95% CI of ROR; ROR975, the upper limit of the 95% CI of ROR. IC025 >0 and ROR025 >1 were deemed a signal (bold mark).
FIGURE 4

IC025 values across class-specific respiratory system toxicities and different ICI subpopulations. ICIs, immune checkpoint inhibitors; IC,
information component.
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pneumonia (IC025 = 11.04), and pneumonitis (IC025 = 10.75).

Pembrolizumab, atezolizumab and durvalumab had relatively

high signals in interstitial lung disease (IC025: 6.72, 6.14, 5.73)

and pneumonitis (IC025: 7.46, 7.04, 7.75).
Discussion

ICIs have suggested remarkable clinical benefits in multiple

types of cancer. With the increasing frequency of use, ICIs has

contributed to significant survival improvements in cancer

patients (3, 4, 11). However, there is growing evidence that the

use of ICIs is related to a higher-than-expected rate of

respiratory system risks. Since the first clinical trials on ICIs,

there have been multiple reports of respiratory system AEs (22–

25). However, details for these AEs remain unclear. There is an

urgent need to find the respiratory system toxicity profile after

ICI administration from real-world evidence. To our knowledge,

the FAERS database is a typical spontaneous reporting system

(SRS), which includes the most extensive and exhaustive

characterization of ICI-associated respiratory system toxicities.

We employed the FAERS database to analyze the clinical

features, spectrum, onset time, and outcomes of ICI-associated

respiratory system toxicities.

First, from January 2014 to September 2021, the reporting

rate for ICI-related respiratory system toxicities was

approximately 0.12%, which, to some extent, suggested that

ICI-related respiratory system toxicities remain rare and that

the reporting rate is low. However, most cases were reported in

2017–2021, suggesting the substantially increased use of ICIs in

recent years. In Table 2, the descriptive analysis was more likely

to demonstrate overreported respiratory system AEs in men
Frontiers in Oncology 07
than in women. After further disproportionality analysis, the

results showed that men had a slightly higher reporting

frequency than that of women (ROR = 1.74, 95% CI: 1.70–

1.78). This result may be due to men being more exposed to

cigarette smoke (26, 27). However, this result may also be

attributed to a higher cancer incidence in men than that in

women and the overrepresentation of men treated with ICIs

(28–30), but not explicitly, necessitating further evidence to

verify this result. To date, few studies have explored sex

differences in ICI-induced AEs and much fewer have analyzed

those in respiratory system AEs. Furthermore, an increasing

number of studies have reported that the efficacy of

immunotherapy varies between male and female patients, with

greater efficacy in male patients (28, 29). Therefore, sex should

be regarded as an important factor in further studies, especially

in respiratory system AEs. In addition, the proportion of

respiratory system AEs between patients aged ≥70 years and

those aged<70 years was not significantly different (ROR = 0.86,

95% CI: 0.84–0.88). This result is similar to that of Paderi

et al. (31).

Second, although several studies have reported that ICI-

associated respiratory system toxicities occur early, the time to

onset of class-specific events after the administration of ICIs is

still unclear (16, 32). This study partially fills this gap and

provides more information for future studies. We found that

the median onset time of respiratory system AEs after ICI

administration was 36 days, and the majority of these events

occurred within 3 months. Importantly, the differential spectra

of time-to-onset according to different types of respiratory

system AEs were analyzed in this study. We found that the

median time to onset occurred fairly early for upper respiratory

tract disorders (28 days, Q1–Q3: 14–91 days) and was most
FIGURE 5

IC025 values across class-specific ICIs and the top 5 most frequently reported PTs of respiratory system AEs in the FAERS database. ICIs, immune
checkpoint inhibitors; AEs, adverse events; IC, information component.
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delayed for pulmonary vascular disorders and thoracic disorders

(42 days, Q1–Q3: 14–93 days; 42 days, Q1–Q3: 17–119 days,

respectively). It is worthwhile to recognize the difference in time

to onset between class-specific respiratory system AEs;

furthermore, these results highlight an importance of early and

close follow-up after ICI treatment, particularly in the first 3

months, to ensure early intervention in affected populations.

Third, we found that death accounted for 30.64% of all

associated ICI-related respiratory system AE records.

Considering that the descriptive analysis was more likely to be

affected by overreporting, further disproportionality analysis was

conducted in this study. The results suggested that ICI-

associated respiratory system AEs had a slightly higher

reporting frequency than those of other drug-associated

respiratory system AEs (ROR = 2.74, 95% CI: 2.68–2.80),

implying a significant impact of respiratory system

complications on the mortality of patients. The study by

Suresh et al. (33) showed that the presence of ICI-related

respiratory system toxicities, such as pneumonitis, increases

the mortality of patients. Our results, to some extent, agree

with this finding. Given the potential mortality of different types

of respiratory system AEs, early and intensified monitoring is

particularly necessary.

Fourth, we did note that the anti-CTLA-4 drugs had a lower

degree of association with respiratory system toxicities than that

of anti-PD-1/anti-PD-L1 drugs. This result is similar to those of

the studies of Nishino et al. (15) and Naidoo et al. (17). However,

the mechanism remains to be further analyzed but may be

secondary to the expression of programmed death ligand in

pulmonary cells (34). Our study also provides more data on the

spectrum of respiratory system AEs induced by different ICI

regimens. These results suggested that 7 in 10 class-specific

respiratory system AEs (lower respiratory tract disorders, pleural

disorders, pulmonary vascular disorders, respiratory disorders

NEC, respiratory tract infections, respiratory tract neoplasms,

and thoracic disorders) were associated with ICIs. Among these

AEs, respiratory disorders NEC, lower respiratory tract

disorders, and respiratory tract infections largely comprised

the reported problems. Notably, the magnitude of the

disproportionality association was the highest for lower

respiratory tract disorders. Upon further analysis of PTs

exhibited in lower respiratory tract disorders, interstitial lung

disease and pneumonitis were found to be significantly

associated with all eight types of ICIs, revealing interstitial

lung disease and pneumonitis as the primary focus of current

immunotherapy studies. Since the first clinical trials on both

ICIs, interstitial lung disease and pneumonitis associated with

ICI treatment have been reported. According to a meta-analysis,

the overall ICI-related interstitial lung disease incidence was

2.7% for all grades and 0.8% for the most severe grades

(grade ≥3) (15). The overall incidence of ICI-related interstitial

lung disease for all grades was between 1.4% and 5.8% in non-

small-cell lung cancer (NSCLC) studies, whereas in renal cell
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carcinoma studies, it was between 2.7% and 11.8% (15, 35).

Another study suggested that the incidence of all grades of

immune-related pneumonitis induced by ICIs was 6.2% in

NSCLC patients (36). However, the exact mechanism of

pneumonitis or interstitial lung disease related to PD-1

blockade is unclear. It has been suggested that T lymphocytes

can regulate the function of macrophage and dendritic cell

during acute infection (37). Furthermore, PD-1 could induce a

negative feedback to weaken the innate immunoinflammatory

responses and the damage of tissue elicited by Toll-like receptors

and cytokine signaling (37). Moreover, besides pneumonitis and

interstitial lung disease, pleural effusion was also a common PT

in ICI-related respiratory system AEs.

Several limitations in our study should be acknowledged.

First, the FAERS database has limitations itself, with multiple

data sources, a nonuniform data format, data duplication, and

missing data. Second, the FAERS database does not provide

detailed clinical information. Third, a case report could include

several drugs and/or several AEs. We took a combination of

drug–AE pairs as the basic unit rather than the report, so the

results from this pharmacovigilance analysis may be subject to

bias. Fourth, we only analyzed ICI monotherapy but failed to

consider the combined use of ICIs. Nevertheless, our study

quantified the potential risks systematically and scientifically

with the large data and described a spectrum of the occurrence of

ICI-related respiratory system toxicities, which could provide

valuable evidence for further studies and clinical practice in

this field.
Conclusions

This study showed a high reporting frequency of respiratory

system toxicities caused by ICIs. Early recognition and

management of ICI-related respiratory system AEs are of vital

importance in practice. Maximizing the benefit while reducing

potential respiratory system toxicities of ICIs should be-come

a priority.
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