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Human herpesvirus (HHV)-6A and HHV-6B are two enveloped DNA viruses of β-herpesvirus
family, infecting over 90% of the population and associated with several diseases,
including exanthema subitum (for HHV-6B), multiple sclerosis and encephalitis, particularly
in immunosuppressed patients. Animal models are highly important to better understand
the pathogenesis of viral infections. Naturally developed neutralizing antibodies to HHV-6 or
a related virus were found in different species of monkeys, suggesting their susceptibility
to HHV-6 infection. Both HHV-6 DNA and infectious virus were detected in experimentally
infected Cynomolgus and African green monkeys, although most animals remained
clinically asymptomatic. Furthermore, HHV-6A infection was shown to accelerate the
progression of AIDS (acquired immunodeficiency syndrome) in macaques and to lead to
the development of neurological symptoms in the marmoset model. Humanized SCID
(severe combined immunodeficiency) mice efficiently replicated HHV-6 and were also
susceptible to coinfection with HHV-6 and HIV-1 (human immunodeficiency virus 1). As
CD46 was identified as a receptor for HHV-6, transgenic mice expressing human CD46
may present a potentially interesting model for study certain aspects of HHV-6 infection
and neuroinflammation.
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INTRODUCTION
Human herpesvirus (HHV)-6 belongs to the β-Herpesviridae sub-
family, together with its closest homolog HHV-7 and human
cytomegalovirus (HCMV). The two variants of HHV-6, HHV-
6A and HHV-6B, have recently been recognized as two distinct
viruses by the international committee on taxonomy of viruses,
based mostly on their known genetic and epidemiological features
(Braun et al., 1997). Primary infection with HHV-6B was iden-
tified as the etiological cause for roseola (exanthema subitum), a
common febrile illness in infants (Yamanishi et al., 1988), whereas
primary infection with HHV-6A has not yet been clearly associ-
ated to any specific disease. Like most herpesviruses, HHV-6A and
-6B are able to establish asymptomatic long-term persistence in
their hosts, and can reactivate under specific conditions. Although
the mechanisms of reactivation are not yet completely under-
stood, both viruses are known to reactivate in immunosuppressed
patients, causing a variety of complications such as encephalitis,
hepatitis, or graft rejection (Dockrell and Paya, 2001; Zerr, 2006).
In addition, HHV-6A and -6B have been associated with sev-
eral neurological diseases in the immunocompetent population.
Indeed, numerous clinical studies have established a correla-
tion between HHV-6A and -6B infection and the demyelinating,
autoimmune disease-multiple sclerosis (reviewed in Reynaud and
Horvat, 2013), and both viruses are thought to be involved in
the development of certain cases of encephalitis, meningitis, and
epilepsy (Theodore et al., 2008; Yao et al., 2010).

Human herpesvirus-6 has often been isolated from patients
with acquired immunodeficiency syndrome (AIDS) and was sug-
gested to play a role in the progression of this disease. Indeed, an
active and wide-spread HHV-6 infection was observed in AIDS
patients (Knox and Carrigan, 1994; Secchiero et al., 1995) and

AIDS was described to progress rapidly after primary HHV-6
infection in children with vertically inherited human immunode-
ficiency virus (HIV; Kositanont et al., 1999). Both HHV-6 and HIV
have a preferential tropism toward CD4+ T cells and can estab-
lish simultaneous productive infection with synergistic cytopathic
effects (Lusso et al., 1989). Moreover, HHV-6 has a wider range
of susceptible cell types than HIV-1 and was shown to induce the
expression of the HIV-1 receptor CD4 on immune cells that do not
naturally express this molecule, rendering them, thus, susceptible
to HIV-1 infection (Lusso et al., 1993, 1995). However, in the con-
text of both AIDS and different other HHV-6-related pathologies,
the consequences of coinfection and the potential mechanisms
involved in the pathogenesis remain to be elucidated.

A few antiviral drugs have been shown to be efficient against
HHV-6 infection in vitro (Manichanh et al., 2000; De Clercq et al.,
2001; De Bolle et al., 2005b) and were successfully used for the
treatment of patients suffering from encephalitis following viral
reactivation (reviewed in De Bolle et al., 2005b). However, these
treatments are often associated with strong adverse effects and fully
controlled specific clinical studies demonstrating their in vivo effi-
ciency are still missing. Animal models represent very useful tools
for preclinical analyses of potential antiviral drugs and for the
study of viral pathogenesis. Here, we review the different animal
models developed for the study of HHV-6A and/or HHV-6B infec-
tion (Table 1) and discuss the data obtained. In particular, the use
of animal models has brought new evidence of the capacity of
HHV-6A to induce neuropathology and has allowed the study of
the interactions between HHV-6 and immunodeficiency viruses,
showing a role of HHV-6A in AIDS progression and providing
potential explanations for the impact of HHV-6A on the course of
HIV infection.
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SIMIAN MODELS
NATURAL INFECTION IN MONKEYS
Shortly after the discovery of HHV-6, several groups have searched
for evidence of natural infection by HHV-6 in monkeys. Initial
studies first reported an absence of specific antibodies in several
species of new- and old-world non-human primates (Salahuddin
et al., 1986; Lusso et al., 1990). In contrast, another study car-
ried out on 10 different species of monkeys revealed the presence
of HHV-6-reactive antibodies, suggesting a previous infection
either by HHV-6 or a closely related virus (Higashi et al., 1989).
Among the tested species, eight were positive in immunofluo-
rescence assay and seroneutralization. African green monkeys,
squirrel monkeys, chimpanzees, and orangutan appeared to be
the most frequently infected, with 75–100% of prevalence. Fur-
thermore, several groups of monkeys of the same species but from
different locations exhibited similar prevalence rates, thus sug-
gesting that the susceptibility to HHV-6 infection may be species-
dependent.

More recently, a simian homolog of HHV-6 was isolated from
blood samples from chimpanzees (Pan troglodytes; Lacoste et al.,
2005). This new member of the β-herpesvirus group, called
PanHV6, was found to be particularly close to the Z29 strain
of HHV-6B. It was detected in several different subspecies of
wild-caught chimpanzees from Cameroon and Gabon, but also
in animals born in captivity in the Netherlands, indicating that
this virus is present in different populations of chimpanzees. Sev-
eral simian homologs of other human herpesviruses, including
HCMV and Epstein–Barr virus (EBV; Davison et al., 2003; Ehlers
et al., 2003) have been identified, which supports the theory that
these viruses might have co-evolved with their host species. The
natural susceptibility of some species of monkeys to infection with
HHV-6 or a simian counterpart indicates that monkeys may rep-
resent an appropriate model for the study of HHV-6A and/or -6B
pathogenesis.

EXPERIMENTAL INFECTION IN SIMIAN MODELS
Infection of simian cells
Analyses performed on in vitro-infected peripheral blood
mononuclear cells (PBMCs) from several species of monkeys,
indicated that cells from chimpanzees and macaques (Macaca
nemestrina and M. mulatta) are the most susceptible to infec-
tion by HHV-6 (Lusso et al., 1990, 1994). The infection of
PBMCs led to the production of viral proteins and viral particles,
observed by immunofluorescence and electron microscopy. Infec-
tion seemed highly variable among the species of monkeys tested
and depended on the virus used (A or B). PBMCs from rhesus
macaques (M. mulatta) were found to be susceptible to HHV-
6B infection only, while PBMCs from pig-tailed macaques (M.
nemestrina) were infected with similar efficiency by both HHV-6A
and -6B.

African green monkeys and cynomolgus macaques
The first experiments of in vivo HHV-6 infection in monkeys were
conducted using African green monkeys (Cercopithecus aethiops)
and cynomolgus macaques (M. fascicularis; Yalcin et al., 1992).
Four animals from each species were inoculated with the HST
strain of HHV-6B. Monkeys received a single subcutaneous (s.c.)

or intravenous (i.v.) injection of 105 half maximal tissue cul-
ture infective doses (TCID50), and were monitored for 33 days.
Following virus inoculation, a specific antibody response was
detected, as well as the presence of viral DNA in the PBMCs and
in the spleen and lymph nodes of some animals. However, the
infection remained asymptomatic in all animals, except for one
African green monkey, which developed a skin rash on the trunk
(Table 1).

Pig-tailed macaques
Infection with HHV-6A was later described in pig-tailed macaques
(M. nemestrina; Lusso et al., 2007). After i.v. inoculation with
HHV-6A (GS strain), clinical symptoms of mild to moder-
ate intensity were observed, including fever, nasal discharge,
splenomegaly, generalized lymphadenopathy and abdominal rash
(in one animal). Moreover, in this model, systemic infection
was confirmed by the detection of viral DNA in the plasma, the
development of an antibody response, and the presence of viral
transcripts in the lymph nodes.

Furthermore, this model has been used to analyze coinfection
with HHV-6A and simian immunodeficiency virus (SIV), a simian
counterpart of HIV-1 typically used for experimental infection in
macaques (Lusso et al., 2007). This approach provided the first
in vivo data showing that HHV-6A infection can accelerate AIDS
progression. Indeed, although HHV-6A infection did not seem to
have any effect on SIV spreading, dually infected animals exhibited
faster depletion in CD4+ T cells than the singly SIV-infected ones.
Interestingly, HHV-6A infection also resulted in a faster decrease
in CD8+ T cell count, which could be due to HHV-6A-induced de
novo expression of CD4 in these cells.

A potential mechanism explaining the enhancement of AIDS
by HHV-6A was suggested following the analysis of the virus
isolated from monkeys receiving either single SIV infection or
HHV-6A/SIV coinfection (Biancotto et al., 2009). In vitro repli-
cation of viral isolates obtained from singly infected monkeys
was inhibited by coinfection with HHV-6A, and treatment with
the chemokine CCL5 (regulated upon activation normal T cell
expressed and secreted, RANTES) had similar effects. In contrast,
all isolates from dually infected monkeys appeared to be resistant
to both CCL5 treatment and HHV-6A infection, suggesting that
in vivo coinfection with HHV-6A probably directs SIV evolution
toward CCL5 resistance. Thus HHV-6A infection could create a
high-CCL5 environment in vivo, in which CCL5-resistance would
be advantageous for efficient SIV replication.

The marmoset model: evidence for HHV-6A-induced neurological
disease
A recent study described a new model of infection by both HHV-
6A and -6B using common marmosets (Callithrix jacchus), which
represents so far the only model of HHV-6A infection associated
with the more important clinical signs (Leibovitch et al., 2013).
Indeed, HHV-6A-infected monkeys that received several monthly
i.v. injections developed clear neurological symptoms, including
motor weakness and sensory abnormalities. Moreover, magnetic
resonance imaging (MRI) analyses revealed the presence of hyper-
intense lesions in the brain of one animal. This study provided
the first in vivo evidence that HHV-6A infection is able to trigger
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neurological disease. In humans, both HHV-6A and -6B DNA was
shown to be present in the brain of healthy people, indicating that
both species have similar neuroinvasive properties. In marmosets,
viral DNA was also occasionally detected in the brain of HHV-
6A- and -6B-infected animals, which confirmed the capacity of
both viruses to reach the brain. However, while HHV-6A infection
led to evident neurological symptoms, infection with HHV-6B
remained asymptomatic, thus showing an important difference
between HHV-6A and -6B in their ability to infect marmosets
(Table 1).

Interestingly, an additional group of marmosets was infected
with HHV-6A through the intranasal (i.n.) route of inoculation,
which resulted in radically different clinical outcomes. Based on
histological data, the i.n. pathway was proposed as a possible route
of transmission and access to the brain for HHV-6A in humans
(Harberts et al., 2011). Contrary to i.v.-injected marmosets, i.n.-
injected animals did not exhibit any sign of disease. Moreover,
i.n.-inoculated animals rarely developed antibody responses and
maintained plasma viremia, whereas i.v. injection led to the devel-
opment of HHV-6-specific antibody responses and clearance of
viral DNA in the plasma. These results suggested that the neuro-
logical symptoms observed with i.v. injection might be due to the
immune response developed against the virus rather than to the
direct consequences of viral infection and spreading. This model
therefore emphasizes the importance of the route of inoculation in
viral pathogenesis, and provides a clear in vivo demonstration that
HHV-6A can cause a neurological disease with MS-like symptoms.
The marmoset model thus appears as an appropriate model for the
analysis of HHV-6A-induced neurological disease, and confirms
the correlation between HHV-6 infection and the development of
multiple sclerosis.

MURINE MODELS
The possibility of using a murine model to study HHV-6 infection
has been attractive to the scientific community since the discovery
of HHV-6. However, mice were initially described to be resistant
to HHV-6 infection (Lusso, 1996). Nevertheless, a few studies have
described the use of in vitro or in vivo murine models for the study
of HHV-6.

SUSCEPTIBILITY OF MURINE CELLS TO HHV-6 INFECTION
The susceptibility to infection by HHV-6A and HHV-6B of several
human and non-human cell lines was analyzed in a few studies.
Both viruses failed to replicate in the murine mammary carci-
noma cell line FM3A and viral transcripts were not detected in
these cells, suggesting that murine cells are not permissive to
infection by HHV-6 (De Bolle et al., 2005a). However, another
study showed that infection by HHV-6A and HHV-6B enables the
transcription of viral genes in murine primary oligodendrocyte
precursors, although viral replication was not observed (Mock
et al., 2006), suggesting that the susceptibility to HHV-6 infection
may, to some extent, depend on the cell type analyzed. In addition,
both HHV-6A and HHV-6B could induce cell cycle arrest in these
cells, similarly, to what was previously observed in human oligo-
dendrocyte precursor cells (Dietrich et al., 2004), indicating that
some murine cell types could be used as a model to study certain
aspects of HHV-6 infection in vitro.

IN VIVO MURINE MODELS FOR THE STUDY OF HHV-6 INFECTION
It has been reported that natural resistance of mice to her-
pesvirus infection, particularly against herpes simplex virus (HSV)
is genetically determined and linked to major histocompatibility
complex (MHC) genes (Lopez, 1975). Balb/c mice were among the
most susceptible lines and were recently used to analyze the link
between HHV-6B infection and allergy (Svensson et al., 2010).
Although systemic infection was not observed, inoculation of
UV-inactivated virus resulted in the development of specific IgG
responses and had protective effects against the development of
allergy by limiting the inflammation in lungs, thus suggesting the
immunosuppressive effects of HHV-6B in vivo.

To overcome natural resistance of mice to HHV-6 infection
another approach using immunodeficient mice was developed,
aiming to provide an in vivo environment for the study of human
tissue rather than to analyze the infection in mice. For this pur-
pose, severe combined immunodeficiency (SCID) mice were used.
These mice carry a mutation which provokes profound T and B
lymphopenia, allowing the engraftment of heterologous tissues
(McCune, 1996). SCID mice were humanized by coimplanting
human fetal thymus and liver under the murine kidney capsule,
permitting the growth of a unique thy/liv organ which histo-
logically resembles human thymus. Mice carrying thy/liv organ
support human lymphopoiesis, thus allowing the study of human
lymphoid cells in an in vivo context, and were used for the study
of other human viruses, especially for human immunodeficiency
virus (HIV; Van Duyne et al., 2009). Inoculation with HHV-6A
or -6B was performed by direct injection in the implant and led
to productive infection of human thymic cells, associated with a
strong thymic depletion (Gobbi et al., 1999). That study demon-
strated that HHV-6 infection is able to induce immunosuppression
in an in vivo context, which may explain how HHV-6 could
enhance the progression of immunodeficiency in AIDS patients. In
this model, HHV-6 seemed to exhibit a particular tropism toward
intra-thymic T progenitor cells (ITTPs), a rapidly dividing sub-
set of thymic cells which gives rise to other thymocytes at later
stages of maturation. This study suggested that lytic infection of
ITTPs may play an important role in the HHV-6-induced thymic
depletion.

Coinfection with HHV-6A or-6B and HIV-1 was later per-
formed using the same model (Gobbi et al., 2000). Both viruses
were found to be able to simultaneously infect the engrafted
human tissue, yet infection with either virus did not seem to have
any impact on the replication or virulence of the other.

TOWARD NOVEL TRANSGENIC MURINE MODELS
Other models of humanized mice are currently under investi-
gation. A model of rag2−/−γc−/− mice, deficient for T and B
lymphocytes and NK cells and engrafted with human hematopoi-
etic stem cells (Chicha et al., 2005) is being developed for the
analysis of HHV-6 (Tanner et al., 8th International Conference
on HHV-6&7, April 2013). The use of this model has allowed
numerous advances in the field of retrovirology (Van Duyne et al.,
2009) and will certainly help in the understanding of HHV-6
immunopathogenesis.

Human herpesvirus-6 was shown to use the human pro-
tein CD46 as a cellular receptor for viral entry (Santoro et al.,
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1999). This transmembrane protein is involved in the protec-
tion of host cells against complement lysis (Liszewski et al., 1991),
through binding to C3b and C4b components of the com-
plement (Figure 1), and was identified as the receptor for a
variety of pathogens, including measles virus (vaccine strains),
several serotypes of adenovirus and some pathogenic bacteria
(Riley-Vargas et al., 2004). Moreover, it was recently found to
bind the immunoregulatory molecule Jagged 1, a member of
the Notch system (Le Friec et al., 2012; Figure 1). CD46 is
ubiquitously expressed in humans and is mostly conserved in
other primates (Seya et al., 1998). As viral tropism is deter-
mined by the pattern of expression of virus-specific cellular
receptors, these molecules are key players in viral infection.
Contrary to most primate CD46 proteins, murine CD46 has
a lower percentage of identity with the human protein and its
expression is restricted to the testis, which may account for
the resistance of mice to infection. Therefore the generation of
transgenic mice expressing human CD46 with a ubiquitous dis-
tribution, as in humans, could provide new perspectives for the
development of animal models for HHV-6 infection. We have

produced several lines of CD46 transgenic mice (Horvat et al.,
1996; Marie et al., 2002) and used them to analyze the pathogen-
esis of HHV-6 infection. HHV-6A seemed to establish long-term
persistence in the brain of these mice, and to induce leuko-
cyte infiltration (Reynaud et al., 8th International Conference
on HHV-6&7, April 2013). Thus, CD46 transgenic mice may
represent a potential new small animal model for the study of
HHV-6A-induced neuroinflammation. Some studies have sug-
gested that CD46 may not be the only receptor for HHV-6B
entry (Mori et al., 2002, 2004), opening thus, perspectives for the
development of additional transgenic models for this virus. The
availability of many experimental tools for murine models should
facilitate further studies of virus–host interaction and HHV-6
pathogenesis.

CONCLUSION
The development of relevant animal models is critical for a better
understanding of viral pathogenesis, generating new diagnostic
tools and assessing antiviral therapeutics and vaccines. Although
animal models usually do not mimic all the aspects of the human

FIGURE 1 | Schematic representation of human HHV-6 receptor CD46, expressed in transgenic mice. CD46 consists of an extracellular part, with
indicated binding site for different known CD46 ligands, transmembrane domain and one of two cytoplasmic tails: short, Cyt-1 or long, Cyt-2. MV, Measles
Virus; AdV, Adenovirus.
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disease, they do reproduce at least some of them and could
thus help in a better understanding of certain aspects of viral
pathogenesis. The number of animal models to study HHV-6
infection is still rather limited and mainly includes non-human
primates. Utilization of pig-tailed macaques provided evidence for
the HHV-6-induced acceleration of AIDS and recently HHV-6A
infection in marmosets has strongly suggested a link with neu-
rological diseases. The latent nature of HHV-6 infection makes
most in vivo studies often difficult to carry out. Recent advances

in the development of murine models for HHV-6 infection, with
numerous and powerful tools available, should be of critical help
for in-depth immunobiological and genetic studies of HHV-6
infection.
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