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Background. Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Successful treatment of CRC relies on
accurate early diagnosis, which is currently a challenge due to its complexity and personalized pathologies. Thus, novel molecular
biomarkers are needed for early CRC detection. Methods. Gene and microRNA microarray profiling of CRC tissues and miRNA-
seq data were analyzed. Candidate microRNA biomarkers were predicted using both CRC-specific network and miRNA-BD tool.
Validation analyses were carried out to interrogate the identified candidate CRC biomarkers. Results. We identified miR-451a as a
potential early CRC biomarker circulating in patient’s serum. The dysregulation of miR-451a was revealed both in primary tumors
and in patients’ sera. Downstream analysis validated the tumor suppressor role of miR-451a and high sensitivity of miR-451a in
CRC patients, further confirming its potential role as CRC circulation biomarker. Conclusion. The miR-451a is a potential
circulating biomarker for early CRC diagnosis.

1. Introduction

To date, colorectal cancer (CRC) is the second leading cause of
cancer death among men and women in the United States, and
it is also becoming one of the most death-causing cancer world-
wide [1]. Previous clinical studies showed that almost 90% of
CRC patients who are diagnosed at an early stage have an
extended survival rate of 5 to 10 years, whereas only those
12% of the patients can survive when diagnosed at the late stage
[2, 3]. This highlights the importance of early diagnosis of CRC.
Nowadays, several clinical approaches have been developed for
CRC early detection, including fecal occult-blood testing
(FOBT), computed tomography (CT or CAT) scan, colonos-
copy, and molecular tumor markers [4]. In particular, numer-
ous clinical markers, which include the carcinoembryonic
antigen (CEA), cyclooxygenase-2 (COX-2), and thymidyate
synthetase (TS), have been identified in the last several decades
[5, 6]. The role of biomarker in CRC diagnosis is becoming

more important to improve early diagnosis and better progno-
sis. However, it is still a challenge to create a more accurate, fast,
and specific diagnostic and prognostic biomarkers given that
CRC is a complex disease with inherently personalized pathol-
ogies. Thus, novel molecular biomarkers for CRC diagnosis and
prognosis are still highly in demand.

Noncoding RNAs, which include microRNAs (miRNAs),
circular RNAs (circRNAs), and long noncoding RNAs
(lncRNAs), are investigated for its potential application in dis-
eases diagnosis. Specifically, miRNAs are themost studied non-
coding RNAs, which are a set of small endogenous noncoding
RNAs that act as the upstream regulators of many biomole-
cules and pathways. Because they are easy to obtain from body
liquids and they relevantly stable in extreme physiological con-
ditions including extreme changes in pH and temperature [7],
they can be excellent candidates as circulating biomarkers for
complex diseases [8, 9]. Emerging evidence revealed that dys-
regulation of circulating miRNAs might correspond to tumor
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genesis and development [10, 11]. For example, relevant stud-
ies found that miR-181a can promote angiogenesis in CRC tis-
sues by regulating SRCIN1 so that SRC/VEGF signaling
pathway can be promoted [12]. Jin Y et al. observed that
miR-32 plays a key role in cell proliferation and migration, as
well as in suppressing apoptosis in colon cancer [13]. These
studies further enhance the essential roles of microRNAs in
cancer and the necessity of identifying novel CRC biomarkers.

In this study, we performed an integrated bioinformatics
analysis based on multiple microarray and miRNA-seq data
to discover novel circulating miRNA biomarkers for CRC
diagnosis (Figure 1). Further downstream regulation and
function of the candidate biomarkers were also explored.
Our research findings could provide new research strategies
for CRC biomarker discovery and new insights for CRC
diagnosis.

2. Materials and Methods

2.1. Microarray Data Collection and Processing. CRC relevant
microarray data were identified by closely searching the GEO
DataSets with the following keywords: “colon∗[Title] AND
(cancer [Title] OR carcinoma [Title] OR tumor [Title])

AND “Homo sapiens”[porgn: txid9606].” Furthermore, fil-
ters were set to “Expression profiling by array” and “Non-
coding RNA profiling by array.” Three publicly available
microarray datasets on CRC versus normal colon tissues
and serum were downloaded, where GSE41258 is the gene
expression array data and GSE112264 and GSE113486 are
the microRNA expression array data. All data were down-
loaded in raw data format. The detailed information on the
three datasets is shown in Table 1.

For GSE41258, probe sequences were mapped using the
miRBase to obtain the unified name [14]. The expression
levels of genes with multiple probe IDs were replaced by their
average probe density. Probes with blank gene names and
multiple gene names were removed.

2.2. Differentially Expressed Genes and microRNA Extraction.
In this study, the Limma package was utilized for differen-
tially expressed genes (DE-genes) extraction from
GSE41258 [19]. All data were firstly normalized by using
“normexp” method, with an offset value of 0. The
background-subtracted data were normalized through
“quantile” algorithm. All data were then processed by calcu-
lating the averages of each miRNA for further statistical
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Figure 1: Schematic of the pipeline employed for CRC miRNA biomarker detection.

Table 1: Summary of microarray datasets for this study.

GEO accession Gene/miRNA Source Platforms
Number of
samples Ref.

CRC Normal

GSE41258 Gene Tissue Affymetrix Human Genome U133A Array 186 54 [15, 16]

GSE112264 miRNA Serum 3D-Gene Human miRNA V21_1.0.0 50 41 [17]

GSE113486 miRNA Serum 3D-Gene Human miRNA V20_1.0.0 40 100 [18]

2 BioMed Research International



analysis. The Student t-test was applied to calculate the
significant differences (P value). Fold changes were calcu-
lated according to each gene expression level, comparing
between cancer and control group. Final DE-genes were
determined using two cutoff criteria: P value < 0.05 and
∣ fold change ∣ >2.

To obtain the differentially expressed microRNAs
(DE-miRNAs), two datasets were processed using the
Limma package: DE-miRNA screening criteria were the
same as what we set in Limma analysis. We then made an
overlap between these two DE-miRNA sets. Those differen-
tially expressed miRNAs in both datasets were selected for
further validation.

2.3. TCGA miRNA-Seq Data Analysis. The microRNA
sequencing (miRNA-seq) data were acquired from The Can-
cer Genome Atlas (TCGA) and filtered using the following
strategy: primary site: colon; project: TCGA-COAD; disease
type: adenomas and adenocarcinomas; experimental strat-
egy: miRNA-seq; and data type: miRNA expression quantifi-
cation. A total of 388 microRNA sequencing data with 371
cases were included in our study. One recurrent tumor sam-
ple and one metastatic sample were removed. Meanwhile,
samples that showed treatment history or did not provide
any detailed treatment information were also excluded based
on their annotation files. Hence, 329 tumor miRNA-seq
datasets and 6 healthy datasets were finally obtained to
further investigate DE-miRNAs. The EdgeR was employed
for expression analysis [20]. For DE-miRNA cutoff criteria,
samples were grouped based on P value < 0.05 and ∣ fold
change ∣ >2.

2.4. Biomarker Prediction. To identify potential candidate
microRNA biomarkers, we used a public microRNA bio-
marker discovery tool named miRNA-BD, which is based
on the DE-genes we acquired from Section 2.2 [21]. A human
miRNA-mRNA interaction network was set as default. Two
built-in feature parameters, namely the number of single-
line regulation (NSR) and transcription factor percentage
(TFP), were used here for biomarker identification. The
thresholds of NSR and TFP were both set at 2, and the cutoff
criteria of P value of these two parameters were set at 0.05. In
order to improve our ability to discover more convincible
CRC biomarkers, we also set a CRC-specific parameter,
which is the CRC biomarker percentage (CBP). Relevant
studies showed that microRNAs with more target genes are
disease-associated or disease biomarkers, and these micro-
RNAs are more likely to serve as disease-specific biomarkers
[8]. The formula of the calculation is as follows:

CBP = α

β
: ð1Þ

Here, α stands for the number of target CRC-associated
genes or biomarkers and β is the total targets of the micro-
RNAs. As we already acquired DE-miRNAs from miRNA
microarray and miRNA-seq analysis, a trioverlap was made
to identify more robust miRNA biomarkers.

2.5. Identification of Target Genes of miR-451a. The target
genes of miR-451a were derived from two online platforms:
the miRTarBase and miRWalk 2.0 [22, 23]. First, we searched
the hsa-miR-451a in miRTarBase, which provided interactive
information about experimentally validated miRNA-mRNA
interaction. Further expansion of the target genes was con-
ducted in the miRWalk 2.0, where we both examined exper-
imentally the validated miRNA-mRNA interaction and
computational predicted miRNA-mRNA interaction. The 4
algorithms, miRWalk, miRanda [24], RNA22 [25], and
Targetscan [26] were used for prediction. Genes that were
predicted to interact with miR-451a by a certain algorithm
were labeled as 1 out of 4. A threshold of 2/4 was utilized
for predicted target gene screening.

2.6. Identification of Target Long Noncoding RNAs of miR-
451a. DIANA-LncBase v2 was used for miRNA-lncRNA
interaction validation and prediction [27]. Experimentally
validated lncRNAs, which are regulated by miR-451a, were
selected. A threshold of 0.7 was set to screen out lncRNAs,
which are predicted to be regulated by miR-451a in colon tis-
sue. To examine CRC-associated lncRNAs, Lnc2Cancer 2.0
database was employed for lncRNA data mining [28] and a
final overlap was made between CRC-associated lncRNAs
and target lncRNAs of miR-451a.

2.7. Functional Enrichment Analysis. To investigate further
the role of miRNA-451a, two enrichment analyses, namely
gene ontology and pathway analysis, were performed to val-
idate the association between target genes of miR-451a and
CRC. The Search Tool for the Retrieval of Interacting Genes
(STRING) was used for gene ontology annotation and Kyoto
Encyclopedia of Genes and Genomes pathway enrichment
[29, 30]. Terms and pathways with P value < 0.05 were con-
sidered as significantly enriched items. The top 20 most sig-
nificantly enriched pathways and top 10 most enriched
terms were selected, and the association between these items
and CRC were further validated through literature mining.

2.8. Protein-Protein Interaction Network Analysis. STRING
online tool was applied to examine the protein-protein inter-
action (PPI) patterns of target genes of miR-451a. All target
genes, including experimentally validated genes and compu-
tational predicted genes, were submitted to STRING for anal-
ysis. A combined score of >0.4 was set as the cutoff criterion.
The PPI network data generated by STRING was further
loaded into Cytoscape for network analysis. CytoHubba, a
plug-in tool in Cytoscape, was used for network degree,
betweenness, and closeness calculation [31]. The top 10 gene
nodes were selected as significant hub genes. Functional
modules were predicted using theMolecular Complex Detec-
tion (MCODE).

3. Results

3.1. Identification of Differentially Expressed Genes. To obtain
the differentially expressed genes in CRC, we performed a
microarray analysis on GSE41258 obtained from GEO
DataSets. Data was firstly normalized using the Limma
package (Figure 2(a)), and the eBayes algorithm, which
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was integrated into Limma package, was applied for DE-
gene detection. A total of 707 differentially expressed
genes were detected through two thresholds’ screening:
P value < 0.05 and log 2ð∣fold change ∣ Þ > 1. Among these
genes, 447 were downregulated in primary tissues, while
260 genes were upregulated. The expression pattern of the
707 genes and the top 10 most significant DE-genes are
shown in Figures 2(b)–2(d).

Furthermore, literature validation was conducted for the
top 10 most significant DE-genes. We noticed that most of
the relevant studies revealed potential mechanisms wherein
the DE-genes are involved in colon tissue mutation and
tumorigenesis. In particular, carbonic anhydrase 1 (CA1)
has been implicated as a marker for colon epithelium differ-
entiation [32]. Ghaleb et al. observed that the deletion of Klf4
will lead to a downregulation of CA1, which is highly
expressed in colorectal cancer cells [33, 34]. In our analysis,
we found a significant upregulation of Klf4 (P value =
4.45E-42 and log2 ð∣fold change ∣ Þ = 2:037831). Our data
enhanced the relationship between Klf4 and CA1, indicating
that the two are most likely coexpressed in colorectal cancer
cells. Other genes, such as ADH1B [35], GUCA2A [36],
SCNN1B, and CHP2 [37, 38], were also reported to play a
role in CRC cell differentiation and tumorigenesis. Taken
these results together, our analysis identified DE-genes that
are involved in different stages of CRC. These results indicate
the demands of cancer cells for quick proliferation, tissue
invasion, and metastasis. Hierarchical clustering of DE-
genes showed a well-distinguished pattern between primary
tumor tissues and healthy colon tissues, suggesting the possi-
bility of selecting features for CRC diagnosis.

3.2. Differentially Expressed miRNA Detection and Biomarker
Selection. To build a CRC specific miRNA-mRNA interac-
tion network, we obtained both miRNA expression microar-
ray data and miRNA-seq data fromGeo DataSets and TCGA,
respectively. Here, 730 DE-miRNAs with 456 downregula-
tion and 331 upregulation were detected from GSE112264
and 1073 DE-miRNAs with 605 downregulation and 274
upregulation were detected from GSE113486 using the
Limma analysis. In miRNA-seq analysis, 40 DE-miRNAs,
in which 11 are downregulated and 29 are upregulated, were
obtained. The detailed expression information is shown in
Figure 3.

Meanwhile, with the DE-genes obtained from Limma
DE-gene analysis, a CRC-specific miRNA-mRNA regulatory
network was constructed. Then, we performed a miRNA bio-
marker prediction through miRNA-BD, in which we
included the CBP index for more precise prediction. In total,
41 candidate miRNA biomarkers were produced. Among
them, 30 miRNAs (73%) were reported to involve in CRC
genesis and metastasis. For example, Chai et al. found that
miR-223-3p was upregulated in colon cancer [39] and its
expression enhancement could cause the suppression of cell
apoptosis. Kim et al. found that the expression of miR-590-
5p is significantly higher than that in their matched primary
CRC [40]. Particularly, by validating the Colorectal Bio-
marker Database [5], 8 microRNAs (miR-371a-5p, miR-
218-5p, miR-21-5p, miR-22-3p, miR-96-5p, miR-150-5p,
and miR-200c-3p) have been reported to be useful in CRC
diagnosis, treatment, and prognosis biomarkers. These
results not only suggest the potential miRNA biomarkers
for further investigation but also reveal the accuracy and
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Figure 2: Results of DE-gene analysis. (a) Boxplot of data normalization for GSE41258. Boxes in blue are tumor group and boxes in red are
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robustness of miRNA-BD model, which makes our results
more convincing.

After overlapping the DE-miRNAs with candidate
miRNA biomarkers from miRNA-BD, only one miRNA,
which is miR-451a, was identified as the candidate bio-
marker. Interestingly, miR-451a is downregulated in CRC
tissues (with P value = 0.0288 and logFC = ‐1:35) but
upregulated in human sera (with P value = 1.78E-10, P
value = 4.10E-13, and logFC = 6:62and logFC = 6:45), indi-
cating changes on gene expression levels regulated by
miR-451a between primary tumor tissue and serum. Rele-
vant studies confirmed the expression pattern of miR-451a
in primary tumor tissue. Mamoori et al. noticed that the
overexpression of miR-451a in colon cancer cells has neg-
ative influence on cell proliferation and may increase cell
apoptosis [41]. They found that miR-451a results in
decreased expression of Oct-4, Snail, and Sox-2 in CRC
tissues, among which Oct-4 and Sox-2 are markers of stem
cells. Moreover, these two genes are involved in CRC
development [42, 43]. Snail is a marker of epithelial-
mesenchymal transition (EMT). Meanwhile, Li et al. dem-
onstrated that miR-451a may increase the expression of
FoxO3, leading to the downregulation of Ywhaz protein
and further inhibition of CRC growth [44]. These findings
revealed a tumor suppressor role of miR-451a in CRC pri-
mary tumor tissue. In summary, although the regulatory
mechanism of miR-451a in human sera is still unclear,
miR-451a has a potential role as a circulating biomarker
for CRC.

3.3. Downstream Target Validation. To investigate the func-
tional role of miR-451 in CRC, we examined the downstream
targets of miR-451a, including mRNAs and lncRNAs. For
mRNA target identification, we applied miRWalk 2.0 for
both experimental validated targets and computational pre-
dicted targets, as well as miRTarBase for experimental vali-
dated targets. A total of 24 and 31 validated targets were
found from miRWalk and miRTarBase, respectively. In total,
31 experimental validated targets were obtained after a com-
bination of these two results. The regulatory network of miR-
451a and these mRNA targets are shown in Figure 4(a).
Among these targets, 20 of them (65%) were reported to be
involved in CRC tumorigenesis, development, and metasta-
sis. For example, a well-known gene named ROR2 that is
involved in both canonical and noncanonical signaling path-
ways, such as Wnt signaling pathway, was reported to be
associated with CRC [45]. The ROR2 protein is a transmem-
brane receptor for Wnt noncanonical pathway activation.
Recent study revealed that the noncanonical Wnt target
genes are dependent on ROR2 [46]. Lara et al. also demon-
strated that ROR2 is repressed by aberrant promoter of
hypermethylation in CRC tissues [47]. Another well-
studied gene called MAPK1, which is regulated by miR-
451a, was reported recently to be upregulated with the inhi-
bition of miR-145 in CRC tissues [48]. Upregulation of
MAPK1 is associated with the promotion of cancer cell pro-
liferation and differentiation [49]. These validated data fur-
ther strengthen the close relationship between miR-451a
and CRC.
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Figure 3: Results of DE-miRNA analysis. (a) Volcano plots for GSE112264, GSE113486, and TCGAmiRNA-seq data. (b) Venn plot showed
the overlapping results of these DE-miRNAs and candidate biomarkers from these 4 datasets. (c) Boxplot showed the data distribution of
GSE113486 before and after normalization and (d) showed that of GSE112264.
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MiRWalk was also used to predict potential mRNA tar-
gets that are regulated by miR-451a. Under the threshold of
2 as described in methods, a total of 1132 candidate mRNAs
were obtained. Most of the predicted mRNAs were reported
previously to be involved in CRC, including DISC1, EREG,
PPARA, and SYNJ2 [50–53].

The regulatory network of miR-451a and lncRNA targets
was built based on the data we acquired from the DIANA-
LncBase. We obtained 38 lncRNAs that were validated by
immunoprecipitation assay. In addition, 3 lncRNAs were
detected through the prediction module of this tool. The
miRNA-lncRNA regulatory network of miR-451a is
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Figure 4: Downstream targets of miR-451a. (a) Experimentally validated mRNA targets of miR-451a. miR-451a was labeled in triangle, and
circles here are the mRNAs regulated by miR-451a. Blue solid circles are CRC-associated mRNA (b) LncRNA targets of miR-451a. Blue solid
circles are CRC-associated lncRNAs.
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presented in Figure 4(b). We also examined the lncRNAs and
demonstrated its association with CRC using the Lnc2Cancer
database and 208 lncRNAs selected. By overlapping the
CRC-associated lncRNAs and lncRNA targets, 5 of the tar-
gets were finally obtained, including SLC25A25-AS1,
SNHG15, LOC283070, MALAT1, and NEAT1. Among these
lncRNAs, MALAT1 has been suggested to play an important
role in oxymatrine resistance in CRC and has the potential to
be a therapeutic target and prognosis biomarker for CRC
patients [54, 55]. NEAT1 was also reported as a promising
circulating and prognosis biomarker for CRC [56, 57]. Also,
Li et al. found that the decreasing expression levels of
SLC25A25-AS1 promote cell proliferation and chemoresis-
tance in CRC [58]. Other evidence showed the oncogenesis
potential of SNHG15 and LOC283070 [59, 60].

Taken these results together, our analysis of downstream
targets of miR-451a suggests its multiple roles in different
stages of CRC, enhancing its potential and rationality to serve
as a biomarker for CRC diagnosis.

3.4. KEGG Pathway and Gene Ontology Enrichments. We
performed a functional enrichment analysis from the two dif-
ferent databases to investigate the mechanisms of miR-451a:
KEGG pathway database and Gene Ontology database. The
enrichment analysis was conducted using the STRING. The
top 20 significantly enriched pathways and top 10 signifi-
cantly enriched ontology items were selected at each level,
as shown in Figure 5. The enriched GO items in BP included
the positive regulation of cell process, developmental process,
and organ development, suggesting that genes regulated by
miR-451a may have positive regulations for cell develop-
ment. This result further confirmed the suppressor role of
miR-451a in CRC tissues. The regulation activity of miR-
451a may happen in cytosol, cytoplasm, and nucleus, as sup-
ported by the results of GO items in CC. Results of GO items
in MF, such as protein kinase activity, phosphotransferase
activity, and kinase binding, indicated that genes regulated
by miR-451a are strongly associated with protein activation;
a set of study evidences support these results [61–63]. In
KEGG pathway analysis, we observed that most of the top
20 pathways (about 70%) are related to CRC occurrence
and development, including cAMP signaling pathway [64],
FoxO signaling pathway [44], MAPK signaling pathway,
and signaling pathways regulating pluripotency of stem cells
[49, 65]. Notably, colorectal pathway ranked No. 4 in this
enrichment, which enhanced our analysis confidence. Our
enrichment study revealed the regulatory roles of miR-451a
and the mechanisms it may be involved in. Thus, these data
explained why miR-451a could serve as a promising bio-
marker for CRC diagnosis.

3.5. PPI Network Construction and Detection of Hub Nodes.
Target mRNAs from both experimentally validated group
and miRWalk predicted group (1163 mRNAs) were loaded
into the STRING for PPI investigation. A total of 438
mRNAs were selected through this process for network con-
struction. Results retrieved from STRING were processed
and a PPI network for the target genes of miR-451a was visu-
alized using the Cytoscape, as shown in Figure 6(a). The

degree of a node reflects the number of connections with this
node and the higher degree the node has, the more indispens-
able it will be for the stabilization of the network. Thus,
degrees of these mRNAs were calculated and the top 10
hub nodes were screened, including AKT1, MYC, IL6,
MAPK1, CCND1, RPL6, RPS8, RPS4X, RPL13A, and
RPL8. The degree distributions of nodes in the network and
the degree distributions of the top 10 hub nodes are pre-
sented in Figures 6(b) and 6(c). Interestingly, we noticed that
these top 10 hub mRNAs could be roughly divided into four
functional groups: AKT1 and MAPK1 are protein kinase
coding genes; MYC and CCND1 are genes involved in cell
cycle; RPL6, RPS8, RPS4X, and RPL13A are ribosomal pro-
tein coding genes, and IL6 is involved in T cell activation
and tumor immune microenvironment modifications. In
our gene expression analysis, we found that the expression
of MYC and CCND1 was upregulated, with logFC of
1.3602 and 1.2455, respectively, and the expression of ribo-
somal proteins, such as RPL6, RPS8, and RPS4X, was slightly
higher in CRC patients. However, the expression of IL6
showed no significant change. These results further showed
the remarkable roles of miR-451a in CRC growth, inflamma-
tion, and differentiation.

Submodules were also detected using MCODE. The most
significant module is presented in Figure 6(d). We noticed
that most of the genes in this module are ribosomal protein
coding genes. Emerging evidences have shown potentials of
these proteins involving CRC carcinogenesis and drug targets
[66–68]. These studies may give new insight into miR-451a
function as it links with ribosomal proteins.

3.6. Diagnosis Potential of miR-451a. Finally, we performed
ROC curves and survival curves to test the discriminatory
performance of miR-451a. These two graphs are shown in
Figure 7. In ROC curves, totally 4 datasets were utilized here
for validation. For GSE112264 and GSE113486 that we used
for biomarker discovery, the values of area under curve
(AUC) are 91.24% (CI: 0.857-0.968) and 89.45% (CI: 0.838-
0.951), respectively. Besides, we also downloaded 2 new data-
sets from GEO DataSets, GSE113740 and GSE124158, to fur-
ther confirm the biomarker reliability of miR-451a. The AUC
values are 79.60% (CI: 0.614–0.978) and 92.2% (CI: 0.886–
0.958), respectively. These consistent results indicate the
favorable performance of miR-451a to distinguish CRC
patient sera and normal sera. For survival curves, we
obtained patients’ information from TCGA and a total of
300 patients’ data were used here. Patients were equally
divided into low miR-451a expression group and high miR-
451a expression group. The Kaplan–Meier analysis was used
here for survival analysis. The results suggest that patients
with high miR-451a expression have significantly higher sur-
vival rate compared to patients with low miR-451a expres-
sion (P value = 0.0486). These data show the tumor
suppressor role of miR-451a in CRC patients, which are con-
sistent with several previous findings of the role of miR-451a
[69, 70]. These results give a strong support that miR-451a
could evidently discriminate between CRC sera and normal
sera, adding to previous evidences that pinpoint miR-451a
as a diagnostic biomarker for CRC.
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4. Discussion

To date, there are accumulating evidences that reveal various
roles of miRNAs in the mechanisms of cancer. In clinical
diagnosis, many studies demonstrated their brilliant perfor-
mance in cancer detection and treatment due to their perfect
biomarker characteristics [11]. However, previous studies
mainly focus on dysregulated miRNAs in primary tumor,
which have great contributions to expanding our under-
standing of the mechanisms of cancer but it provided limited
knowledge for clinical diagnosis of cancer, especially for early
diagnosis [71]. Hence, improvements in our current strate-
gies for tumor screening are urgently required. In recent
years, an increasing number of studies suggested that compo-
nents of tumors are shed into the blood circulation, which

could be detected from body liquids. These findings improve
many aspects of tumor screening and management and give
researchers new insights for the methods for early detection
of cancer.

In this study, we used publicly available microarray data
and miRNA-seq data from GEO DataSets and TCGA data
portal for integrative bioinformatics analysis strategy to iden-
tify novel circulating miRNA biomarkers for CRC diagnosis.
We considered miRNAs as candidate circulating biomarkers
under at least two essential characteristics: first, they are dys-
regulated in CRC sera compared with normal sera; second,
they are sufficiently powerful to indicate the status of health
and disease. To address these two characteristics, we selected
DE-genes at first. Then, a specific tool named miRNA-BD
was used to generate the candidate miRNA biomarkers using
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Figure 5: Results of functional enrichments. (a–c) Top 10 most significantly enriched items in Gene Ontology enrichments. (d) Top 20 most
enriched pathways in KEGG enrichment.
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the inputs of DE-genes. This tool is based on the Pipeline of
Outlier MicroRNA Analysis (POMA) algorithm, which has
been validated in many other complex diseases, such as pedi-
atric acute myeloid leukemia and autism [8, 72]. At the same
time, we retrieved serum miRNA expression microarray data
and primary tumor miRNA-seq data to check the DE-
miRNAs in both CRC serums and primary tumors. Taken
these data together, we made an overlap and finally miR-
451a was selected as the candidate CRC biomarker. An inter-
esting expression difference was noticed in the expression

analysis, whereby miR-451a is upregulated in CRC sera but
downregulated in primary tumors, indicating a relevant
pathway signaling and gene expression changed from pri-
mary tumors to human sera.

To further investigate the functional roles of miR-451a,
we performed various downstream analysis of miR-451a,
including target identification, functional enrichment, and
PPI network analysis. In target identification, we noticed that
20 out of 31 validated gene targets were reported to be
involved in CRC occurrence and development, most of
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Figure 6: PPI network construction results. (a) The complete PPI network based on the interaction data from STRING. (b) Degree
distribution of the nodes in the network. (c) Degree distribution of top 10 hub nodes. (d) Submodules with highest MCODE score.
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which are associated with cancer cell proliferation and differ-
entiation [45, 48, 63]. Meanwhile, most of the predicted gene
targets through miRWalk are also relevant to CRC. We
returned to check the expression pattern in our microarray
analysis and found upregulations of these genes, suggesting
its role in tumor suppression role in CRC primary tumors.
We also examined the lncRNA targets of miR-451a in which
41 lncRNA targets were obtained after overlapping the
results from experimentally validated targets and computa-
tionally predicted targets. Here, we observed that 5 of the
targets were previously demonstrated to have contributions
to CRC drug resistance and prognosis. Results of pathway
and GO enrichment analysis provided additional evidences
for the functions of these targets. These target identifica-
tion results illustrate the general functional pattern of
miR-451a.

We also performed PPI network analysis to reveal the
correlations among these target genes of miR-451a. Through
PPI network construction, a series of hub genes were
detected. Most significant hub genes are mainly enriched
on protein kinases, ribosomal protein, cell cycle regulation,

and tumor immune microenvironment modifications. We
also identified submodules of this network, and the module
with highest MOCDE score showed a potential role of miR-
451a in regulating ribosomal protein coding, although the
expression of these target genes in our microarray analysis
is not significantly discriminative.

Finally, we measured the biomarker robustness of miR-
451a through ROC curve analysis and survival analysis. The
results of ROC curve showed high sensitivity of miR-451a,
with 91.24% and 89.45% AUC values in two sera microarray
datasets. The survival analysis also exhibited a significant dis-
tinguishing pattern between the high miR-451a expression
group and the low miR-451a expression group.

Taken these results together, we managed to illustrate the
functional pattern of miR-451a at a systematic level and iden-
tified it as a potential circulating biomarker for CRC. How-
ever, the dynamic and complexity of CRC required further
confirmations of miR-451a through clinical trials, specifically
to elucidate the change in expression levels of miR-451a from
the primary tumor to serum. Detailed mechanism research of
this change should also be conducted in the future.
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Figure 7: Results of reliability evaluation of miR-451a as a promising circulating CRC biomarker. (a) ROC curve of miR-451a in GSE112264,
GSE113486 (these 2 datasets were used in previous biomarker identification part), GSE113740, and GSE124158 (these 2 datasets were new
datasets obtained from GEO DataSets). (b) Survival rates of CRC patients. (c) Boxplots describing expression pattern of miR-451a in these
4 datasets.
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5. Conclusions

In conclusion, we identified the significance of miR-451a in
CRC. Using integrative data mining and bioinformatics anal-
ysis, we explained why miR-451a is an excellent circulating
biomarker for early CRC diagnosis. Studies with large biolog-
ical and clinical data or studies with detailed biological exper-
iments should be carried out to confirm the critical role of
miR-451a in CRC.
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